
Session 15022

Best Practices in Enhancing our
Security with WebSphere MQ

Morag Hughson
hughson@uk.ibm.com

N

O

T

E

S

Best Practices in Enhancing our Security with
WebSphere MQ - Agenda

� More than ever before, security issues are on the top of everyone's list. Find out
about the approach taken by WebSphere MQ products for controlling user access
to MQ resources and all about the latest security features.

� This session will try to cover all aspects of MQ security; from IP filtering to SSL,
and Channel Authentication Records to auditing, and then onto Advanced
Message Security; aiming to present the concepts of each aspect as well as their
implementation and monitoring. This session will focus mainly on z/OS but will also
touch on distributed topics as a lot of the same principles and functionality apply to
all platforms.

� Along the way advice will be given on best practices, empowering you to be at the
forefront of MQ security knowledge within your organisation.

QM1QM1 QM2QM2

MCA
Channels

Transmission
Queue

Local

MQ Application

Application
Queues

Transmission
Queue

Client

MQ Application

ClientChannels

ClientChannels

Event
Queues

Application
Queues

Event
Queues

Agenda

1

2

3

4

5

6

7

N

O

T

E

S

Agenda

� This picture is going to act as our agenda today. We’re going to look at the various
different points in this diagram where security is important and introduce the
facilities available for you to use.

� These include:-
– Authentication

– Client channels
– MCA channels
– Applications (local or client)

– Authorization

– Application tasks
– Administration tasks

– Auditing

– Message Level Protection

– Encryption
– Tamper Proof

QM1QM1 QM2QM2

MCA
Channels

Transmission
Queue

Local

MQ Application

Application
Queues

Transmission
Queue

Client

MQ Application

ClientChannels

ClientChannels

Event
Queues

Application
Queues

Event
Queues

Authentication - Channels

N

O

T

E

S

Authentication – Channels – Notes
� First we shall look at authentication of remote partners, whether clients or remote queue

managers, which connect into your system.
� It is very important to ensure that you have good authentication mechanisms in place for any

remote partners. You must know that the connections coming into your queue manager can
be trusted.

Identification
� When an MQ application connects remotely to a queue manager it can assert an identity

across the network connection to the queue manager. This identity could be anything and so
should not be trusted without some form of queue manager side authentication.

Authentication
� Authentication is the way in which a channel ensures that the other end of the channel is who

they say they are. Channels can make use of SSL/TLS to authenticate a digital certificate
sent by the partner. In WebSphere MQ V7.1 Channel Authentication Records can be used to
do many of the jobs a security exit can do, such as allowing or blocking a channel based on
IP address, Certificate DN, Remote Queue Manager Name or Client User ID.

� Once a remote partner has been authenticated, Channel Authentication Records or a
security exit can also set the identity that this channel will use for all access control checks.

Confidentiality
� In an ideal environment all channels would be running inside the enterprise with good

physical security. However, often there will be cross enterprise channels or channels running
on networks where physical security can not be guaranteed. In those cases it is worth
considering adding some level of encryption to the data flow. This can either be done in
channel exits or by using SSL/TLS on the channels.

Authentication – Channels – Facilities

• Transport Layer Security (SSL/TLS)
• Using Digital Certificates

• Channel Authentication Records
• New in WebSphere MQ V7.1

• Security Exits
• Many Vendor exits available

N

O

T

E

S

Authentication – Channels – Facilities – Notes

� Over the next few pages we are going to introduce each of the following facilities
which allow you to provide some authentication for your client or MCA channels.
The strength of the authentication provided varies by each facility so the choice of
facility should take that into account when making a business decision as to the
level of authentication required.

SSLCIPH(RC4_MD5_US)
SSLRKEYC(999 999 999)
SSLPEER('O=IBM')
SSLCAUTH(REQUIRED)

SSLKEYR(QM1KEYRING)

SSLCRLNL(REVOKE.NL)

Authentication - Using SSL/TLS with WebSphere MQ

• Get your certificates
or Authentication

• Digital Certificates
• Asymmetric Keys

• Put your certificates in a place
that MQ can use

• Decide if you need revocation
status checking (LDAP or OCSP)

• Decide if you need cipher spec
restriction (FIPS or SUITEB)

• Configure your channels to
use SSL/TLS for Confidentiality

• Symmetric Key
Cryptography

• … and Data Integrity
• Hash Function

• WebSphere MQ SSL Wizard
(MO04)

Plaintext

h
Hash

Function

Alice's Digital
Certificate

CA Sig

A
Private

A
Public

Revoked
Alice

SSLFIPS(NO)
SUITEB(NONE)

New in
V7.1

N

O

T

E

S

Authentication - Using SSL/TLS with WebSphere MQ –
Notes

� The three main issues that Transport Level Security (SSL/TLS) addresses are Confidentiality,
Data Integrity and Authentication. The techniques that it uses to address these issues are

– For Confidentiality, we have symmetric key cryptography with the capability to periodically reset the secret key;

– For Data Integrity we have the hash function; and

– For Authentication we have digital certificates, asymmetric keys and certificate revocation lists.

� WebSphere MQ makes use of these techniques to address these security issues. One can
specify which symmetric key cryptography algorithm and which hash function to use by
providing WebSphere MQ with a SSLCipherSpec (SSLCIPH on a channel). The secret key
can be periodically reset by setting an appropriate number of bytes in SSLKeyResetCount
(SSLRKEYC on the queue manager).

� Digital Certificates and Public Keys are found in a key repository which can be specified to
WebSphere MQ (SSLKEYR on the queue manager). We can also check that we are talking
to the partner we expect to be talking to (SSLPEER on a channel) and can choose to
authenticate both ends of the connection or only the SSL Server end of the connection
(SSLCAUTH on a channel). Also we can make choose to do certificate revocation status
checking using either LDAP CRLs or OCSP (SSLCRLNL on the queue manager).

