

Migrating To zEC12 : A Journey In Performance

Meral Temel İşbank

12 March 2014 14995

Migrating To zEC12: A Journey In Performance

Agenda

- Who is İşBank ?
- **Mainframe Configuration**
- **Z10 zEC12 Configuration Differences**
- Migration Process (Steps & Hints & Tips)
- **ZPCR Study**
- **Z10 To zEC12 Upgrade Performance Analiz Using SMF113 Counters**
- S CPU DASD I/O CF Memory View
- **Section Side Effects**
- Planned Features
- References
- More Information Backup Slides

S The Biggest Bank Of Turkey

\$5521 ATMs

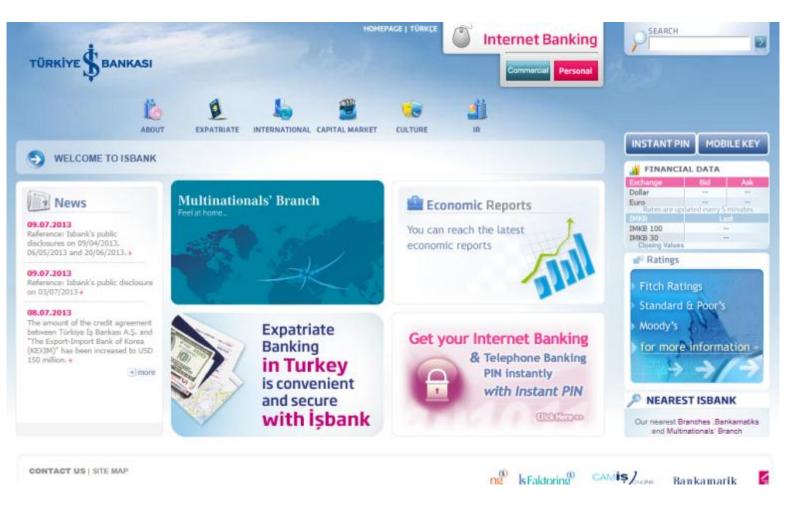
1296 Branches In Turkey, 20 Branches Outside Turkey

B Has The Highest Profit According To All Bank Announcements 2013

Member Of SHARE Inc.

Who Is **İŞBANK**?

BRANCHES



Who Is İŞBANK ?

INTERNET BANKING

SHARE in Anaheim

Who Is İŞBANK ?

