
Everything You Wanted to Know About
z/OS UNIX Sysplex File Sharing

Vivian W Morabito

Thursday March 13, 2014 1:30-2:30PM

Grand Ballroom Salon G

morabito@us.ibm.com

Table of Contents

2

The Basics (bpxprm setup, file system structures)

Alternate sysplex root

Sysplex aware terminology

RWSHARE/NORWSHARE

Performance numbers

zFS queries (zFS owner, sysplex aware, cache information)

3

Shared Filesystem Advantages

• Greater user mobility

• Flexibility with data placement

• Can read and write to filesystems from all systems in

the shared filesystem group.

• Greater availability of data in the event of a system

outage

• Common BPXPRMxx for all systems

• Common file system tree on all systems

Shared File System – Key Concepts

BPXPRM01

SY1

BPXPRM02

SY2

BPXPRM03

SY3

BPXPRMxx

All systems may share a common BPXPRMxx member that contains a ROOT statement and

MOUNT statements. This is done through the use of system symbolics.

The common BPXPRMxx member also contains the SYSPLEX(YES) statement.

Each system may specify a BPXPRMxx member that contains system specific limits.

All systems should have the same PFSs and any necessary subsystems required by the PFS

started. For example, NFS client PFS requires the TCP/IP subsystem be started and a

network connection configured.

5

Overview – z/OS UNIX Sysplex File Sharing

BPXPRMxx member parameters that support sysplex file sharing:

– SYSPLEX(Yes)

–Default is No

– VERSION('nnn')

•Allows multiple releases and service levels of the binaries to coexist
and participate in a shared file system.

•IBM recommends using 'nnn' as a symbolic name.

 Example: VERSION('&RLSE') or VERSION(‘&SYSR1’)

– SYSNAME(sysname) parameter on the MOUNT statements

• Specifies that 'sysname' be the z/OS UNIX file system owner.

– AUTOMOVE parameter on the MOUNT statements

• Specifies z/OS UNIX action on the file system in the event of a

system outage.

6

Overview – z/OS UNIX Sysplex File Sharing

Details on the automove parameter on mount statements:

 AUTOMOVE=YES allows the system to automatically move logical ownership of

the file system as needed. AUTOMOVE=YES is the default; you can specify it as

AUTOMOVE.

 AUTOMOVE=NO prevents ownership movement in some situations.

 AUTOMOVE=UNMOUNT unmounts the file system in some situations.

 AUTOMOVE=indicator(sysname1,sysname2,...,sysnameN) specifies a list of

systems to which the ownership of file system should or should not be moved when

ownership of the file system changes.

 If indicator is specified as INCLUDE (or I), the list must provide a comma-

delimited, priority-ordered list of systems to which ownership of the file system

can be moved. For example, AUTOMOVE=INCLUDE(SYS1, SYS4, SYS9).

You can specify an asterisk (*) as the last (or the only) system name to indicate

any active system. For example, AUTOMOVE=INCLUDE(SYS1, SYS4, *).

 If indicator is specified as EXCLUDE (or E), the system list must provide a

comma-delimited list of systems to which the ownership of file system must not

be moved. For example, AUTOMOVE=EXCLUDE(SYS3, SYS5, SYS7).

7

Overview – z/OS UNIX Sysplex File Sharing

Recommendations on the automove parameter on mount statements:

 AUTOMOVE=YES Should be specified (or defaulted) on most filesystems.

Version and sysplex root file system should be automove.

 AUTOMOVE=NO Should be specified on system specific filesystems. File system

will be in an “unowned” state until the owning system is re-IPLed back into the

sysplex.

 AUTOMOVE=UNMOUNT Should be specified on system specific filesystems.

 AUTOMOVE=indicator(sysname1,sysname2,...,sysnameN) Useful if there are a

subset of systems where you prefer the z/OS UNIX owning system.

Note: With zFS sysplex sharing the z/OS UNIX owning system has less

significance. The AUTOMOVE syslist is used for z/OS UNIX file system

ownership and not for zFS ownership. If you use RWSHARE, note that zFS

ownership could move to a system not in your include list.

File system structures in a shared
configuration

• Sysplex root file system

• The sysplex root is a file system that is used as the sysplex-wide

root. Only one sysplex root is allowed for all systems participating in

a shared FS environment.

• System-specific file system

• Directories in the system-specific file system data set are used as

mount points, specifically for /etc, /var, /tmp, and /dev.

• Version file system

• You can use one version file system for each set of systems

participating in shared FS and that are at the same release level.

9

 Hierarchical file system concepts

• Figure 6-27 All the z/OS UNIX file sharing structures used in a sysplex sharing environment. Source:

Redbook: UNIX System Services z/OS Version 1 Release 7 Implementation (ISBN 073849609X -

IBM Form Number SG24-7035-01)

 Shared File System – Key Concepts

• All participating systems communicate with each other using
coupling facility or channel-to-channel connections.