� The set of cipher specs to be used by the queue manager can be restricted to a set that are
compliant to the FIPS 140-2 standard (SSLFIPS on the queue manager) available on both
distributed and in WebSphere MQ V7.1 on z/OS; or to the Suite-B standard (SUITEB on the
queue manager) available on the distributed platforms in WebSphere MQ V7.1

Channel Authentication Records
• Set rules to control how inbound connections are treated

• Inbound Clients
• Inbound QMgr to QMgr channels
• Other rogue connections causing FDCs

• Rules can be set to
• Allow a connection
• Allow a connection and assign an MCAUSER
• Block a connection
• Ban privileged access
• Provide multiple positive or negative SSL Peer Name matching

• Rules can use any of the following identifying
characteristics of the inbound connection
• IP Address
• SSL/TLS Subject’s Distinguished Name
• Client asserted user ID
• Remote queue manager name

New in
V7.1

N

O

T

E

S

Channel Authentication Records – Notes

� Channel Authentication records allow you to define rules about how inbound
connections into the queue manager should be treated. Inbound connections might
be client channels or queue manager to queue manager channels. These rules
can specify whether connections are allowed or blocked. If the connection in
question is allowed, the rules can provide a user ID that the channel should run
with or indicate that the user ID provided by the channel (flowed from the client or
defined on the channel definition) is to be used.

� These rules can therefore be used to
– Set up appropriate identities for channels to use when they run against the queue manager

– Block unwanted connections

– Ban privileged users

� Which users are considered privileged users is slightly different depending on
which platform you are running your queue manager on. There is a special value
‘*MQADMIN’ which has been defined to mean “any user that would be privileged
on this platform”. This special value can be used in the rules that check against the
final user ID to be used by the channel – TYPE(USERLIST) rules – to ban any
connection that is about to run as a privileged user. This catches any blank user
IDs flowed from clients for example.

Channel Authentication – Configuration

• Create rules using
• MQSC: SET CHLAUTH
• PCF
• MQ Explorer GUI Wizard

• Pattern matching
• Channel Name

• Beginning, middle, end
• IP addresses (IPV4 or IPV6)

• ‘*’ in any segment
• ‘-’ ranges in any segment

• SSL Peer Name (as today)
• QMgr Name – as channel

name
• Restricting rules further

by IP Address
• Rules matching on

• SSL Peer Name
• Remote QMgr Name
• Client User ID

• Can add IP address

• Precedence matching
• Most specific rule is matched

• Within SSL Peer Name matching
• Most specific substring is

matched

Starting MQSC for queue manager TEST1.

SET CHLAUTH(‘*’) TYPE(ADDRESSMAP) ADDRESS(‘*’) USERSRC(NOACCESS)

SET CHLAUTH(‘*’) TYPE(ADDRESSMAP) ADDRESS(‘9.20.1-3.*’)
USERSRC(CHANNEL)

SET CHLAUTH(‘SYSTEM.ADMIN.*’) TYPE(SSLPEERMAP)
SSLPEER(‘O=IBM’) USERSRC(CHANNEL)

SET CHLAUTH(‘QM1.TO.QM2’) TYPE(QMGRMAP) QMNAME(QM1)
USERSRC(MAP) MCAUSER(‘QM1USER’)

SET CHLAUTH(‘*.SVRCONN’) TYPE(USERMAP)
CLNTUSER(‘mhughson’) MCAUSER(‘hughson@hursley’)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP) SSLPEER(‘CN=”Morag Hughson”’)
ADDRESS(‘9.*’) MCAUSER(‘hughson’)

Channel Name0

IP address4

Queue Manager Name2=

Client asserted User ID2=

SSL Distinguished Name1

Identity mechanismOrder

Chl: MY.CHANNEL
IP: 9.20.1.123
DN: CN=Morag Hughson.O=IBM UK
UID: mhughson

N

O

T

E

S

Channel Authentication – Configuration – Notes

� Here we show some example rules illustrating the commands used for creating the rules. These examples
are in MQSC. There is also PCF, and this is used by the MQ Explorer GUI. Additionally, the MQ Explorer
GUI provides a wizard to walk you through the steps for setting up these rules and at the end of the wizard,
the MQSC command that would do the same job as you have done in the wizard, is displayed in a window
that you can cut’n’paste from to put the command into a script for future use.

� Some of these examples illustrate the pattern matching that can be applied to channel names, IP
addresses, SSL/TLS DNs and remote queue manager names. Also we see all three types of rules,
blocking channels – USERSRC(NOACCESS); allowing channels to run with the user ID provided by the
channel – USERSRC(CHANNEL); and assigning a user ID to a channel – USERSRC(MAP)
MCAUSER(user-id). USERSRC(MAP) is the default so we also see in another example that it does not
need to be specified on the command.

� When mapping from an SSL certificate DN you may also want to ensure that certificate is being used from
the correct IP address, mitigating what might happen if a certificate is stolen.

� When mapping from a queue manager name, you may also want to ensure that the queue manager is
running on the correct IP address to ensure it is not a rogue queue manager with the same name as one in
your cluster for example.

� When there is more than one rule that could match the inbound connection in question, then we define
which rule will actually be used by defining the precedence order of what is the most specific match. The
table shows that SSL Peer Names are considered a more specific match than a queue manager name or
client user ID (because there is much more detailed information in an SSL Peer Name); and IP addresses
are considered the least specific since clearly more than one queue manager or client can be connecting
from the same IP address.

SET CHLAUTH(*) TYPE(ADDRESSMAP) ADDRESS(‘*’) USERSR C(NOACCESS) WARN(YES)

SET CHLAUTH(BPCHL.*) TYPE(SSLPEERMAP) SSLPEER(‘O=Ba nk of Shetland’) MCAUSER(BANK123)

SET CHLAUTH(BPCHL.*) TYPE(SSLPEERMAP) SSLPEER(‘O=Ba nk of Orkney’) MCAUSER(BANK456)

SET CHLAUTH(SYSTEM.ADMIN.SVRCONN) TYPE(ADDRESSMAP)
ADDRESS(‘9.20.1-30.*’) MCAUSER(ADMUSER)

SET CHLAUTH(TO.CLUS.*) TYPE(QMGRMAP)
QMNAME(CLUSQM*) MCAUSER(CLUSUSR) ADDRESS(‘9.30.*’)

Channel Authentication – How should I use this?