ATM

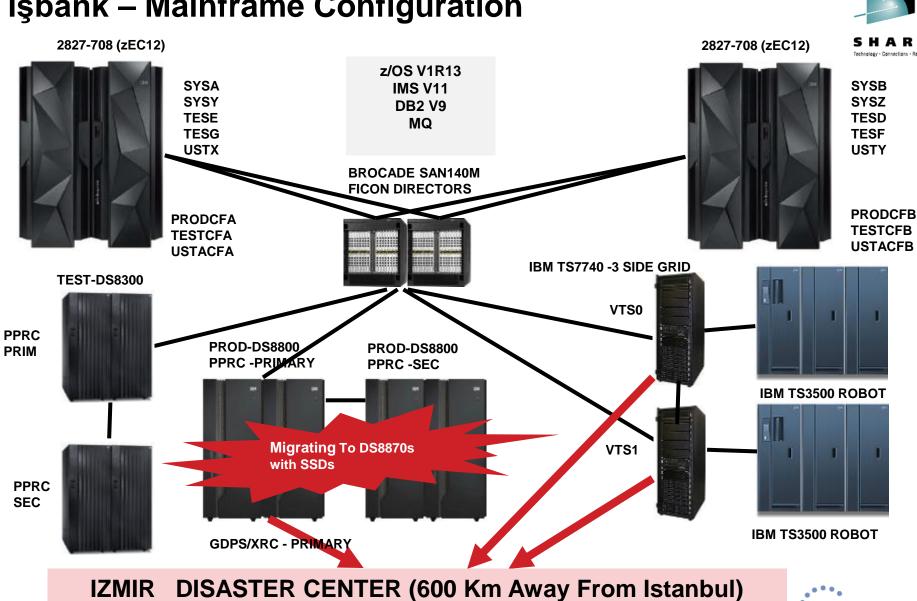
İŞCEP Mobile Phone Application

İŞBANK IPAD FINANCE CENTER Application

ANU BORSA	32	TLEDIKLE	Rin			ISCTR			
SUNET		GRUP	SONFIVAT N	6 DECESIM	SAAT	Son Fiyat:	6.18	AL	
EFES		A	26,90		15:40	NiSeans De	işim; 🖷 i 📾	SAT	
FYON		A	69,50	0,00	15:41				2
квик		A	B,46	0,00	15:44	ISCTR 6,	18		
KENR		A	1.66		15:33	14			
					15:33				
KFEN			10.30	0,00	15:42				
IKFEN IKSA		A .	10.30 5.08		1000				
				0,00	15:42		51-45-13 87-48-1 COM		_
IKSA ILARK		A	5,08	0,00 0,00	15:42 15:43	40 40 40 140-01	CÜN		_
uksa		•	5,08 5,20	0,00 0,00	15:42 15:43 15:40	HABERLER	COM	LUN HAFTALM XI	_
IKSA ILARK ILORK		A A A	5,08 5,20 1,80	0,00 0,00	15:42 15:43 15:40 15:30	40 40 40 140-01	60m		_
IKSA ILARK ILBRK ILGYO		A A A A	5.08 5.20 1.00 20.25	0.00 0.00 0.70 -0.00	15:42 15:43 15:40 15:30 15:44	HABERLER 15:44	COM ***ISGYO YATIRIM ORTAK TEPAV/ÖZATA	LÜR HAFTALIK 200	_

Who Is İŞBANK ?

Credit Cards



İşbank – Mainframe Configuration

İşbank – zEC12 Configuration Details

2827-708 (zEC12)

8 GCP (5.5 GHz) 3 ICF,3 zIIP,1 IFL 10063 IBM PCI 10062,8 MIPS(Average RNI) 1224 MSU 1257,9 MIPS/CP 153 MSU/CP 64777 SU/sec 192 GB Memory - 160 GB Customer - 32 GB HSA **18 FICONExpress 8S** (32port- 32 FICON Channel) **10 HCA3-Fanout Cards** 20 Infiniband3 CF Link 12 OSA-Express4S 10 GbE SR 1 port 4 OSA-Express4S 1000BASE-T 4 Crypto Express4S 2 FlashExpress zAware

2827-708 (zEC12)

8 GCP (5.5 GHz) 3 ICF.3 zIIP 10063 IBM PCI 10062,8 MIPS(Average RNI) 1224 MSU 1257.9 MIPS/CP 153 MSU/CP 64777 SU/sec 192 GB Memory - 160 GB Customer - 32 GB HSA **18 FICONExpress 8S** (32port- 32 FICON Channel) **10 HCA3-Fanout Cards** 20 Infiniband3 CF Link 12 OSA-Express4S 10 GbE SR 1 port 4 OSA-Express4S 1000BASE-T 4 Crypto Express4S

Migration Steps

DATE	STEP
03.May.13	SYSY z/OS V1R13 Upgrade
18.May.13	SYSZ z/OS V1R13 Upgrade
25/26-May 2013	SYSA/SYSB z/OS V1R13 Upgrade
7-June-2013	DB2 RSU
8-June-2013	PRODCF2 zEC12 + SYSY zEC12 Upgrade
23-June-2013	PRODCF1 zEC12 + SYSZ zEC12 Upgrade
7-July-2013	SYSA/SYSB/GKP1 zEC12 Upgrade + IMS IRLM new CF + IMS QSAM new CF

- z/OS v1R11 To V1R13 Upgrade
- Software /Hardware Products Maintenance Level Check- Upgrades
- Hardware Connectivity FICONs,OSA-CC Console Network, OSA 10Gb IP Network Connections
- OSA-CC Console Definitions
- Time Checking For both zEC12 SEs.
- Adding zEC12s to STP Network
- GDPS BCPII API Definitions On zEC12 SEs
- Usta LPARS/CFs To zEC12
- Test LPARS/CFs To zEC12
- PRODCFB + SYSY LPAR To zEC12
- PRODCFA + SYSZ LPAR To zEC12
- SYSA & SYSB To zEC12

Migration Process - Hints

Use CFSizer Tool To Estimate Structure Sizes

- Not good for some structures
- Double-check Power Of 2 for Lock Structure
- Use Resourcelink website to check your missing MCLs
 - Apply all of them before go into Production
 - Several for zAWARE , one about Hyperdispatch, one important about zFlash
- After using CHPID Mapping Tool, check your CHPID numbers
 - You need to rearrange if you have rule like "odd numbers for one FICON Director and even numbers for other FICON Director". CHPID Mapping Tool Does not care about these. Better is run tool then do cabling. Not the other way.
- ICB4 to Infiniband ; Although it is said as 1-1 ,use more than one for each, we did 2ICB4 :3 Infiniband Physical connection.
- Be careful about z10 Infiniband Earlier Protocol Support- Not IFB3.