• BPXMCDS couple data set is a complex record of participating

systems and the file systems in use throughout the sharing group.

SY1 RECORD

SY2 RECORD

SY3 RECORD

SY4 RECORD

OMVS Couple Data Set

 System Record

• Contains information about
each system in the shared FS
group.

• Changes as systems join or

leave the sysplex.

 How to see the system information that is in the CDS:
MODIFY BPXOINIT,FILESYS=DISPLAY

BPXF242I 2013/02/08 08.34.28 MODIFY BPXOINIT,FILESYS=DISPLAY,GLOBAL

SYSTEM LFS VERSION ---STATUS--------------------- RECOMMENDED ACTION

NP5 1. 13. 0 VERIFIED NONE

NP6 1. 13. 0 VERIFIED NONE

CDS VERSION= 2 MIN LFS VERSION= 1. 13. 0

DEVICE NUMBER OF LAST MOUNT= 372

MAXIMUM MOUNT ENTRIES= 4000 MOUNT ENTRIES IN USE= 356

MAXIMUM AMTRULES= 300 AMTRULES IN USE= 8

MAXSYSTEM= 12

ALTROOT= USSZFS.ALTROOT.ZFS

SYSTEMS PERFORMING UNMOUNT

 (Since 2013/02/04 00.35.11)

 NUMBER OF UNMOUNTS IN PROGRESS= 1

 NP6

ACTIVE QUEUE

 UNMOUNT SHARED

Shared File System – Key Concepts,
continued

•

OMVS Couple Data Set

Mount Record

•Used to keep hierarchy

consistent across the sharing

group.

•Provides information about

each file system in use

throughout the shared file

system group.

•Changes as file systems are

mounted, unmounted, moved,

recovered, remounted or

become unowned.

PLEX.SYSPLEX.ROOT

PLEX.V1R13.VERFS

PLEX.V2R1.VERFS

PLEX.SY1.FS

PLEX.SY2.FS

PLEX.SY3.FS

PLEX.SY4.FS

USSZFS.TOTTEN.FS1

Fail-safe the sysplex root file system

• In a sysplex configuration, the alternate sysplex root file
system is a hot standby for the sysplex root file system that
is used to replace the current sysplex root file system when
the sysplex root file system becomes unowned.

• The alternate sysplex root file system is established by

using the ALTROOT statement in the BPXPRMxx parmlib

member during OMVS initialization or by using the SET

OMVS command.

Steps for setting up the alternate sysplex
root

1. Allocate a new file system to be used as the alternate sysplex root file system.

2. On the alternate sysplex root, set up the mount points and the symbolic links. The mount

points and the symbolic links must be same as the ones on the current sysplex root.

3. Specify ALTROOT in the BPXPRMxx parmlib member with the mount point in the root

directory of the current sysplex root file system.

Restriction: The ALTROOT mount point must not exceed 64 characters in length.

Example:

ALTROOT FILESYSTEM('USSZFS.ALTROOT.ZFS')

 MOUNTPOINT('/mnt')

4. Make sure that all systems in the shared file system environment have direct access to the

new file system and can locally mount it.

5. Process the ALTROOT statement by using the SET OMVS command or by initializing the

OMVS with the updated BPXPRMxx parmlib member.

Example:

SET OMVS=(xx)

Steps for removing the alternate sysplex
root

1. In the BPXPRMxx parmlib member, replace the ALTROOT FILESYSTEM

statement with the following statement:

ALTROOT NONE

Because the ALTROOT NONE and ALTROOT FILESYSTEM statements are

mutually exclusive, only one can be specified in the BPXPRMxx parmlib

member.

Note: If concatenating parmlib members result in multiple ALTROOT statements, then

the first parmlib member specified on the OMVS= operator command that

contains the ALTROOT statement will take effect.

2. Issue a SET OMVS operator command to process the ALTROOT NONE

statement.

Example:

SET OMVS=(XX)

Steps for dynamically replacing the sysplex root

1. To verify that the sysplex root is locally mounted on all systems, issue:

Route *all, D OMVS,F,NAME=root_file_system_name

You should see CLIENT=N for each system.

2. Allocate a new file system to be used as the new sysplex root file system.

Rules: see notes

3. On the new sysplex root, set up the mount points and the symbolic links. The mount points

and the symbolic links must be the same as the ones on the current sysplex root.

4. On any system in the shared file system configuration, issue:

F OMVS,NEWROOT=new.root.file.system.name,COND=<YES|NO|FORCE>

YES Proceed conditionally.

NO Proceed unconditionally.

FORCE This option allows user to replace a failing sysplex root with the user-specified new

sysplex root.

5. Update the name and type parameter (if appropriate) of the sysplex root file system in the

BPXPRMxx member.