“We must make sure our system is completely locked down”
“Our Business Partners must all connect using SSL, so we will map

their access from the certificate DNs”
“Our Administrators connect in using MQ Explorer, but don’t use

SSL. We will map their access by IP Address”
“Our internal cluster doesn’t use SSL, but we must ensure only the

correct queue managers can connect into the cluster”

N

O

T

E

S

Channel Authentication – How should I use this? -
Notes

� Here is an example of how we expect this to be used.
� Our business requires that “We must make sure our system is completely locked

down”. So we start off with a rule that blocks everyone. Therefore anyone that
doesn’t match a more specific rule will not be allowed in.

� Our business requires that “Our Business Partners must all connect using SSL, so
we will map their access from the certificate DNs”. So we have some rules that
map specific DNs of our Business Partners to specific user IDs. Previously you
might have done this by having separate channel definitions for each BP, now if
you wish they can come into the same receiver definition.

� Our business requires that “Our Administrators connect in using MQ Explorer, but
don’t use SSL. We will map their access by IP Address”. So we have a rule that
gives them all a single administrative access user ID based on a range of IP
addresses.

� Our business requires that “Our internal cluster doesn’t use SSL, but we must
ensure only the correct queue managers can connect into the cluster”. So we have
a rule that gives access to the correctly named queue managers but only if they
come from a recognised IP address.

ChannelQM1 QM2

MCA MCA
Security Exchange

Transmission
Queue

Application
Queue

Security
Exit

Security
Exit

Channel Authentication – Security Exits

• Channel 'Gate Keeper'
• Indefinite exchange of data between exits
• No defined format
• No communications knowledge required
• Can end channel
• Can set MCAUSER

N

O

T

E

S

Channel Authentication – Security Exits – Notes

� One of the problems with authentication is that the industry could not decide how it
should be done. Different environments suit different strategies and require
different levels of security. The most common approaches seem to be third party
authenticators such as Kerberos, SSL and Public/Private key encryption.
WebSphere MQ decided that the most flexible approach was to make
authentication a plug in service. That way each channel could have exactly the
level of authentication it needed.

� Authentication can now be done without the use of a security exit, by using SSL
and digital certificates and/or by using Channel Authentication Records.

� Security exits are the first channel exits to gain control of the conversation. They
can exchange free format data with their remote partner, exchanging passwords,
public keys etc to authenticate the remote partners request.

� No knowledge of communications is required. The exit merely passes a buffer of
data back to the MCA who then transmits it to the partner machine. The data is
received by the other MCA and then passed to the other security exit.

� If the security exit agrees with the authentication then it can change the default
userid used for access control, known as the MCAUserid.

� A number of security exits are shipped as samples with the product. There are also
some available for download from the supportpac web site. A number of third party
products are also available.

QM1QM1 QM2QM2

MCA
Channels

Transmission
Queue

Local

MQ Application

Application
Queues

Transmission
Queue

Client

MQ Application

ClientChannels

ClientChannels

Event
Queues

Application
Queues

Event
Queues

Authentication – Applications

N

O

T

E

S

Authentication – Applications – Notes

� Now we shall look at authentication of applications, whether client connected or
locally bound, which connect into your system.

� It is very important to ensure that you have good authentication mechanisms in
place for any application. You must know that the connections made to your queue
manager can be trusted.

� These applications may be business applications putting and getting messages
from application queues, or administrative applications, issuing commands to the
queue manager.

Authentication – Applications – Facilities

• O/S Logon
• Useful for locally bound applications
• Not to be relied upon for client applications!

• Use client channel authentication

• MQCONNX
• Connection Security Parameters

N

O

T

E

S

Authentication – Applications – Facilities – Notes

� Over the next few pages we are going to introduce each of the following facilities
which allow you to provide some authentication for your client or locally bound
application.

Identification
� When an MQ application connects to the queue manager the O/S is interrogated to

discover the user ID that it is running under. This is used as the identity. We can
see this user ID in the context information of a message.

Authentication
� A locally bound MQ application is running against MQ under an user ID that the

O/S has provided and which has been logged onto prior to running the application.
This may be enough authentication for a locally bound application for your
business purposes, or you may wish more.

Authentication - MQCONNX

• MQCSP structure
• Connection Security Parameters
• User ID and password

• MQCNO structure
• Connection Options

• Passed to OAM
• Distributed Queue Manager only

• Also passed to Security Exit
• Both z/OS and Distributed

MQCNO cno = {MQCNO_DEFAULT};

cno.Version = MQCNO_VERSION_5;

cno.SecurityParmsPtr = &csp;

MQCONNX(QMName,
&cno ,
&hConn,
&CompCode,
&Reason);

MQCSP csp = {MQCSP_DEFAULT};

csp.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;
csp.CSPUserIdPtr = “hughson”;
csp.CSPUserIdLength = 7;
csp.CSPPasswordPtr = “12345”;
csp.CSPPasswordLength = 5;

N

O

T

E

S

Authentication - MQCONNX - Notes

� On MQCONNX an application can provide a user ID and password (in the
Connection Security Parameters (MQCSP) structure in the MQCNO), which are
passed to a user written plug-point in the OAM on distributed to be checked.

� If the application is running client bound, this user ID and password are also
passed to the client side and server side security exits for processing and can be
used for setting the MCAUser attribute of a channel instance – more on channels
later.

� If the queue manager is z/OS, there is no OAM plug-point, and the security exit
can be used to call RACF (for example) to check the user ID and password. A
sample security exit is provided (CSQ4BCX3) to illustrate how to do this.

QM1QM1 QM2QM2

MCA
Channels

Transmission
Queue

Local

MQ Application

Application
Queues

Transmission
Queue

Client

MQ Application

ClientChannels

ClientChannels

Event
Queues

Application
Queues

Event
Queues

Authorization – Application tasks

N

O

T

E

S

Authorization – Application tasks – Notes

� Authorization is the process by which you allow particular users to access
resources, such as queues or topics. Until you have some authentication in place
however, you cannot trust the user ID. To be blunt, authorization without any
authentication is simply not secure.

