
MQ Parallel Sysplex Exploitation,
Getting the Best Availability from
MQ on z/OS by using Shared
Queues
Dirk Marski – dirk.marski@uk.ibm.com
WebSphere MQ for z/OS – IBM Hursley

March 13th, 2014
Session 15015

Agenda

• Shared Queues

• Large messages with DB2

• SMDS

• Structures – Persistence and recovery

• Client Channels

Shared Queues

Shared Queues

Shared
QueueCoupling Facility (CF)

Application Application

QMGR QMGR

Same sysplex
Same QSG

Shared Queues

Chart shows an application put to a shared target queue -- that is, the target
queue is local to more than one queue manager. This put does not use the
mover:

1. Application puts to shared target queue

2. Remote application can now get the message.

The remote application can put a message to the reply-to queue using the same
method.

Note that applications connected to any queue manager with access to the
shared queue can get the message. To access the same shared queues, queue
managers must be:

In the same z/OS sysplex

In the same queue-sharing group (QSG) -- we will explain QSGs later.

There are restrictions on shared queues, for example:

CF capacity is limited (compared to DASD).

Queue Sharing Groups (QSGs)
DB2 Data Sharing Group

WebSphere MQ Queue Sharing Group

Mover

QMGR

Private
Queues

Private
Objects

Mover

QMGR

Private
Queues

Private
Objects

Mover

QMGR

Private
Queues

Private
Objects

Shared
Queues

Shared
Objects

Data for
msg

> 63KB

Queue-Sharing Groups (QSGs)

Chart shows how queue managers are organized into queue-sharing groups (QSGs) and the relationship to DB2
data-sharing groups.

A queue-sharing group can contain one or more queue managers:

Each queue manager has its own private (not shared) queues and object definitions.

All queue managers in a QSG share the same set of shared queues and shared object definitions

A queue manager cannot belong to more than one QSG.

Shared object definitions for a QSG are maintained for WebSphere MQ by DB2. Shared access to these
definitions is by DB2 data sharing:

You must have DB2

You can have more than one data-sharing group, but all members of one QSG must be members of the same
data-sharing group

Shared object definitions are cached in the queue managers.

A DB2 outage does not bring down the QSG (but you cannot add or change shared objects if DB2 is down).

You do not have to define any queue-sharing groups if you do not run a sysplex (or if you just don't want to).

If using shared messages > 63KB then a small portion for the message is stored in the CF, and the rest is stored
in DB2 or with V7.1 or higher there is the option of using Shared Message Data Sets (SMDS) for storing the rest
of the message data.

CF Structures for shared-queues

{
Administration

structure

Application
structures

Queue Queue Queue

Information for unit-of-work recovery and so on

Coupling facility

Administration
structure

Application
structures

Queue Queue Queue

Information for unit-of-work recovery and so on

{

Structures
for QSG 1

Structures
for QSG 2

CF Structures for shared-queues

Chart shows organization of WebSphere MQ data in coupling facility (CF)
structures (actually list structures).

For clarity the chart shows:

All structures in one CF -- actually they can be spread arbitrarily over many CFs

Only WebSphere MQ structures -- actually other subsystems and applications
can have structures in the same CF as Websphere MQ.

Each queue-sharing group needs:

One administration structure -- this is used for information that WebSphere MQ
itself needs, for example to manage unit-of-work recovery

One or more (up to a maximum of 63) application structures -- these are used to
hold the shared queues.

Each application structure can hold up to 512 shared queues.

Creating CF structures and shared
queues

• Define a structure to z/OS (not to WebSphere MQ) by updating the
CFRM policy (see System Setup Guide):
• Structure is known to WebSphere MQ by its 12-character str-name.

• Structure is known to z/OS by the 16-character name formed by:
• qsg-name || str-name (Application structures)
• qsg-name || CSQ_ADMIN (Administration structure)

• Define a shared queue using the DEFINE QLOCAL command on any
queue manager in the QSG:
• DEFINE QLOCAL(queue-name) QSGDISP(SHARED) CFSTRUCT(str-

name)

• z/OS creates the structure when required (first use).