 Shared file system terminology

• Non-Sysplex aware file system (sysplex-unaware)

• The file system requires it to be accessed through the remote owning

system from all other systems in the shared file system configuration.

There is only one connection for update at a time for a particular

mount mode (read-only or read-write).

• Function Shipping

• Function shipping means that a request is forwarded to the owning

system and the response is returned back to the requestor through

XCF communications.

• Sysplex-aware file system

• The file system is locally mounted on every system and file requests

are handled by the local PFS.

 Shared file system terminology (cont’d)

• Local connection - A mount directly to the native PFS

• Owner - System assigned as the mount coordinator for a

particular file system, and in some cases, the system

coordinating I/O for that file system.

• Server - An owner that has one or more function shipping

client

• Client - A system other than the owner, which is sharing a

file system through communication with the owner

(function shipping)

Non-sysplex aware file systems: z/OS UNIX does the
function shipping of i/o requests

HFS/TFS

z/OS UNIX

z/OS

UNIX

appl

HFS/TFS

z/OS UNIX

z/OS

UNIX

appl

HFS/TFS

z/OS UNIX

z/OS

UNIX

appl

Read-write HFS

SY1 SY2 SY3

owner

20

Overview I – zFS R/W Sysplex Sharing

zFS provides optional support for file systems mounted R/W in a parallel sysplex in a z/OS
UNIX Shared File System Environment

• zFS manages sysplex serialization and updates

• zFS manages system recovery for the file system

• zFS still has an owner that manages metadata and administration operations

• RWSHARE file system – This term denotes a R/W mounted file system that is using the

optional zFS sysplex sharing support.

• NORWSHARE file system – This term denotes a R/W mounted file system that is not

using the zFS sysplex sharing support.

• We support a mix of NORWSHARE and RWSHARE mounted file systems.

• zFS moves ownership dynamically if one system has a “lions-share” of the usage to that

system for optimal performance.

• RWSHARE significantly improves client performance because:

• zFS caches file and directory contents at non-owners

• zFS performs file read-ahead and write-behind for large file access.

• zFS can directly read/write data to disk from non-owners

Note: The zFS presentation material here is at the z/OS 13 and later software levels.

21

Overview II – RWSHARE and NORWSHARE
File Systems

zFS

z/OS UNIX

z/OS

UNIX

appl

zFS

z/OS UNIX

z/OS

UNIX

appl

zFS

z/OS UNIX

z/OS

UNIX

appl

Read-write

RWSHARE

SY1 SY2 SY3

owner(fs2)

owner(fs2)

owner(fs1)

FS1 FS2

Non-sysplex aware

Sysplex-aware

Read-write

NORWSHARE

cache cache

22

Overview III – RWSHARE File System Design

XCF

zFS
File
System

z/OS Unix

Metadata Cache

User Cache Data
Spaces

z/OS Unix

Metadata Cache

SY1: Client
(non-owner)

SY2:
Owner

User Cache Data
Spaces

Application requests flow through
z/OS Unix into zFS on all systems.

All plex members can directly
read/write file data into/out of
user cache dataspaces

All systems can read metadata
into the cache from disk. Only
owners can write metadata to
disk.

Token
Manager

All systems have a token
manager used to handle
serialization of file system
objects for file systems they
own.

XCF is used
to obtain
tokens from
owner, and
tell owner to
update
metadata

Not shown: YES – all systems
can use the backing cache to
cache more metadata.

zFS zFS

23

Overview IV – zFS RWSHARE Sysplex Caching – Non Owner

User_cache
data space

User_cache
data space

User_cache
data space

Meta cache

FS2

Evnode – zFS
file structure

Token

Pool of
reserved disk
blocks for
write-behind
for FS2

. . .

SY1
1. Clients obtain tokens from owners to

allow for caching of object data via XCF
communications to owner

 vnode_cache_size determines
number of objects clients can cache.

2. If writing files, clients obtain pools of disk
blocks from the owner via XCF and
assign these blocks to newly written files
to allow for direct writes to disk.

 Owner can always callback to reclaim
unassigned blocks if disk low-on-
space.

3. Clients can directly read directory contents and
file metadata from disk into its metadata (and
backing) cache.

 Will synchronize with owner if necessary.

4. Clients can directly read and write file data
to/from disk from its user file cache data spaces
for non-thrashing objects.

1.

2.

3.
4.

Evnode – zFS
file structure

User_cache
data space

Evnode – zFS
file structure

24

Overview V – zFS RWSHARE Sysplex Caching - Owner

F1

FS2

F2

FS2

SY1-R SY2-R

SY1-
RW

F3

FS7
.