� We will introduce the authorization facilities available for allowing applications to
access resources. In the next section we will look at administrative tasks, and
some of these facilities will also be used for securing administrative tasks as they
are often applications that put and get messages too, albeit to specific queues
related to issuing commands.

Authorization – Application tasks – Facilities

• Connecting to the Queue Manager
• MQCONN or MQCONNX

• Using WebSphere MQ resources
• MQOPEN

• Queues, topics, namelists, processes

• MQSUB
• Topics

• Setting message context
• Out of scope of this presentation

N

O

T

E

S

Authorization – Application tasks – Facilities – Notes

� MQ provides access control facilities to control which users may run applications
which issue MQCONN API calls. This will control which users may access the
running Queue Manager.

� Once a program is connected to the queue manager, it is very likely that MQ
resources will be used. The queue manager will control which users have access
to which resources and in which way. Note that all (well, most) access control
checks are made when a resource is opened. There are no resource checks made
at MQGET and MQPUT time.

Authorization – MQCONN(X) calls

QM1

MQCONN

Application

RDEFINE MQCONN hlq.BATCH UACC(NONE)

PERMIT hlq.BATCH CLASS(MQCONN)
ID(usrname) ACCESS(READ)

hlq.BATCHBatch

hlq.CHINChannel Initiator

hlq.IMSIMS

hlq.CICSCICS

MQCONN profileConnection Type

setmqaut -m QM1 -t qmgr -p usrname +connect

SET AUTHREC OBJTYPE(QMGR)
PRINCIPAL(usrname) AUTHADD(CONNECT)

N

O

T

E

S

Authorization – MQCONN(X) calls – Notes

� Before an application can work with MQ resources, it must first connect to the
queue manager, using the MQCONN or MQCONNX call. This is the first point at
which an application has a security check made against it.

� On z/OS, the check is made to see whether the user ID of the application has
READ access to the appropriate profile in the MQCONN class. The profile is one of
the four listed depending on the environment the application is running under.

� On distributed, the check is made to see whether the user ID of the application has
+connect authority to the queue manager.

Authorization – MQOPEN calls

QM1

MQOPEN
Q1

Application

RDEFINE MQQUEUE hlq.Q1 UACC(NONE)

PERMIT hlq.Q1 CLASS(MQQUEUE)
ID(usrname) ACCESS(UPDATE)

READMQOO_BROWSE
MQOO_INQUIRE

ALTERMQOO_SET

UPDATEMQOO_*_CONTEXT

UPDATEMQOO_INPUT_*
MQOO_OUTPUT

RACF Access levelOption

setmqaut -m QM1 -t queue –n Q1 -p usrname +put +get

SET AUTHREC OBJTYPE(QUEUE) OBJNAME(Q1)
PRINCIPAL(usrname) AUTHADD(PUT,GET)

UPDATE

MQQUEUE, MXQUEUEQueues

MXTOPICTopics

MQPROC, MXPROCProcesses

MQNLIST, MXNLISTNamelists

ClassMQ Resource Type

MQQUEUE

Q1

N

O

T

E

S

Authorization – MQOPEN calls – Notes

� In order to work with an MQ resource, such as a queue or topic, the application
must first open that resource with the MQOPEN call. This verb requires the
application to state its intention for the resource, for example, to get from a queue,
or to publish to a topic. This intention allows the correct security check to be made.
Most authorization checks are made an open time instead of at get or put time to
ensure the cost of MQGET and MQPUT are kept low.

� On z/OS, the check is made to see whether the user ID of the application has the
relevant access to the appropriate profile in the MQQUEUE class (or other classes
for other resource types).

� On distributed, the check is made to see whether the user ID of the application has
the relevant authority, e.g. +put or +get to the named resource.

Topic Security

• When an application Subscribes or
Publishes to a Topic using
• MQSUB
• MQOPEN / MQPUT1

• When an application removes a
subscription using
• MQCLOSE - with option

MQCO_REMOVE_SUB

• Authority check on topic objects
• “Walk up the tree”

• May be more than one check

• Authority check on destination
queue
• When not using MQSO_MANAGED

• Check is for PUT to that queue

FRUIT

Price

Fruit

Apples Oranges

SYSTEM.BASE.TOPIC

MQSUB
‘Price/Fruit/Apples’
Using Q1
MQGET (Q1)

Q1

N

O

T

E

S

API Security - Topics - Notes
MQSUB
� A security is performed during MQSUB processing to see whether the application making the request has

the required access to that topic.
� An additional authorisation check is done for an MQSUB call when the application wishes to use a specific

destination queue (i.e. is not using the MQSO_MANAGED option). In this case we also check that this user
ID has authority to PUT to that destination queue.

MQOPEN, MQPUT1
� if an application is making a publication to a topic using an MQOPEN or MQPUT1 request a security check

is performed to see whether that application has the required access to that topic.
� If an application is making a publication to a topic via an alias queue that resolves to a topic then two

checks will take place, one to ensure that the application has access to the alias queue and then one to
ensure that the application has the required access to the topic. This is additional processing to that when
the alias queue points to another queue and is done to ensure that no matter how the topic tree is
accessed, the same security is applied to it.

MQCLOSE
� A check can also be performed when an MQCLOSE is performed for a subscription using the remove sub

option.

� In our example we have called MQSUB at the point in the topic tree, “Price/Fruit/Apples”. There is no topic
object at this point in the topic tree, so to find the profile we need to check authorities against we walk up
the topic tree to find a node which does have a topic object. The next point is “Price/Fruit”. This does have
a topic object, FRUIT, so we will check that this user ID has subscribe authority on the profile for the FRUIT
topic. If that user ID does have authority, our search stops there. If it does not, we carry on searching up
the topic tree and will check the SYSTEM.BASE.TOPIC to see if this user ID has subscribe authority there.
This means that the structure of your topic tree and the administration of it requires careful thought.