• WebSphere MQ creates the queue when required (first use).

Creating CF structures and shared
queues

Chart shows the processes for creating CF list structures for use by WebSphere
MQ QSGs and for creating shared queues in these structures.

The z/OS CFRM policy for the sysplex specifies how z/OS should allocate
resources for each structure:

• What type of CF (for example, CF must have battery back-up)

• How big to make the structure.

z/OS does not actually allocate any resource for the structure until first use -- in
our case, the first time a queue manager connects to the structure:

• At startup for the administration structure

• At first queue open for application structures.

As with private queues, defining the queue to WebSphere MQ does not create
the queue. The queue is created when it is first used.

It is best to allocate queues so that (as far as possible) all the queues accessed
by any one unit-of-work are in the same structure.

Large messages with DB2

Large Shared Queue Messages (using
DB2)

Message
10K Shared QueueMessage

100K (ptr)
Message

100M (ptr)
Message

1K

Message Data 100M

Message Data 100K

…
…

DB2 Table CSQ.ADMIN_B_MESSAGES

SMDS V7.1

V7.1
Large Shared Queue Messages
(using SMDS)

QM1 Shared
Queue

Message
100K (ptr)

QM1
SMDS

QM2
SMDS

QM2

APP
MQPUT

APP
MQGET

1

2 3

4

Shared message data set concepts

Offloaded message data for shared messages is stored in data sets.

Each application structure has an associated group of shared message data sets,
with one data set per queue manager.

Named using DSGROUP parameter on CFSTRUCT definition.

Each queue manager owns a data set for each structure, opened for read/write
access, which it uses to write new large messages.

Each queue manager opens the data sets for the other queue managers for read-
only access, so it can read their message data.

When a message with offloaded data needs to be deleted, it is passed back to
the queue manager which originally wrote it, so that the queue manager can free
the data set space when it deletes the message.

SMDS Performance Improvement

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

350

400

•3 LPAR Test - DB2

64KB Non-Persistent Messages In-Syncpoint - DB2

NP SIS Scaling –
3 qmgr

NP SIS Scaling –
6 qmgr

NP SIS Scaling –
9 qmgr

Queue Pairs

T
ra

ns
ac

tio
ns

 /
S

e
co

nd

1 2 3 4 5 6 7 8 9 10

0

1000

2000

3000

4000

5000

6000

7000

•3 LPAR Test - SMDS

64KB Non-Persistent Messages In-Syncpoint - SMDS

NP SIS Scaling –
3 qmgr

NP SIS Scaling –
6 qmgr

NP SIS Scaling –
9 qmgr

Queue Pairs

T
ra

ns
ac

tio
ns

 /
S

e
co

nd

• Tests show comparable CPU savings making SMDS a more usable feature for
managing your CF storage

• SMDS per CF structure provides better scaling than DB2 BLOB storage

Selecting which messages to offload V7.1

• Messages too large for CF entry (> 63K bytes) are always offloaded.

• Other messages may be selectively offloaded using offload rules.
• Each structure has three offload rules, specified on the CFSTRUCT definition.

• Each rule specifies message size in Kbytes and structure usage threshold, using two
parameters:

• OFFLDnSZ(size) and OFFLDnTH(percentage), where n = 1, 2, 3.

• Data for new messages exceeding the specified size is offloaded (as for a large
message) when structure usage exceeds the specified threshold.

• Default rules are provided which should be useful in most cases.

• Rules can be set to dummy values if not required.

• Without offloading data, it is possible to store 1.25M messages of 63KB on a
100GB structure

• When offloading all messages, possible to store approx 140M messages on
the same structure, irrespective of message size

Selecting which messages to offload

As with previous releases of MQ, the amount of data that can be stored in the CF for a
single message is limited to 63KB. This means that if the message is over 63KB in size
then it must be “offloaded”. With V7.1 there are two offload methods, already seen, for
offloading the data, using either DB2 or SMDS.