Token Manager

FS2 SY1

Pool 1

SY1

Pool 2

SY3

Pool 1

FS7
SY2

Pool 1

Allocation Manager

 Token Manager

 Owner component manages RWSHARE sysplex locking

 Tracks which systems have tokens for which files in
RWSHARE file systems.

 Owner will callback to clients (revoke) if a system requests a
conflicting access to an object.

 token_cache_size = size of token cache managed by owners

Owners will garbage collect oldest tokens from clients if
low on tokens in its token manager.

 Default token cache size = 2 × vnode_cache_size.

 Allocation Manager

 Owner component for BOTH NORWSHARE and RWSHARE
file systems.

 Tracks pools of blocks given to systems to support write-
behind.

 If NORWSHARE, only local system has block pools

 For RWSHARE, any system could have one or more block
pools.

 If low on space, allocation manager has to callback systems to
get unassigned blocks back from pools.

Note: Only owners
directly write
metadata to disk.

25

Overview VI – Thrash Resolution

• What if multiple systems write same object concurrently?

• Prior slides show how zFS clients cache data, and perform read-ahead and

write-behind after first obtaining sysplex tokens (locks) on object.

• Excessive lock-callbacks and data sync could occur if more than one

system accessing object and at least one system writing to object.

• zFS detects thrashing and resolves it by:

• Using a different protocol for that object, this protocol is much like z/OS

Unix Sharing:

 Does not use data locks on the object

 Forwards any reads/writes of the object to the server.

 Still caches security information at clients for proper security

checking.

 Still manages a name-lookup cache for thrashing directories to

reduce lookup XCF calls to owners. Owners will callback clients if an

update occurs to a name in a directory being cached by the client.

• zFS detects when thrashing has stopped for object, and then resumes its

normal protocol (aggressive caching/read-ahead/write-behind)

26

RWSHARE Performance I - Workloads

• File Workload Descriptions:
• The file results (next slide) were obtained using 2 workloads created by IBM:

• FSPT – Parallel database access simulation. Multiple tasks read/write same large file in parallel.
The file is already pre-allocated on disk, no new blocks written.

• ptestFS – Parallel creation/write/delete of new files to multiple file systems. This tested allocation
of new files and allocation and assignment of blocks to those files along with the actual file IO
to/from disk.

• Tests were run with a severely constrained user file cache (near zero hit ratio) and with a very large
user file cache (near 100% hit ratio) to show the affects of each situation.

• It is expected that most customers will achieve hit ratios from 70-95% in practice.

• Directory Workload Descriptions:

• The directory results (subsequent slide) were obtained using 2 workloads created by IBM:

• All workloads involved many tasks processing 2000 objects in each directory, for multiple
directories, on multiple file systems (see slide notes).

• ptestDL – The tasks did repeated lookup and readdir functions.

• ptestDU – The tasks performed directory create/update/remove/readdir/search.

• Tests were run varying the sizes of the involved directories to test scale-ability.

• Definitions:
• External Throughput (E) – Number of operations per unit of time.

 The higher the number, the lower the average operation response time.

• Internal Throughput (I) – Number of operations per unit of processor time.

 The higher the number, the less CPU time each operation took.

 The subsequent slides show ITR per processor.

27

RWSHARE Performance II – Sysplex Client File

• Performance for RWSHARE sysplex client, z9 / FICON connected DASD

Cache Hit Ratios R13
NORWSHARE

MB / Second

z/OS 13
RWSHARE
Ratio over
R13 NORW

z/OS 2.1 V4
RWSHARE
Ratio over
R13 NORW

R13
NORWSHARE
MB / Second,

z/OS 13
RWSHARE
Ratio over
R13 NORW

z/OS 2.1 V4
RWSHARE
Ratio over
R13 NORW

0% cached

User_cache=10M

E=16.56

I=11.51

E∆ 0.993

I∆ 2.388

E∆ 0.986

I∆ 2.25

E=13039

I=5603

E∆ 11.069

I∆ 7.761

E∆ 10.592

I∆ 7.418

100% cached

User_cache=1280M

E=178.94

I=26.95

E∆ 4.886

I∆ 8.031

E∆ 4.652

I∆ 7.646

E=13125

I=5663

E∆ 14.695

I∆ 8.109

E∆ 13.893

I∆ 7.616

FSPT ptestFS

 FSPT – (2 reads per one write, so cache hit ratio very important to performance).

 0% Cached – ETR the same due to DASD IO bottlenecked, BUT notice that ITR still improved,
this means less sysplex processor time per operation. This is due to fact that RWSHARE does
almost no communication with owner system.

100% Cached – ETRs and ITRs significantly improved, much better response time and much
less time on sysplex processors. Close to 5X throughput improvement.

 ptestFS – (file writing workload, so caching hit ratio not as significant)

 0%/100% Cached – Both cases improve significantly as very little sysplex communication
occurs between client and owner, even in low cache case. Over 14X throughput improvement.