QM1QM1 QM2QM2

MCA
Channels

Transmission
Queue

Local

MQ Application

Application
Queues

Transmission
Queue

Client

MQ Application

ClientChannels

ClientChannels

Event
Queues

Application
Queues

Event
Queues

Authorization – Administrative tasks

N

O

T

E

S

Authorization – Administrative tasks – Notes

� Authorization is the process by which you allow particular users to issue
commands. Until you have some authentication in place however, you cannot trust
the user ID. To be blunt, authorization without any authentication is simply not
secure.

� We will introduce the authorization facilities available for allowing administrative
tasks to be performed. Remember some of the facilities we introduced in the
previous section also apply here as administrative tasks are often done using
applications that put and get messages too, albeit to specific queues related to
issuing commands.

Authorization – Administrative tasks – Facilities

• Control commands
• Distributed only

• MQSC/PCF commands
• DISPLAY QLOCAL

• Read-only commands

• DELETE QLOCAL
• STOP CHANNEL

• More destructive commands!

• Command & Command Resource security
• z/OS only

N

O

T

E

S

Authorization – Administrative tasks – Facilities – No tes

� Over the next few pages we are going to introduce each of the following facilities
which allow you to provide authorize users to do administrative tasks on your
queue manager.

Access Control - Administering WebSphere MQ

• Control Commands
• e.g.

• crtmqm (UNIX & Windows)
• CRTMQM (IBM i)

• e.g.
• setmqaut (UNIX & Windows)
• GRTMQMAUTH (IBM i)

• e.g.
• runmqsc (UNIX & Windows)
• STRMQMMQSC (IBM i)

• use mqm group and OS
Facilities to secure

• Issue MQ Commands using
• runmqsc or STRMQMMQSC
• WebSphere MQ Explorer
• Ops and Control panels on

z/OS
• WebSphere MQ CSQUTIL

Utility program on z/OS

IBM WebSphere MQ for z/OS - Main Menu

Complete fields. Then press Enter.

Action 6 0. List with filter 4. Manage
1. List or Display 5. Perform
2. Define like 6. Start
3. Alter 7. Stop

Object type SENDER +
Name MQ45.TO.MQ46 .
Disposition Q Q=Qmgr, C=Copy, P=Private, G=Group,

S=Shared, A=All

N

O

T

E

S

Administering WebSphere MQ - Notes

� WebSphere MQ Administrators need authority to do these various tasks. On UNIX and
Windows, Administrators must be a member of mqm group, and on i5/OS a member of
QMQMADM group (or have *ALLOBJ authority). Members of these groups have access to all
WebSphere MQ resources on the system, and queue managers running on the system.

� There are several MQ commands available - both for controlling the Queue Manager (such
as CRTMQM, STRMQM) and for configuration of the Queue Manager (such as
SETMQAUT). Either (or both) the operating system or WebSphere MQ facilities may be used
to control which users may access these commands. Base operating system facilities may be
used to control access to libraries which contain the commands. Such facilities are outside of
the scope of WebSphere MQ. Alternatively, WebSphere MQ provides access control facilities
to restrict access.

� Commands can be issued in a number of ways. The control command runmqsc (UNIX &
Windows) or STRMQMMQSC (i5/OS) can be secured, but also the user must have authority
to issue the WebSphere MQ command and authority to access the WebSphere MQ Object.
i5/OS also has Group 2 commands (e.g. CRTMQMQ to create a queue, or CHGMQMPROC
to change a process) where in addition to the above you need i5/OS authority to use the
command. This is granted using the GRTOBJAUT command.

� Commands can be issued from a remote machine, so controlling the runmqsc control
command is clearly not enough. Your WebSphere MQ Commands and Objects must also be
controlled.

Authorization – Read-only commands

QM1

RDEFINE MQCMDS hlq.DISPLAY.* UACC(NONE)

PERMIT hlq.DISPLAY.* CLASS(MQCMDS)
ID(usrname) ACCESS(READ)

setmqaut -m QM1 -t queue -p usrname +dsp

SET AUTHREC OBJTYPE(QUEUE)
PRINCIPAL(usrname) AUTHADD(DSP)

hlq.DISPLAY.*

hlq.verb.pkw

N

O

T

E

S

Authorization – Read-only commands – Notes

� To allow a user to issue read-only commands, that is the MQSC DISPLAY
commands or PCF Inquire commands, you can grant them only the authority to
those commands.

� On z/OS you can grant access to all the DISPLAY commands at once using a
generic profile hlq.DISPLAY.* If you want more granularity you can use profiles
such as hlq.DISPLAY.CHANNEL or hlq.DISPLAY.NAMELIST, i.e. profiles of the
form hlq.verb.primary-key-word.

� On distributed you need to grant the user +dsp authority to each object type in
turn. A quick way to do this is via the Role-based authorities wizard.

Authorization – Other commands

QM1

RDEFINE MQCMDS hlq.ALTER.QLOCAL UACC(NONE)
RDEFINE MQADMIN hlq.QUEUE.Q1 UACC(NONE)

PERMIT hlq.ALTER.QLOCAL CLASS(MQCMDS)
ID(usrname) ACCESS(ALTER)

PERMIT hlq.QUEUE.Q1 CLASS(MQADMIN)
ID(usrname) ACCESS(ALTER)

setmqaut -m QM1 -t queue -p usrname +alt

SET AUTHREC OBJTYPE(QUEUE) PRINCIPAL(usrname)
AUTHADD(ALT)

Q1
CONTROLhlq.CHANNEL.channelnameCONTROLhlq.command.CHANNELcommand CHANNEL

hlq.command.pkw

hlq.DISPLAY.resourcetype

hlq.ALTER.resourcetype
hlq.DEFINE.resourcetype
hlq.DELETE.resourcetype

MQCMDS profile

CONTROL

READ

ALTER

Access

None

None

hlq.resourcetype.resourcename

MQADMIN profile

ALTER

Access

ALTER resource
DEFINE resource
DELETE resource

Others e.g.
BACKUP, PING, RESET

DISPLAY resource

Command

N

O

T

E

S

Authorization – Other commands – Notes

� To allow a user to issue other, perhaps more destructive, commands, you can
grant them only the authority to those commands.