In addition to offloading all messages over 63KB, it is possible to specify that messages
smaller than this size should also be offloaded. There are three sets of rules that are used
to control this, and each set is made up of two parameters, the size of the message and
how full the CF structure is when the message is put. These offload rules enable a
balancing to be performed between performance and CF capacity. For example, you might
use a rule that says that when the CF structure is 70% full then all messages over 32KB will
be offloaded, and then another rule that says that when the CF structure is over 80% full, all
messages over 4KB will be offloaded. When migrating a structure from CFLEVEL 4 to
CFLEVEL 5 (required to use these rules), the defaults will be set to mimic the CFLEVEL 4
behavior. When defining a new structure at CFLEVEL 5, the default rules will be set as
follows:
OFFLD1SZ = 32K OFFLD1TH = 70
OFFLD2SZ = 4K OFFLD2TH = 80
OFFLD3SZ = 0K OFFLD3TH = 90

Typical use of offload rules

• The three offload rules have no fixed order but are typically intended to
be used as follows:
• Rule 1 is used to save space for fairly large messages by offloading them,

with little performance impact, even when plenty of space left.
• SMDS defaults: OFFLD1SZ(32K), OFFLD1TH(70)

• Rule 2 is used as an intermediate step between rules 1 and 3, to start
saving more space as the structure usage increases, in exchange for a
minor performance impact.

• SMDS defaults: OFFLD2SZ(4K), OFFLD2TH(80)

• Rule 3 is used to maximize the remaining space when the structure is
nearly full, by offloading everything possible.

• SMDS defaults: OFFLD3SZ(0K), OFFLD3TH(90)

Storage benefits of offloading

~ 35000 msgs in CF

~
 5000 m

sg
s in

 C
F

~
 140000 o

fflo
ad

ed
 m

sg
s

~
 140000 o

fflo
ad

ed
 m

sg
s

70%

80%

90%

100%

~ 320000 msgs using offloading vs ~ 50000 without offloading

> 32KB > 4KB > 0KB> 63KB

1GB structure using 20KB messages

Creating a shared message data set

• SMDS is defined as a VSAM linear data set using IDCAMS DEFINE
CLUSTER.
• Requires LINEAR option.

• Control interval size must be 4096, which is the default for linear.

• Requires SHAREOPTIONS(2 3), allowing one queue manager to write and
other queue managers to read at the same time.

• If maximum size may need to exceed 4GB, requires SMS data class which
has VSAM extended addressability attribute.

• If automatic expansion is to be supported, requires an appropriate
secondary space allocation (although a default of 20% will be used if an
expansion attempt fails because of no secondary allocation).

• Can optionally be pre-formatted, for example using CSQJUFMT.
• Otherwise formatted automatically when first opened.

Creating a shared message data set

• The DSGROUP parameter on the CFSTRUCT definition specifies the
group of data sets associated with the application structure.
• It is specified as a generic data set name with a single asterisk as the point

where the owning queue manager name is to be inserted.

• It is required when the option OFFLOAD(SMDS) is specified.

• CSQ4SMDS in SCSQPROC provides JCL to define and format a
single dataset

DEFINE CLUSTER -
 (NAME(++HLQ++.++QMGR++.++CFSTRUCT++.SMDS) -
 MEGABYTES(++PRI++ ++SEC++) -
 LINEAR -
 DATACLAS(EXTENDED) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(++HLQ++.++QMGR++.++CFSTRUCT++.SMDS.DATA))

Access to shared message data sets

• Shared message data sets must be on shared direct access storage
accessible to all queue managers within the QSG.

• Normal running:
• Queue manager opens own data set read/write.

• Requires UPDATE access to own data set.

• Queue manager opens other data sets read-only.
• Requires READ access to all other data sets.

• Media recovery processing:
• Queue manager performing recovery opens own data set and all other data

sets for read/write access.
• Requires UPDATE access to all data sets.