28

RWSHARE Performance III – Sysplex Client Directory

• Performance for RWSHARE sysplex client, z9 / FICON connected DASD

Directory

Sizes

R13
NORWSHARE
Operations /

Second

z/OS 2.1 V4
RWSHARE
Ratio over
R13 NORW

z/OS 2.1 V5
RWSHARE
Ratio over
R13 NORW

R13
NORWSHARE
Operations /
Second

z/OS 2.1 V4
RWSHARE
Ratio over
R13 NORW

z/OS 2.1 V5
RWSHARE
Ratio over
R13 NORW

0 Base Names

(2000 names per
directory)

E=17106

I=3380

E∆ 13.459

I∆ 16.103

E∆ 18.395

I∆ 21.676

E=25895

I=5215

E∆ 2.678

I∆ 2.249

E∆ 3.176

I∆ 2.604

18k Base Names

(20000 names per
directory)

E=2306

I=521

E∆ 14.582

I∆ 10.825

E∆ 88.110

I∆ 63.468

E=3599

I=849

E∆ 7.295

I∆ 5.483

E∆ 18.485

I∆ 13.458

48k Base Names

(50000 names per
directory)

E=888

I=206

E∆ 15.347

I∆ 10.471

E∆119.64

I∆ 82.311

E=2548

I=559

E∆ 5.691

I∆ 4.608

E∆ 21.209

I∆ 17.562

ptestDL ptestDU

 z/OS 2.1 greatly improved readdir (ls and ls –l) operations for sysplex client

 And z/OS 2.1 provides new v5 file system for good directory scale-ability

 Using RWSHARE and V5 file systems yields a very large performance gain in
directory operations over V4 file systems, and especially V4 NORWSHARE.

 vnode_cache_size=400000, meta_cache_size=100M, metaback_cache_size=2G

29

Enabling RWSHARE

• Set IOEFSPRM/Parmlib share mode default:
• SYSPLEX_FILESYS_SHAREMODE=XXXXX, where XXXXX is either:

• NORWSHARE – if you want the default RW mounted file system to NOT use zFS

RW sysplex file sharing. Note that this is default value.

 In this case, use the RWSHARE MOUNT parameter to indicate any file system

 you would like to exploit zFS RW sysplex sharing.

• RWSHARE – if you want the default RW mounted file system to use zFS RW sysplex

file sharing.

 In this case, use the NORWSHARE MOUNT parameter for any file system

that you would not like to use zFS RW sysplex sharing.

• RWSHARE optimal for multi-member access to the same file system:

• RWSHARE does involve more zFS memory usage (tokens), and zFS is constrained

below the bar.

• Useful only for file systems accessed by multiple sysplex members.

• Best to selectively choose the best candidate file systems for RWSHARE usage

(highest usage file systems accessed by more than one plex member at a time)

• ftp://public.dhe.ibm.com/s390/zos/tools/wjsfsmon/wjsfsmon.pdf - this tool will

show which R/W mounted file systems are accessed by more than one sysplex

member

ftp://public.dhe.ibm.com/s390/zos/tools/wjsfsmon/wjsfsmon.pdf

30

RWSHARE Usage Notes

• Products that do not support RWSHARE:

• z/OS SMB Server

• Fast Response Cache Accelerator support of the IBM HTTP Server for z/OS V5.3

• Any Product that uses Register File Interest API (unlikely there are many of these)

• Recommendation Use NORWSHARE file systems exclusively, or use

RWSHARE only for file systems that are not accessed by these products if these

products are used at your site.

• System Specific File Systems

• These file systems should be mounted with the AUTOMOVE UNMOUNT or

NOAUTOMOVE, the file system will be unmounted if the system goes down, or zFS

would move ownership back to the system when it restarts due to zFS performance

based aggregate movement. Should also be NORWSHARE since most access is from

the owner.

• Remount of R/O File System to R/W Mode

• Will use zFS sysplex file sharing if the default

SYSPLEX_FILESYS_SHAREMODE=RWSHARE or RWSHARE was specified in the file

system MOUNT parameter at the time of the initial R/O mount; otherwise, will not use

zFS sysplex file sharing and therefore use the z/OS Unix file sharing protocol.

31

RWSHARE Error Handling

• System Outages

• zFS on the remaining members assume ownership of file systems owned by the down-
system, much like the z/OS Unix shared file system support does. Note, however, zFS
does not use the automove syslist.

• Communication Failures and Timeouts

• Uses a timeout mechanism to prevent hang-ups in the sysplex if a member is having
problems or is delayed somehow.

• zFS handles the case of lost transmissions and replies, keeping the file system available
(or as much as possible) and consistent.

• Very tolerant of another zFS member taking too long to process a request, and can
repair sysplex state between zFS members once the problem is resolved keeping
consistency between sysplex members.