IF CF is earlier than LPAR, let loved structures stay in old CF in order not to use Infiniband instead of IC. IC is still the best.

- If you have lack of subchannel , you must use more than 1:1 anyway.
 - Although it is NOW acceptable ,prefer to use one CHPID per port for Production.
- Know your workload before, so that you can have idea where your bottleneck is.

Sample RMF Overview Report That I Used In This Study


```
CLASS=A,NOTIFY=&SYSUID,MSGCLASS=X,SCHENV=SYSSYSZ,
 /SMT1RMFP JOB
// USER=IS93081,PASSWORD=
//STEP1
           EXEC PGM=IFASMFDP,REGION=32M
               DSN=ISB.SMFBACK.SYSA.Y2013.A07.G15,DISP=SHR
//DUMPIN
           DD
               DSN=&&PAS,DISP=(,PASS),UNIT=SYSDA,
//DUMPOUT
           DD
           SPACE=(CYL, (500,100)), DCB=(LRECL=137, RECFM=VBA, BLKSIZE=1693)
//SYSPRINT_DD
               SYSOUT=X
//SYSIN
           DD
INDD(DUMPIN, OPTIONS(DUMP))
OUTDD(DUMPOUT, TYPE(74))
START(0900)
END(1700)
//STEP2
           EXEC PGM=SORT
//SORTIN
           DD
               DSN=&&PAS,DISP=(OLD,DELETE)
           DD
               SYSOUT=X
//SYSOUT
//SORTOUT
           DD DSN=&&PASA,DISP=(,PASS),
           SPACE=(CYL, (500, 100))
               SPACE=(CYL,2)
//SORTWK01_DD
               SPACE=(CYL,2)
//SORTWK02 DD
               SPACE=(CYL,2)
//SORTWK03 DD
//EXITLIB
           DD
               DSN=SYS1.LINKLIB,DISP=SHR
//SYSIN
           DD
   SORT FIELDS=(11,4,CH,A,7,4,CH,A),EQUALS
   MODS E15=(ERBPPE15,36000,,N),E35=(ERBPPE35,3000,,N)
    PRODUCE SUMMARY REPORT
//*
//*
ZZSTEP5
           EXEC PGM=ERBRMFPP, REGION=32M
               DSN=&&PASA,DIŚP=(OLD,DELETE)
//MFPINPUT_DD
//MFPMSGDS DD
               SYSOUT=X
//PPRPTS
           DD
               SYSOUT=X
//SYSRPTS
           DD
               SYSOUT=X
//SYSIN
            DD
ETOD(0900,1700)
STOD(0900,1700)
RTOD(0900,1700)
SYSOUT(A)
OVERVIEW(REPORT)
SUMMARY(INT,TOT)
OVW(IMSLSST(SYNCST(IMSP_IRLM)))
OVW(IMSLAST(ASYNCST(IMSP_IRLM)))
OVW(IMSLSRT(SYNCRT(IMSP_IRLM)))
OVW(IMSLART(ASYNCRT(IMSP_IRLM)
```


CPU VIEW

Effect of Migration From z10s To zEC12 CPU VIEW

Differences Between z10s & zEC12s In Our Configuration (CPU VIEW)