� On z/OS you can grant access to commands using profiles of the form
hlq.verb.primary-key-word. The access required to these profiles varies a little by
command, as shown in the table. A more complete table (this is a summary that
holds true for the majority) can be found in the Information Center. In addition to
granting access to the command profile, where a command works on a resource,
e.g. DEFINE CHANNEL or ALTER QLOCAL you also grant access to the
command resource profile which takes the form, hlq.object-type.object-name. We
will cover this more on the next page.

� On distributed you need to grant the user the authority to each object type that they
require, e.g. +alt or +start. A quick way to grant access to all commands (not just
read-only ones) it to do this is via the Role-based authorities wizard.

Authorization – Security Switches on z/OS

• Subsystem security
• hlq.NO.SUBSYS.SECURITY

• Qmgr or QSG Security
• hlq.NO.QMGR.CHECKS
• hlq.NO.QSG.CHECKS

• Connection Security
• hlq.NO.CONNECT.CHECKS

• MQ Command Security
• hlq.NO.CMD.CHECKS
• hlq.NO.CMD.RESC.CHECKS

• MQ API Security
• hlq.NO.QUEUE.CHECKS
• hlq.NO.PROCESS.CHECKS
• hlq.NO.NLIST.CHECKS
• hlq.NO.CONTEXT.CHECKS
• hlq.NO.ALTERNATE.USER.CHECKS

• hlq.NO.TOPIC.CHECKS

N

O

T

E

S

Authorization – Security Switches on z/OS – Notes

� Switch profiles are RACF profiles which control the level of security checking
carried out by WebSphere MQ. These profiles are not used in the same way that
profiles are normally used - for access control. They are used simply as switches
to activate/deactivate access control checking for various components of Queue
Manager processing. Thus, userids are not permitted various access rights to
these profiles.

� The default action for WebSphere MQ is to have access control checks activated.
The presence of a switch profile will deactivate security checking for the
appropriate component. As these switch profiles are not present by default, it
means that explicit action is required to deactivate security processing within an
WebSphere MQ environment, once RACF is active and the WebSphere MQ
classes are defined (as no checking is possible otherwise !).

� If the hlq.NO.SUBSYS.SECURITY profile is present then no further checks are
made for other switch profiles.

� Activating security support in this way means that no security system management
is done from within the Queue Manager, which is deemed to be a good thing.
However, the use of profiles in this way is quite unusual.

Authorization – MQ Command Security – Two Types

• MQCMDS class - profiles look like
• hlq.verb.pkw

• for example,
• hlq.DEFINE.QLOCAL
• hlq.DEFINE.CHANNEL

• Access required to profile is
dependent upon the verb

• Controls who is allowed to issue
each individual command

• Profiles always uppercase

• MQADMIN or MXADMIN class
- command resource profiles
look like
• hlq.type.resourcename

• for example,
• hlq.QUEUE.queuename
• hlq.CHANNEL.channelname

• Access required to profile is
dependent upon the verb and is
usually ALTER or CONTROL

• Controls which resources a user
can issue given commands against.

• 'resourcename' can be mixed in
MXADMIN

Together they allow very granular control over MQ comm ands

N

O

T

E

S

Authorization – MQ Command Security - Notes

� These two profiles allow very granular control of the WebSphere MQ commands.
There is a separate profile for each WebSphere MQ command (the verb) and
target (the primary keyword), allowing each command to be controlled individually.
Thus a particular userid may be able to define Local Queues but not define
Remote Queues or may be able to display queues but not define queues. It is also
possible to control access to the resources accessed by these commands. Thus, a
user may be authorised to use the ALTER QLOCAL command but not alter a
specified queue.

� Clearly, there is a price to pay with respect to this control; if this type of granular
control is required then many profiles may need to be defined to facilitate this
access control.

� Refer to
http://pic.dhe.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/zs12400_.htm
for a table showing the profiles and access required for each profile.

QM1QM1 QM2QM2

MCA
Channels

Transmission
Queue

Local

MQ Application

Application
Queues

Transmission
Queue

Client

MQ Application

ClientChannels

ClientChannels

Event
Queues

Application
Queues

Event
Queues

Auditing

N

O

T

E

S

Auditing – Notes

� When WebSphere MQ needs to emit information it often does so in the form of
event messages. Several of the auditing features in WebSphere MQ make use of
this mechanism as well as many monitoring features.

� In addition on z/OS, we get auditing via the features of the External Security
Manager (ESM) in use. This might be RACF, ACF2 or TopSecret for example.

Auditing Facilities

• Security Failures
• Authority Events (Distributed)
• ESM facilities (z/OS)

• Commands Issued
• Command events

• Configuration Changes
• Configuration events

N

O

T

E

S

Auditing Facilities – Notes

� Over the next few pages we are going to introduce each of the following facilities
which allow you to audit your queue manager.

Auditing – Security Failures

z/OS Platform
• Standard External Security

Manager (ESM) facilities, to
record
• changes to security profiles and

access to them
• failed accesses to resources

controlled by those profiles
• successful accesses to resources

controlled by those profiles

• Reslevel audit records
• RACROUTE REQUEST=AUDIT

• Controlled via
• ZPARM: RESAUDIT(YES|NO)

• IMS Bridge audit records
• RACROUTE REQUEST=AUDIT

Distributed Platforms
• MQRC_NOT_AUTHORIZED

events
• written to

SYSTEM.ADMIN.QMGR.EVENT
queue

• Type 1: MQCONN
• Type 2: MQOPEN/MQPUT1

• MQPUT1 ==> MQOPEN
• Type 3: MQCLOSE

• For deletion of dynamic queues
• Type 4: Commands

• WebSphere MQ PCF commands
• Type 5: MQSUB

• subscribe check failed
• Type 6: MQSUB

• destination queue check failed

N

O

T

E

S

Auditing – Security Failures – Notes
z/OS Platform
� When using the WebSphere MQ for z/OS

queue manager, you can use the standard
External Security Manager (ESM) facilities
to create an audit trail for any changes
made to your security set up.