• Provides F ZFS,NSV command to force a consistency check between sysplex member’s
file system state and corrects any problems automatically.

• Informative Messages Provided

• zFS provides messages to indicate if a request is taking too long on another system, if
zFS or a system takes an outage, or if its repairing sysplex state between members.

• Severe Software Errors

• Global severe errors cause zFS restart, preserving mount-tree and is relatively fast.

• File System specific severe errors temporarily disable the file system for access plex-
wide, zFS will dynamically move ownership to another system to clean up file system
state (RWSHARE) or internally remount (NORWSHARE) and resume user activity.

32

Tuning zFS RWSHARE

• Tune user_cache_size/meta_cache_size/metaback_cache_size

• Tuning zFS sysplex support is much the same as tuning zFS in any other situation. The primary

objects to tune are the size of the caches used to hold file data (user_cache_size) and metadata

(meta_cache_size and metaback_cache_size).

• zFS is constrained below the bar, must be careful about specifying too large a meta_cache_size

since that is below the bar. The other caches are in data spaces.

• Note: The default for these caches has been changed in 2.1.

• The F ZFS,QUERY,STORAGE command should be used to monitor zFS below-bar
storage when adjusting all zFS cache sizes.

• RWSHARE specific tuning:

• vnode_cache_size – This variable determines how many files/directories zFS will cache in its

memory.

• It is especially important for RWSHARE sysplex clients because if the memory object does not

exist for a file in memory, it has to contact the server to obtain information and a sysplex token for

the file.

• For an owner this is a smaller impact since it can simply obtain the file information from its

metadata cache and it owns the token manager so there is no IO involved in most cases.

• token_cache_size – This variable determines how many tokens are used for file systems owned

by the local system. Increase if you see frequent token garbage collection.

See Distributed File Services zFS Administration for details

33

Monitoring zFS RWSHARE I

• F ZFS,QUERY,LEVEL – shows SYSPLEX_FILESYS_SHAREMODE
19.08.31 DCEIMGHQ STC00005 IOEZ00639I zFS kernel: z/OS zFS

Version 02.01.00 Service Level 0000000 - HZFS410.

Created on Wed Mar 20 16:05:20 EDT 2013.

sysplex(filesys,rwshare) interface(4)

• zfsadm lsaggr – shows zFS owner

OMVS.ZFS.REL19.DR15 DCEDFBLD R/O

OMVS.ZFS.REL19.DR16 DCEDFBLD R/O

OMVS.ZFS.PROJ.DFS DCEDFBLD R/W

• zfsadm aggrinfo –long – indicates if file system is RWSHARE (will say sysplex-aware)

ZFSAGGR.BIGZFS.FS1 (R/W COMP): 1350847 K free out of total 2000160

version 1.4

auditfid E9C6E2F1 F0F500FE 0000

sysplex-aware

 168855 free 8k blocks; 7 free 1K fragments

 32800 K log file; 56 K filesystem table

 288 K bitmap file

34

Monitoring zFS RWSHARE II

• F ZFS,QUERY,FILE – Shows local activity to file systems and also if RWSHARE
• Issue on each plex member to show which systems have local activity to file system (validates if

RWSHARE applicable)

File System Name Aggr # Flg Operations

--- ------ --- ----------

ZFSAGGR.BIGZFS.FS1 1 AMSL 2198

• df – v – Shows file system from z/OS UNIX view from this system:
• Client=N – z/OS UNIX passing requests to local zFS (RWSHARE or R/O file system)

• Client=Y – z/OS UNIX handling sysplex, hence NORWSHARE function.

Mounted on Filesystem Avail/Total Files Status

/home/suimghq/lfsmounts/PLEX.ZFS.FILESYS (ZFSAGGR.BIGZFS.FS1)