20	97-71	4 (z10))	20	97-71	0 (z10)				282	27-708 (zE	C12)	2827	7-708	(zEC	:12)	
																	SHARE Technology - Connections - Results
		тс	OTAL N 1646				22	% Inc	rease	9			ГАL М 20126				
		тот	AL SV				22	% Inc	rease	9		ΤΟΤΑ	L SW 2448	MSU			
			MIPS/0 668 - 7				77-	-88%	Incre	ase		Μ	IIPS/C 1258				
			W MSU 81.3- 8				75	-88%	Incre	ase		SW	/ MSU / 153	/CP			
		33	SU/Se 3613-36				79 -	-93%	Incre	ase			64777				
			R- Avg 2.69 – 1				%7	′ .6- %4	41.6 li	ncrease			-Avg 17.98				
Model	# of CPs	IBM PCI	Avg RNI MIPS	Avg RNI MIPS/	MP	Low RNI MIPS	Low-Avg RNI MIPS	Avg-Hi RNI MIPS	High RNI MIPS	SU/Sec	UP SU/Sec	Common Name	Proc Grp	S/W MSUs	MIPS/ s/W	H/W MSUs	
2827-708	8	10063	10062,8		0,83	11076,5	10545,3		8974,0	64777,3279	78048,7805	zEC12	IMLC	1224		1866	

668,2

710,5

0,74

0,79

10882,5

8076,7

10060,9

8659,8 8061,0

7559,8 6610,6 6180,4

33613,4454

36281,1791

47619,0476 z10-EC

47619,0476 z10-EC

IMLC

IMLC

1139

875

8.2

8,1

1694

1306 •

RE

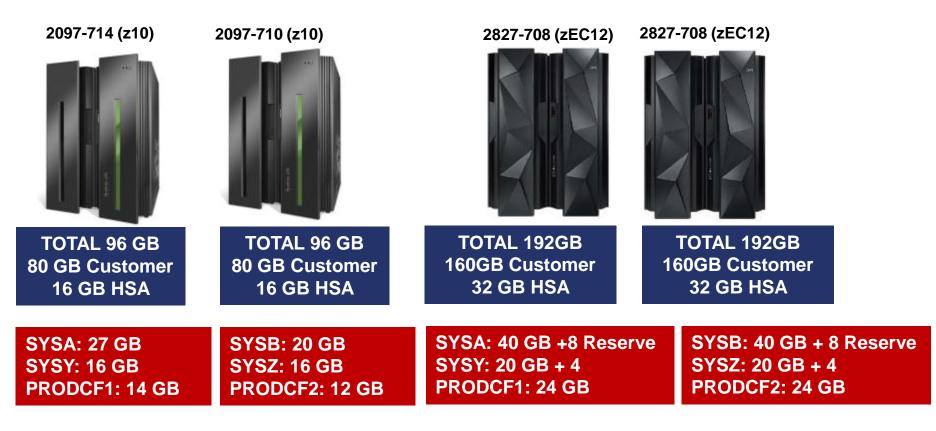
in Anaheim

9354,6

7105 7105,2

9355

2097-714


2097-710

14

10

z10s & zEC12s Differences- Memory

*** We increased Production and Test Syplex Images' Memory More.

Where Are My CPs, ICFs, zIIPs, IFL?

0204 05-04-13 02:05:38:96 ERM config CPU=8 SAP=8 ICF=3 IFL=1 ZAAP=0 ZIIP=3 SP=31 UKNW=0 OP=23 XSTP=0

Node Number (Phy) 01 01 01 Core Number 00 00 00 IPU Number 00 01 02 Physical PU Number 001 02 00 01 02 PU Number 00 01 02 03 00 01 02 Opertional Mode CPU 00 01 02 00 01 02 ICF 00 01 02 00 01 02	03 04 05 06 07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 023 024 025 028 029 02B 02C 00 00 03 00 00 00 00
MSAP	=======			
ZIIP				
Dedicate Y Y Y Opertional Y Y Y Clock Stopped	<u> </u>	Y Y Y _ Y Y	r	YY
Physical PU Number 000 002 003	1D 00 00 00 00 00	2 23 24 25 26 2 c 00D 011 013 014 0 0 04 00 00 00 0		2F 30 31 32 33 34 2023 025 028 029 028 026 02 00 07 00 00 00 00 00
ICF 1A 1B 1C SAP MSAP				
ZAAP ZIIP Spare Unknown PU Type				
Opertional Y <u> </u>	Y	_ Y Y	Y Y	Y
Number of CPU - 8				

Number of CPU = 8

Number of CPU = 8 Number of SAP = 8

Where Are My CPs,ICFs,zIIPs ?