� This can be set up to do any / all of the list
shown depending on the ESM.

� In addition to the standard ESM facilities,
there are two other types of audit records
written. Due to the different way the
enquiry is made to RACF, normal RACF
audit records are not written so MQ
requests a general audit record is written
for these two types.

� Whether these RACF audit records are
written for RESLEVEL security checks is
controlled by ZPARM
RESAUDIT(YES|NO).

� These RACF audit records for the IMS
bridge cannot be turned off.

Distributed Platforms
� On the non z/OS platforms, an audit trail

of access failures is kept by means of
event messages which are written to the
SYSTEM.ADMIN.QMGR.EVENT queue.
There are several different types of
MQRC_NOT_AUTHORIZED events
showing specifically what kind of access
was attempted. Each of these types has
a different reason qualifier recorded in
the event message.

– MQRQ_CONN_NOT_AUTHORIZED

– MQRQ_OPEN_NOT_AUTHORIZED

– MQRQ_CLOSE_NOT_AUTHORIZED

– MQRQ_CMD_NOT_AUTHORIZED

– MQRQ_SUB_NOT_AUTHORIZED

– MQRQ_SUB_DEST_NOT_AUTHORIZED

� and, where applicable, there is
information in each event message to
show the user ID and application that
made the failed access attempt.

Auditing – Commands Issued

• Audit Trail of MQSC/PCF commands
issued on your queue manager

• Queue Manager Attribute CMDEV
• NODISPLAY

• Command Failed => No event
• Event contains

• Full command issued
• User ID who issued it
• Origin of command

• Console
• CSQINP data sets
• Message on CommandQ

SYSTEM.ADMIN.COMMAND.EVENT

ALTER QMGR CMDEV(ENABLED)

N

O

T

E

S

Auditing – Commands Issued - Notes

� An audit trail of commands issued is kept by means of event messages which are written to
the SYSTEM.ADMIN.COMMAND.EVENT queue. You can enable these events to be written
by means of the CMDEV switch on ALTER QMGR.

� You can choose to record all commands that are issued, or perhaps more usefully, all
commands except DISPLAY commands (PCF Inquire commands), so that you only capture a
record of those potentially destructive or interesting commands. This is done using
CMDEV(NODISPLAY).

� If the command issued failed, for example a syntax error, then no command event is
generated.

� Command events are available on z/OS from V6 and Distributed platforms from V7.0.1.

� The contents of the command event message varies depending on how the command was
issued. If the command was a PCF message then the content of the input PCF message is
part of the command event. Alternatively, if the command was an MQSC message then this
text string will be found in the event message instead of the PCF input message.

� If the command was issued by putting a message on the command server queue
(MQEVO_MSG) then there will be more application identifying information than in other
cases because the Message Descriptor (MQMD) of the command message written by the
application contains lots of extra data.

� In all cases you will get the user ID issuing the command, the queue manager where the
command was entered, and one of the two aforementioned command data variants.

Configuration Changes

• Audit trail of changes to the configuration
of the queue manager.

• Commands acting on objects
• MQSET calls

• Queue Manager Attribute CONFIGEV
• Create a base-line view with REFRESH QMGR

• Different Possible Events
• MQRC_CONFIG_CHANGE_OBJECT

• 2 event messages
• Attributes before change
• Attributes after change

• MQRC_CONFIG_CREATE_OBJECT
• 1 event message
• Attributes after create

• MQRC_CONFIG_DELETE_OBJECT
• 1 event message
• Attributes before deletion

• MQRC_CONFIG_REFRESH_OBJECT
• 1 event message
• Current attributes of object

SYSTEM.ADMIN.CONFIG.EVENT

ALTER QMGR CONFIGEV(ENABLED)

REFRESH QMGR TYPE(CONFIGEV)
OBJECT(ALL) NAME(*)

N

O

T

E

S

Configuration Changes - Notes

� An audit trail of changes to the queue manager configuration is kept by means of event messages which
are written to the SYSTEM.ADMIN.CONFIG.EVENT queue. You can enable these events to be written by
means of the CONFIGEV switch on ALTER QMGR.

� These events will be generated when a DEFINE, ALTER or DELETE command acts upon an object, or an
MQSET command is used.

� A base-line picture of the current queue manager configuration can be created by using the REFRESH
QMGR TYPE(CONFIGEV) command which will create an event message for every object in the queue
manager. Since this could be a heavyweight operation if you have a lot of objects, you can break it down
into smaller sets of objects using the NAME and OBJECT qualifiers on the command.

� The event message will record one of four possible Reasons, MQRC_CONFIG_CHANGE_OBJECT,
MQRC_CONFIG_CREATE_OBJECT or MQRC_CONFIG_DELETE_OBJECT for the respective MQSC or
PCF commands that you might issue upon an object or MQRC_CONFIG_REFRESH_OBJECT for those
event messages written when creating the base-line picture.

� Config events are available on z/OS from V5.3 and Distributed platforms from V7.0.1.

� The contents of the command event message varies depending on how the command was issued just as
with command events. If the command was issued by putting a message on the command server queue
(MQEVO_MSG) then there will be more application identifying information than in other cases because the
Message Descriptor (MQMD) of the command message written by the application contains lots of extra
data.

� In all cases you will get the user ID issuing the command, the queue manager where the command was
entered.

� In the specific case of the MQRC_CONFIG_CHANGE_OBJECT, you will get two messages, one
containing the object attributes before the change and one containing those after the change.

Combining Command and Config Events

• ALTER Q(FRED) MAXDEPTH(1)
• Command Event
• Before Change Config Event
• After Change Config Event

SYSTEM.ADMIN.CONFIG.EVENTSYSTEM.ADMIN.COMMAND.EVENT

Correl ID = 1234
Correl ID = 1234

ALTER QMGR
CMDEV(NODISPLAY)
CONFIGEV(ENABLED)

N

O

T

E

S

Combining Command and Config Events - Notes

� If you have both Command events and Configuration events enabled, then when
an object is changed, the event messages will share the same correlation ID in
their MQMDs.