2701694/40003

20 4294962725 Available

ZFS, Read/Write, Device:31, ACLS=Y

File System Owner : DCEIMGHQ Automove=Y Client=N

Filetag : T=off codeset=0

Aggregate Name : ZFSAGGR.BIGZFS.FS1

35

Monitoring zFS RWSHARE III

• Sample wjsfsmon output – remote requests and R/W mounted = Good RWSHARE

candidate

36

Sysplex Statistics I: F ZFS,QUERY,KNPFS - Sysplex Client
Summary

 PFS Calls on Client

Operation Count XCF req. Avg Time

--------- ---------- ---------- ----------

zfs_opens 885098 0 0.020

zfs_closes 885110 0 0.010

zfs_reads 12079 0 0.157

zfs_writes 0 0 0.000

zfs_ioctls 0 0 0.000

zfs_getattrs 2450523 8 0.009

zfs_setattrs 313031 656 0.020

zfs_accesses 11495 0 0.018

zfs_lookups 13764811 1190897 0.287

zfs_creates 876507 876556 5.625

zfs_removes 1240556 1240621 2.117

zfs_links 157216 157216 2.567

zfs_renames 155164 155165 1.890

zfs_mkdirs 157971 157971 6.031

zfs_rmdirs 155108 155109 2.164

zfs_readdirs 11322 3053 11.345

zfs_symlinks 157398 157398 4.295

zfs_readlinks 68 58 0.871
zfs_fsyncs 0 0 0.000
zfs_truncs 0 0 0.000
zfs_lockctls 0 0 0.000
zfs_audits 33 0 0.015
zfs_inactives 2698174 0 0.020
zfs_recoveries 0 0 0.000
zfs_vgets 0 0 0.000
zfs_pfsctls 0 0 0.000
zfs_statfss 0 0 0.000
zfs_mounts 0 0 0.000
zfs_unmounts 0 0 0.000
zfs_vinacts 0 0 0.000
--------- ---------- ---------- ----------
TOTALS 23931664 4094708 0.602

 Shows the number of operations that required one

or more calls to the owner of the file system. Lookup
requests had over 1 million XCF calls, likely to get
token for a vnode not found in cache. Could make
vnode_cache_size larger if memory permits to try
and reduce these.

 But due to client caching, over 12 million lookup
requests satisfied by client metadata/vnode cache.
(Difference between Count & XCF req.)

 Directory update operations are sent synchronously
to server.

37

Sysplex Statistics II: F ZFS,QUERY,STKM – Token manager
statistics

 Server Token Manager (STKM) Statistics

 Maximum tokens: 200000 Allocated tokens: 61440

 Tokens In Use: 60060 File structures: 41259

 Token obtains: 336674 Token returns: 271510

 Token revokes: 125176 Async Grants: 64

 Garbage Collects: 0 TKM Establishes: 0

 Thrashing Files: 4 Thrash Resolutions: 131

 Usage Per System:

 System Tokens Obtains Returns Revokes Async Grt Establish

 -------- --------- ---------- ---------- --------- --------- ---------

 DCEIMGHR 18813 161121 134907 70275 0 0

 ZEROLINK 0 66055 66054 5 64 0

 LOCALUSR 41247 109499 70549 54974 0 0

Shows token limit, number of
allocated tokens, number of
allocated file structures and
number of tokens allocated to
systems in sysplex.

Number of times tokens had to
be collected from sysplex
members due to tokens
reaching limit – if high then
might want to update
token_cache_size

Thrashing files indicates objects
using a z/OS Unix-style
forwarding protocol to reduce
callbacks to clients – check
application usage

 Shows tokens held per-system and number of token obtains and returns since
statistics last reset.

ZEROLINK – pseudo-sysplex client used for file unlink when the file still open –
used to know when file fully closed sysplex-wide to meet POSIX requirement that
a file’s contents are not deleted, even if its been unlinked, if processes still have
file open.

38

Sysplex Statistics III: F ZFS,QUERY,CTKC

 SVI Calls to System PS1

SVI Call Count Avg. Time

-------------------- ---------- ----------

GetToken 1286368 1.375

GetMultTokens 0 0.000

ReturnTokens 26 0.050

ReturnFileTokens 0 0.000

FetchData 0 0.000

StoreData 540 1.566

Setattr 0 0.000

FetchDir 7140 6.291

Lookup 0 0.000

GetTokensDirSearch 0 0.000

Create 1320406 3.736

Remove 1499704 1.595

Rename 166498 1.448

Link 169176 1.549

ReadLink 0 0.000

SetACL 0 0.000

…..

FileDebug 0 0.000

-------------------- ---------- ----------

TOTALS 4449858 2.167

Shows requests a sysplex member sends to
other sysplex members for objects in file
systems owned by other members and
average response time in milliseconds.
Includes XCF transmission time.

Might be able to reduce GetToken calls by
raising vnode_cache_size (if zFS primary
storage allows it)

39

Sysplex Statistics IV: F ZFS,QUERY,SVI

 SVI Calls from System PS2

SVI Call Count Qwait XCF Req. Avg. Time

-------------------- ---------- -------- -------- ----------

GetToken 1286013 0 0 0.259

GetMultTokens 0 0 0 0.000

ReturnTokens 26 0 0 0.050

ReturnFileTokens 0 0 0 0.000

FetchData 0 0 0 0.000

StoreData 540 0 0 0.081

Setattr 0 0 0 0.000

FetchDir 7140 0 0 4.997

Lookup 0 0 0 0.000

GetTokensDirSearch 0 0 0 0.000

Create 1321096 0 0 2.371

Remove 1499689 0 177 0.645

Rename 166500 0 0 0.509

Link 169608 0 0 0.538

ReadLink 0 0 0 0.000

SetACL 0 0 0 0.000

….