Shared message data set capacity
considerations

• Each shared message data set only contains data for large messages
written via its owning queue manager.

• Message size calculation:
• Each stored message includes standard headers (usually 352 bytes).

• Each message is stored as one or more message blocks.

• Each message block is stored in a range of consecutive 4K pages on the
data set, with a very small header (32 bytes).

• Approximate data set space required per large message, in bytes, is given
by size of message plus header rounded up to next 4K.

• Multiply by maximum anticipated backlog of messages written via that
queue manager (plus some safety margin) to estimate size needed for
data set.

SMDS capacity considerations –
expansion

• Data set can be automatically expanded when necessary.
• Normally set by DSEXPAND(YES|NO) option on CFSTRUCT, which

specifies default option for data set group.

• Can also be overridden for individual data sets using DSEXPAND option
on ALTER SMDS.

• Expansion attempt is automatically triggered when 90% full.
• If no secondary allocation was specified, VSAM error message will appear,

but queue manager will retry using a default secondary allocation of 20% of
the existing size.

• If expansion fails (not enough space available), queue manager sets
DSEXPAND(NO) to prevent further attempts. Operator can use ALTER
SMDS to set DSEXPAND(YES) again after problem is fixed.

• If maximum extents are reached, data set cannot be expanded any further.
(It could however be marked unavailable then copied to a larger data set
which is then renamed back to the original name).

Structures – Persistence and Recovery

Failure and persistence

Queue
manager

Private
queues

Queue
manager

Private
queues

Queue
manager

Private
queues

Shared
queues

Coupling facility failure

Messages on
shared queues
OK (kept)

Nonpersistent
messages on
shared queues
lost (deleted)

Queue
manager

Private
queues

Queue
manager

Private
queues

Queue
manager

Private
queues

Shared
queues

Nonpersistent
messages on
private queues
OK (kept)

Messages on
shared queues
OK (kept)

Nonpersistent
messages on
private queues
lost (deleted)

Queue manager failure

Persistent
messages on
shared queues
restored from
log

Failure and persistence

Chart shows implications of failures in a queue-sharing group.

Left side of chart shows queue manager failure. If one or more queue managers in a
queue-sharing group fail, or are stopped normally:

• Nonpersistent messages on queues private to the failing queue manager or managers
are lost -- in fact they are deleted when a queue manager restarts

• Messages on shared queues are not lost, they are kept -- even if all queue managers in
the queue-sharing group fail.

Right side of chart shows coupling facility structure failure (for simplicity the chart shows an
entire CF failing). If one or more CF structures fail:

• Messages on queues in other CF structures are not lost

• Nonpersistent messages on queues in failing CF structures are lost

• Persistent messages on queues in failing CF structures must be restored from backup
and log information on the logs

• Restoring queue manager accesses logs of all queue managers in the QSG.

If the administration structure fails, all the queue managers in the QSG fail.

Admin Structure Recovery

• Prior to V7.0.1 each queue manager would rebuild own admin
structure entries
• Particularly an issue in a DR situation.

• Need to start all queue managers to rebuild admin structure
• Once recovered, application structures could be recovered

• At V7.0.1 active queue managers notice if other queue managers
don’t have entries, and initiate rebuild on their behalf

Admin Structure Recovery

If the Admin Structure was lost for some reason (DR situation, loss of power to the CF etc),
then prior to V7.0.1 each queue manager had to rebuild its own Admin Structure entries. As
the admin structure needs to be complete for application structure recovery to take place, it
was necessary in a DR situation to start up all the queue managers in a QSG before
application structure recover could take place.

In V7.0.1 an enhancement has been made to admin structure recovery so that a single
queue manager is able to recover the admin structure entries for all the other queue
managers in the QSG. If a V7.0.1 (or higher) queue manager notices that the admin
structure entries are missing for another queue manager then it will attempt to recover them
on behalf of the other queue manager. It can only do this if the other queue manager is not
running at the time. In a DR situation this means that it is only necessary to start a single
queue manager at V7.0.1 (or higher) before being able to recover the application structures.