QM1QM1 QM2QM2

MCA
Channels

Transmission
Queue

Local

MQ Application

Application
Queues

Transmission
Queue

Client

MQ Application

ClientChannels

ClientChannels

Event
Queues

Application
Queues

Event
Queues

Message Level Protection

N

O

T

E

S

Message Level Protection – Notes

� Advanced Message Security is a feature of WebSphere MQ that provides
Application Level Security, also known as Message Level Protection.

� Message Level Protection provides assurance that messages have not been
altered in transit. For example, when issuing payment information messages,
ensure the payment amount does not change before reaching the receiver.

� Message Level Protection provides assurance that messages originated from the
expected source . For example, when processing control messages, validate the
sender.

� Message Level Protection provides assurance that messages can only be viewed
by intended recipient(s). For example, when sending confidential information.

Message Level Protection – Facilities

• Message Integrity
• Digital signature allow detection of tampering

• Message Privacy
• Encryption ensures only authorized recipients can read the

message content

N

O

T

E

S

Message Level Protection – Facilities – Notes

� There are two types of message protection policies, message integrity policies
where a digital signature is applied to the message, but the contents of the
message remain in the clear; and message privacy policies where the contents of
the message are also encrypted. Message privacy policies also include message
integrity.

Advanced Message Security - Message protection

• Two types of policies:
• Message Integrity policy
• Message Privacy policy

• Created or updated or removed by command ‘setmqspl’
• or by MQ Explorer (GUI)
• Defining message integrity policies
• Defining message privacy policies

• Policies are stored in queue ‘SYSTEM.PROTECTION.POLICY.QUEUE’
• Display policies with command ‘dspmqspl’ (or GUI)
• Each protected queue can have only one policy

• For distributed queuing, protect the queue
locally (source QM) as well as the remote (target QM)

• “Compromised messages” in
queue ‘SYSTEM.PROTECTION.ERROR.QUEUE’

<< qmgr >>

Q. PROTECTED

POLICIES

ERROR

Message Data

PDMQ Header

PKCS #7 Envelope

Signature

Message PropertiesMessage Properties

Message Data

N

O

T

E

S

Advanced Message Security – Notes

� Advanced Message Security (AMS) provides message protection policies to allow
message content to be signed and encrypted. The application is unaware of the
service and so the application programmer need not worry about coding it into his
application, however, before the message is even placed on the queue it can be
encrypted, thus ensuring that it's contents are never exposed. The message is
encrypted while is resides on the queue, while it is transported across the network
- the channels are unaware that the content is encrypted since they are content
agnostic anyway - and is still encrypted when it is placed on the target queue. At
the point where the receiving application gets the message off the queue the
application level security service decrypts the data and presents it to the
application.

� Configuration of these policies is done using the setmqspl (set MQ security policy)
command, or via equivalent function in the MQ Explorer GUI. Once defined these
policies are stored in a special queue called the
SYSTEM.PROTECTION.POLICY.QUEUE. The policies can also be displayed,
using the dspmqspl command, or again, via the MQ Explorer GUI.

Message integrity policy definition

• Signature algorithms:
• MD5, SHA1, SHA256*, SHA384* or

SHA512*

• The list of authorized signers is
optional

• If no authorized signers are specified then
any application can sign messages.

• If authorized signers are specified then
only messages signed by these
applications can be retrieved.

• Messages from other signers are sent to
the error queue

• On z/OS, same setmqspl program
and parms used as SYSIN DD for
PGM=DRQUTIL

• Can also define
policies via the
MQ Explorer GUI.

Syntax:
setmqspl

-m <queue_manager>

-p <protected_queue_name>

-s <SHA1 | MD5>

-a <Authorized signer DN1>

-a <Authorized signer DN2>

:

Example:
setmqspl -m MYQM

-p MY.Q.INTEGRITY

-s SHA1

-e NONE

-a 'CN=carl,O=ibm,C=US'

Message privacy policy definition

• Encryption algorithms:
• RC2, DES, 3DES, AES128 and

AES256
• Encrypted messages are always

signed
• The list of authorized signers is

optional
• It is mandatory to specify at

least one message recipient
• Retrieved messages which do

not meet AMS policy sent to the
SYSTEM.PROTECTION.
ERROR.QUEUE
• Eg: Policy contains authorized

signer list and sender is not on it

Syntax:
setmqspl
-m <queue_manager>
-p <protected_queue_name>
-s <SHA1 | MD5>
-e <encryption algorithm>
-a <Authorized signer DN1>
-a <Authorized signer DN2>
-r < Message recipient DN1>
-r < Message recipient DN2>

Example:
setmqspl -m MYQM
-p MY.Q.PRIVACY
-s SHA1
-e AES128
-a 'CN=carl,O=ibm,C=US'
-r 'CN=ginger,O=catunion,C=JP'
-r 'CN=saadb,OU=WBI,O=IBM,C=FR'

Integrity message format

MQ Message AMS Signed Message

Message Data

PDMQ Header

PKCS #7 Envelope

Signature

Message PropertiesMessage Properties

Message Data

Privacy message format

Message Data

PDMQ Header

PKCS #7 Envelope

Message PropertiesMessage Properties

Key encrypted with certificate

Data encrypted with key

MQ Message AMS Signed Message

Message Data

Signature

Summary of WebSphere MQ Security Facilities

• Authentication – Channels
• Transport Layer Security

(SSL/TLS)
• Channel Authentication Records
• Security Exits

• Authentication – Applications
• O/S Logon
• MQCONNX - Connection

Security Parameters

• Auditing
• Security Failures
• Commands Issued
• Configuration Changes

• Authorization – Applications
• Connecting to the Queue

Manager
• Using WebSphere MQ

resources

• Authorization – Admins
• Control commands
• MQSC/PCF commands
• Command & Command

Resource security

• Message Level Protection
• Message Integrity
• Message Privacy