LkupInvalidate 0 0 0 0.000

FileDebug 0 0 0 0.000

-------------------- ---------- -------- -------- ----------

TOTALS 4450612 0 177 1.044

Shows calls received by indicated
plex member:

• Qwait non-zero when all server
tasks are busy

•XCF Req. means server had to
reclaim tokens from other sysplex
members to process request.

•Avg. Time in milliseconds shown
for server to process request.

40

Publications of Interest

• SA23-2283-00 z/OS V2R1.0 Using REXX and z/OS UNIX System Services

• SA23-2280-00 z/OS V2R1.0 UNIX System Services Command Reference

• SA23-2285-00 z/OS V2R1.0 UNIX System Services File System Interface Reference

• SA23-2284-00 z/OS V2R1.0 UNIX System Services Messages and Codes

• GA32-0884-00 z/OS V2R1.0 UNIX System Services Planning

• SA23-2282-00 z/OS V2R1.0 UNIX System Services Programming Tools

• SA23-2281-00 z/OS V2R1.0 UNIX System Services Programming: Assembler Callable Services

Reference

• SA23-2279-00 z/OS V2R1.0 UNIX System Services User’s Guide

• SC23-6887-00 z/OS V2R1.0 Distributed File Service zFS Administration

• SC23-6885-00 z/OS V2R1.0 Distributed File Service Messages and Codes

Trademarks and Disclaimers

• See http://www.ibm.com/legal/copytrade.shtml for a list of IBM trademarks.

• The following are trademarks or registered trademarks of other companies

• UNIX is a registered trademark of The Open Group in the United States and other countries

• CERT® is a registered trademark and service mark of Carnegie Mellon University.

• ssh® is a registered trademark of SSH Communications Security Corp

• X Window System is a trademark of X Consortium, Inc

• All other products may be trademarks or registered trademarks of their respective companies

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The

actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the

I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput

improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and

the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and

conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the

information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products

and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should

be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

http://www.ibm.com/legal/copytrade.shtml

42

Connect with IBM System z on social media!

Subscribe to the new IBM Mainframe Weekly digital newsletter to get the latest
updates on the IBM Mainframe!

Include the hashtag #mainframe in your social media activity and #mainframe50 in 50th
anniversary activity

System z Advocates **
IBM Mainframe- Unofficial Group

IBM System z Events
Mainframe Experts Network

SHARE

IBM System z **
IBM System z Events

Destination z
SHARE

System z SMEs and Executives:
Deon Newman - @deonnewm

Steven Dickens - @StevenDickens3
Michael Desens - @MikeDesens

Patrick Toole - @Pat_Toole_II
Kelly Ryan - @KellykmRyan
Richard Gamblin - @RichGx

IBM System z **
IBM Master the Mainframe Contest

IBM Destination z
SHARE Inc.

 Blogs

IBM Mainframe Insights **
Millennial Mainframer
#MainframeDebate blog
SHARE blog
IBM Destination z

IBM System z **
Destination z

IBM Mainframe50

http://paper.li/IBM_System_z/1386866312
http://paper.li/IBM_System_z/1386866312
http://www.linkedin.com/groups?mostPopular=&gid=155723
http://www.linkedin.com/groups?gid=670987&trk=myg_ugrp_ovr
http://www.linkedin.com/groups?gid=670987&trk=myg_ugrp_ovr
http://www.linkedin.com/groups?gid=670987&trk=myg_ugrp_ovr
http://www.linkedin.com/groups?gid=670987&trk=myg_ugrp_ovr
http://www.linkedin.com/groups/IBM-System-z-Events-3053018?trk=myg_ugrp_ovr
http://www.linkedin.com/groups/Mainframe-Experts-Network-55779?trk=myg_ugrp_ovr
http://www.linkedin.com/groups?trk=myg_ugrp_ovr&gid=1803278
https://twitter.com/IBM_System_z
https://twitter.com/SystemZEvents
https://twitter.com/myzcommunity
https://twitter.com/sharehq
https://twitter.com/deonnewm
https://twitter.com/StevenDickens3
https://twitter.com/MikeDesens
https://twitter.com/Pat_Toole_II
https://twitter.com/KellyKmryan
https://twitter.com/RichGx
http://www.facebook.com/IBMsystemz?ref=tn_tnmn
http://www.facebook.com/MasterTheMainframe?fref=ts
http://www.facebook.com/IBMDestinationz
https://www.facebook.com/SHAREonSocial
https://www-304.ibm.com/connections/blogs/systemz/?lang=en_us
http://www.millennialmainframer.com/
http://mainframedebate.blogspot.co.uk/
http://www.share.org/p/bl/et/
http://www.destinationz.org/Community.aspx
http://www.youtube.com/user/IBMSystemz
http://www.youtube.com/user/destinationz1
http://ibmmainframe50.tumblr.com/