A V7.0.1 queue manager can recover the entries on behalf of any version of queue
manager, so you don’t need to have all queue managers in the QSG to be running at V7.0.1
before this functionality will take place.

CF Loss of Connectivity Tolerance

CF

QM2

QM1

QM3

Pre V7.1 Queue Managers

A failure of the Coupling
Facility is most likely

going to be presented
to connectors as a Loss

of Connectivity

Prior to V7.1, if a queue
manager receives a

loss of connectivity, it
will terminate.

In the case of a
Coupling Facility failure,
this would mean a QSG

wide outage (unless
protected by CF

Duplexing)

V7.1

CF2

CF Loss of Connectivity Tolerance V7.1

CF1

QM2

QM1

QM3

V7.1+ Queue Managers

With V7.1 the queue
managers will not

terminate. They will
automatically attempt to
re-establish access to
the structures affected.

In the case of a total
loss of connectivity the
queue managers can
automatically recover

(RECOVER
CFSTRUCT)

the structures that were
on the failed CF into an

alternative CF
(if available)

Total loss of connectivity -
CFCONLOS(TOLERATE)

• Administration structure
• The queue manager will not terminate and try and reconnect and rebuild its

admin structure data

• If the structure remains unavailable, some shared queue operations will be
unavailable

• Failure to connect to the admin structure during start up is not tolerated

• Application structures
• Connection loss is partial if at least one system in the QSG still has

connectivity to the CF the structure is allocated in

• If total loss of connectivity, the structure is rebuild on an alternative CF if
available

• The structure is likely to be in a failed state and requires recovery

Admin structure loss of connectivity

Queue managers will tolerate loss of connectivity to the admin structure without terminating
if:

the QMGR CFCONLOS attribute is set to TOLERATE
all the queue managers in the QSG are at V7.1

All queue managers in the QSG will disconnect from the admin structure, then attempt to
reconnect and rebuild their own admin structure data.

If a queue manager cannot reconnect to the admin structure, for example because there is
no CF available with better connectivity, some shared queue operations will remain
unavailable until the queue manager can successfully reconnect to the admin structure and
rebuild its admin structure data.

The queue manager will automatically reconnect to the admin structure when a suitable CF
becomes available on the system.

Failure to connect to the admin structure during queue manager startup is not tolerated,
regardless of the value of CFCONLOS.

Application structure loss of connectivity

Queue managers will tolerate loss of connectivity to application structures if:
they are at CFLEVEL(5)
the CFCONLOS attribute is set to TOLERATE

All queue managers that lose connectivity to an application structure will disconnect from
the structure.

The next action depends on whether it is a partial or total loss of connectivity (according to
MQ’s definition).

loss of connectivity is partial if there is at least one system in the sysplex that still has
connectivity to the CF that the structure is allocated in.

loss of connectivity is total if all systems in the sysplex have lost connectivity to the CF that
the structure is allocated in.

In the case of total loss of connectivity

the structure will (probably) need to be recovered using the RECOVER CFSTRUCT
command.

non-persistent messages will be lost.

CF Loss of Connectivity Tolerance

CF1

QM2

QM1

QM3

V7.1+ Queue Managers

In the case of a partial loss
of connectivity, a System
Managed Rebuild will be
automatically initiated by
the QMGRs to rebuild the

structures into a more
available CF. This will

mean that both persistent
and non-persistent

messages will be retained.

V7.1

CF2

Application structure loss of connectivity

In the case of partial loss of connectivity

• queue managers that lost connectivity to the structure will attempt to initiate a system-
managed rebuild in order to move the structure to another CF with better connectivity.

• if the rebuild is successful, both persistent and non-persistent messages will be copied
to the other CF.

• queue managers that didn’t lose connectivity to the structure may experience a slight
delay during system-managed rebuild processing, but shared queues will remain
available.