Node Number(Phy) Core Number IPU Number Physical PU Number PU Number Opertional Mode CPU ICF	00	00 01 001 01 01 01	002 02 02	03 03	004 04 04	05 005 01	008 06 06	07 07				01 09 00D 09	_		02 0A 012 0A	02 0B 013 0B	014 00	015 00	00	_	03 0F 01A 00		01C 00	01D 02		12 021 00	04 13 022 00	023	024 00	03	028 00	00	02A	_	00	
SAP MSAP XSAP IFL		_	_	_	_	01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	02	_	_	_	_	_	03	_	_	_	_		
ZAAP ZIIP Spare Unknown PU Type		_	_	_	_	_	_	_	_		∃	09	_	_	0A	Ов	00	00	00	_	00	_	00	_	_	00	00	00	00	_	00		00	_		
Dedicate Opertional Clock Stopped	Y	Y	Y	Y	Y	Y	Y	Y	Y																								_	_	Y	
Node Number(Phy) Core Number IPU Number Physical PU Number PU Number	00 1A 000 1A	1B	03 00 1C 002 1C	00	03 00 1E 004 00	1F 005 04	03 01 20 008 00	01 21 009 00			01 22 00C 00	00D 00	02 24 010 00	011 00	26 012 00		_	02 27 015 00	_	28 019 00	03		03 24	2B	04 20	20	_	03 04 2E 023 00	25	04			05 31	32	05	03 05 34 02D 07
SAP MSAP XSAP	1A			_		04	_	_				_	_	_		_		_	_			_	_	05		_	_	_	_	06	_	_				
IFL ZAAP ZIIP Spare Unknown PU Type		_	_	00	00	_	00	00			00	00	00	00	00	_	_	00	_	00	00	_	00	_	00	00	_	00					00		00	
Dedicate Opertional Clock Stopped	Y Y	Y	Y			Y																		Y						Y			_			Y
Number of CDU 9																																				

0204 05-04-13 02:28:52:52 ERM config CPU=8 SAP=8 ICF=3 IFL=0 ZAAP=0 ZIIP=3 SP=32 UKNW=0 OP=22 XSTP=0

Number of CPU = 8 Number of SAP = 8 XSAP = Node Number=01 Physical PU Number=000 Number of CF = 3

LPAR Configuration Design – IBM WLM Website

ISB01 BEFORE UPGRADE Prod1 : SYSA Prod3: SYSZ Test1: TESF Test3:TESG LPARDesign-HD-V4-T00 LPAR DEFINITION (CP) TOLERATION%=0 Shared-Pool **w**Machine CFG-LP-VALID? NO #PhyProc 14 14 2 - HIPERDISPATCH **1 - CONFIG. VALIDATION** #LPs (non-ICF, non-2097-714 46 Machine-type DED) PRINT 3 - GoTo ZXXP Go To EXPERT MSU 1139 Ratio LP/PP (base) 3,29 **Total Weight** 1374 LSPR-AVG-V1R13-MI 9355 NON-HD HD-HIGH# HD-MED# HD-MED% LPARNAME WEIGHT %SHARE(by pool) "MIPS" MinRea#LP Check#LP HD-LOW# #Active LPs #Report LPs #LP Guaranteed#PR Share%/LP 7 409 57,0% Prodg1 60 4% 0,57 8% 1 0K 0 6 2 1 1 Prod1 900 14 66% 6128 9.02 64% 10 OK 2 51,2% 4 10 10 Prod3 400 14 29% 2723 4.27 31% 5 OK 2 63.7% 9 5 5 3 2 0.03 Testg1 0% 20 1% 1 0K 0 2.8% 1 2 1 5 4 0% 34 0.05 1% 1 0 4,7% 3 2 1 Test1 0K 5 34 1% 4 0% 0.05 1 0 4,7% 3 2 1 Test3 0K 1 Usta 1 1 0% 7 0.01 1% 1 OK 0 0.9% 0 1 1 1

ISBANK01 AFTER UPGRADE

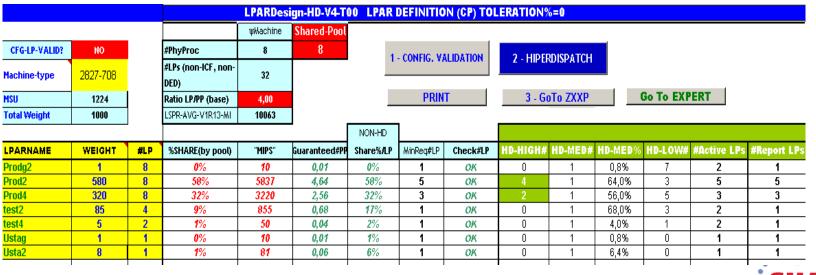
Prod1 : SYSA Prod3: SYSZ Test1: TESE Test3:TESG