If an application structure cannot be reallocated in another CF with better connectivity,
queues on the structure will remain unavailable until connectivity is restored to the CF that
the structure is currently allocated in.

Queue managers will automatically reconnect to the structure when it becomes available.

CF Loss of Connectivity Tolerance

• QMGR CFCONLOS(TERMINATE|TOLERATE)
• Specifies whether loss of connectivity to the admin structure should be tolerated

• Default is TERMINATE

• Can only be altered to TOLERATE when all QSG members are at 7.1

• CFSTRUCT CFCONLOS(TERMINATE|TOLERATE|ASQMGR)
• Specifies whether loss of connectivity to application structures should be tolerated

• Only available at CFLEVEL(5)

• Default is ASQMGR for new CFLEVEL(5) structures, and TERMINATE for structures
altered to CFLEVEL(5)

• CFSTRUCT RECAUTO(YES|NO)
• Specifies whether application structures should be automatically recovered

• Only available at CFLEVEL(5)

• Default is YES for new CFLEVEL(5) structure, and NO for structures altered to
CFLEVEL(5)

V7.1

CFRM Policy Considerations

CFSTRUCT(TEST1) STRUCTURE NAME(SQ27TEST1)
 CFLEVEL(5) SIZE(50000)
 CFCONLOS(TOLERATE) INITSIZE(20000)
 RECAUTO(YES) DUPLEX(ALLOWED)
 OFFLOAD(SMDS) ALLOWAUTOALT(YES)

 PREFLIST(P5CF01,P5CF02)

• If using CFCONLOS(TOLERATE) also need to consider multiple CFs
in PREFLIST

• ALLOWAUTOALT(YES) enables CF to adjust entry/element ratio, and
also automatically resize structure up to SIZE value (can also adjust
down to MINSIZE!!)

• MQ structures can be duplexed… this will make most types of failures
transparent to MQ

Client Channels

Client Channels

• Regular client channels are stateless, so don’t use synchronization
queues
• Only benefit of using a shared channel is the shared status

• Can cause performance issues if using shared channel
• Needs to update DB2 status for each connect/disconnect

• Can configure a generic port to point at INDISP(QMGR) listener on
each queue manager
• Can still benefit from failover and balancing of client connections without

using a shared channel, and can still use QSG name on the MQCONN

• Will not work for Extended Transactional Client (including WAS 2-
Phase Commit over client conn) until at V7.0.1

Client Channels

As client channels are stateless, they don’t use a synchronization queue.
The only benefit of using a shared channel for client channels is the
shared status information. However, the use of a shared server-
connection channel has drawbacks as it means each
connection/disconnect will cause the queue manager to update the
shared channel status, which is held in DB2. This could lead to
performance issues if there are lots of clients connecting.

It is still possible to use a generic port to provide workload distribution
and failover in the QSG, but rather than targeting an INDISP(SHARED)
listener on each queue manager, the INDISP(QMGR) listener should
targeted.

When using client channels into a QSG it is not possible to use the
Extended Transactional Client (or client connections from WAS) if you
are using 2-phase commit, unless you are connecting into a V7.0.1
queue manager

2-Phase Commit Client Connections

• When setting up the connection, specify the QSG name rather than
QMGR name
• In MQConnectionFactory if using JMS under WAS, you must ensure that

you are only using shared resources

• This causes a UR with GROUP disposition to be created, rather than
QMGR

• A GROUP UR can be inquired and resolved via any member of the QSG
• If there is a failure, the transaction manager will reconnect to the QSG and

request a list of in-doubt transactions. GROUP URs will be reported back no
matter what QMGR they were started on

2-Phase Commit Client Connections

When using the Extended Transactional Client, or the JMS transactional
client (under WAS), it is possible to use 2-phase commit applications in a
QSG. When specifying the connection options to the Transaction
Manager it is necessary to provide the QSG name rather than the QMGR
name, and also configure the client channel to be routed to a suitable
(V7.0.1 or higher qmgr) in the QSG. When using this configuration, any
Unit Of Recovery (UR) that is created will have a GROUP disposition.
This means that it can be inquired and resolved on any qmgr in the QSG.