				LPARDes	ign-HD-V4-T	00 LPAR I	DEFINITIO	N (CP) TOL	ERATION?	% =0				
				ψMachine	Shared-Pool									
CFG-LP-VALID?	NO		#PhyProc	8	8	1	- CONFIG. V/		2 1105	RDISPATCH				
Machine-type	2827-708		#LPs (non-ICF, non- DED)	33			- conno. 17		2 · MPL	UISPATCH				
MSU	1224		Ratio LP/PP (base)	4,13			PRIN	Т	3 - Ge	oTo ZXXP		Go To EXP	PERT	
Total Weight	1000		LSPR-AVG-V1R13-MI	10063			_							
						NON-HD	1							
LPARNAME	WEIGHT	#LP	%SHARE(by pool)	"MIPS"	Guaranteed#PP	Share%/LP	MinReq#LP	Check#LP	HD-HIGH#	HD-MED#	HD-MED%	HD-LOW#	#Active LPs	#Report LPs
Prodg1	40	7	4%	403	0,32	5%	1	OK	0	1	32,0%	6	2	1
Prod1	580	8	58%	5837	4,64	58 %	5	OK	4	1	64,0%	3	5	5
Prod3	320	8	32%	3220	2,56	32 %	3	OK	2	1	56,0%	5	3	3
Testg1	2	2	0%	20	0,02	1%	1	OK	0	1	1,6%	1	2	1
Test1	55	3	6%	553	0,44	15%	1	OK	0	1	44,0%	2	2	1
Test3	2	4	0%	20	0,02	0 %	1	OK	0	1	1,6%	3	2	1
Usta	1	1	0%	10	0,01	1%	1	OK	0	1	0,8%	0	1	1

Norman Hollander – IBM Has Also One version Send email if you want it and give it a try....

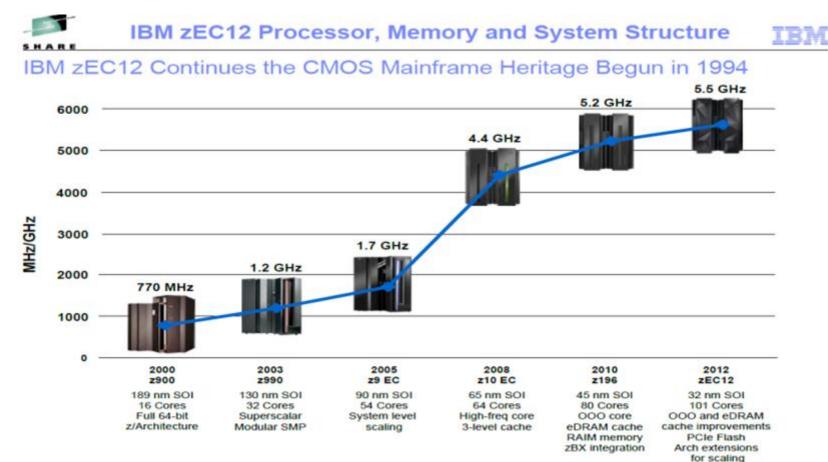
LPAR Configuration Design – IBM WLM Website