If a connection fails for some reason, and the TM reconnects to the QSG,
it can inquire and resolve the transactions no matter which qmgr it is now
connected to, and where the transactions were originally started.

GROUPUR – The Problem (Pre V7.0.1)

QM2QM1

Client
APP

Generic
Port

TM

Client App
connects via

generic port and
starts UOW

If TM reconnects
to QM2 it only be
told what is in-
doubt on QM2,
meaning that it
will throw away
any information
about in-doubts

on QM1

If there is a failure,
TM will reconnect
via generic port to

inquire what
transactions need

resolving

GROUPUR – The Solution (V7.0.1)

QM2QM1

Client
APP

Generic
Port

TM

Client App
connects via

generic port and
starts UOW

If TM reconnects
to QM2, QM2 will
inquire all the in-
doubts that have

a GROUP
disposition,

whatever QMGR
that were running

on.

If there is a failure,
TM will reconnect
via generic port to

inquire what
transactions need

resolving

xa_open string needs to
be specified with the

QSG name rather than
QMGR name, this means
a GROUPUR is created

More Information

• WebSphere MQ for z/OS Concepts and Planning Guide

• SupportPacs MP16, MP1E, MP1F, MQ1G
• www.ibm.com/software/integration/support/supportpacs/perfr

eppacs.html

• RedPaper 3636 – WebSphere MQ Queue Sharing Group
in a Parallel Sysplex environment
• www.redbooks.ibm.com/redpieces/pdfs/redp3636.pdf

Copyright Information

© Copyright IBM Corporation 2013. All Rights Reserved. IBM, the IBM logo, ibm.com, AppScan,
CICS, Cloudburst, Cognos, CPLEX, DataPower, DB2, FileNet, ILOG, IMS, InfoSphere, Lotus,
Lotus Notes, Maximo, Quickr, Rational, Rational Team Concert, Sametime, Tivoli, WebSphere,
and z/OS are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™),
these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common law trademarks
in other countries. A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at ibm.com/legal/copytrade.shtml.

Coremetrics is a trademark or registered trademark of Coremetrics, Inc., an IBM Company.

SPSS is a trademark or registered trademark of SPSS, Inc. (or its affiliates), an IBM Company.

Unica is a trademark or registered trademark of Unica Corporation, an IBM Company.

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.
Other company, product and service names may be trademarks or service marks of others.
References in this publication to IBM products and services do not imply that IBM intends to
make them available in all countries in which IBM operates.

Any questions?

The rest of the week:

Monday Tuesday Wednesday Thursday Friday

08:00 What's Available in MQ
and Broker for High
Availability and Disaster
Recovery?

Best Practices in Enhancing
our Security with WebSphere
MQ

MQ & CICS Workload
Balancing in a 'Plexed’
World

09:30 What's Wrong with MQ?

11:00 The Dark Side of
Monitoring MQ - SMF
115 and 116 Record
Reading and
Interpretation

IIIB - Internals of IBM
Integration Bus

12:15 Hands-on Labs for MQ - Take
Your Pick!

01:30 What’s New in the MQ
Family

MQ on z/OS –
Vivisection

MQ Clustering - The Basics,
Advances and What's New

03:00 Introduction to MQ WebSphere MQ CHINIT
Internals

Using IBM WebSphere
Application Server and IBM
WebSphere MQ Together

04:30 First Steps with IBM
Integration Bus:
Application
Integration in the new
world

What's New in IBM
Integration Bus &
WebSphere Message
Broker

MQ & DB2 – MQ Verbs
in DB2 & InfoSphere
Data Replication (Q
Replication)
Performance

MQ Parallel Sysplex
Exploitation, Getting the Best
Availability From MQ on z/OS
by Using Shared Queues

	Title of Presentation (Type Size=32, can accommodate up to a maximum of 3 lines)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