ISB02 BEFORE UPGRADE

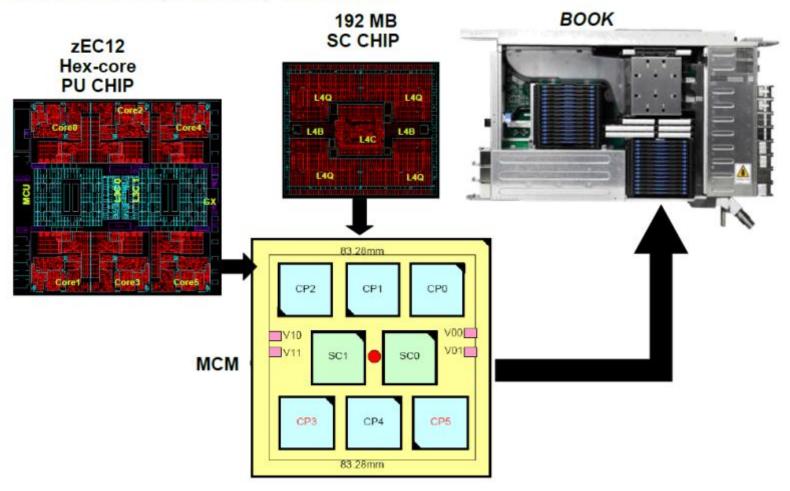

Prod2 : SYSB Prod3: SYSZ Test2:TESD Test4:TESE

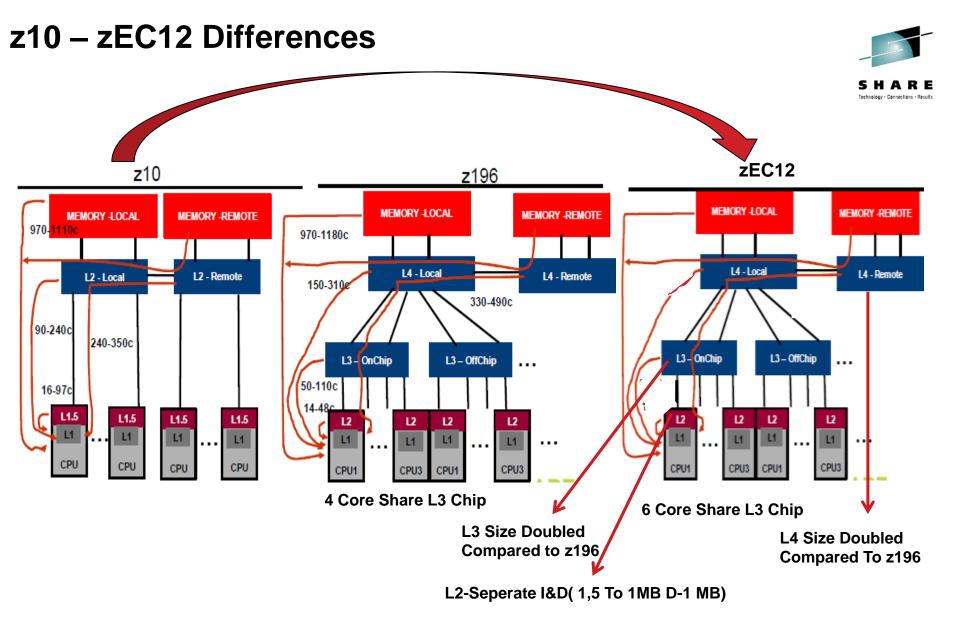
				LPARDes	ign-HD-V4-T	DO LPAR	DEFINITIO	IN (CP) TO	ERATION?	6=0				
				ψMachine	Shared-Pool									
CFG-LP-VALID?	NO		#PhyProc	10	10	1	- CONFIG. V		2 1100	DISPATCH				
Machine-type	2097-710		#LPs (non-ICF, non- DED)	38			- conrid. vi	ALIDATION		WISPATCH				
MSU	875		Ratio LP/PP (base)	3,80			PRIN	Т	3 - G	To ZXXP		Go To EXP	ERT	
Total Weight	1000		LSPR-AVG-V1R13-MI	7105										
					-	NON-HD								
LPARNAME	WEIGHT	#LP	%SHARE(by pool)	"MIPS"	Guaranteed#PP	Share%/LP	MinReg#LP	Check#LP	HD-HIGH#	HD-MED#	HD-MED%	HD-LOW#	#Active LPs	#Report LPs
Prodg2	1	10	0%	7	0,01	0 %	1	ОК	0	1	1,0%	9	2	1
Prod2	390	10	39 %	2771	3,90	39 %	4	OK	3	1	90,0%	6	4	4
Prod4	380	10	38%	2700	3,80	38%	4	OK	3	1	80,0%	6	4	4
test2	110	3	11%	782	1,10	37%	2	OK	0	2	55,0%	1	2	2
test4	110	2	11%	782	1,10	55%	2	OK	0	2	55,0%	0	2	2
Ustag	1	2	0%	1	0,01	1%	1	OK	0	1	1,0%	1	2	1
Usta2	8	1	1%	57	0,08	8%	1	OK	0	1	8,0%	0	1	1

ISBANK02 AFTER UPGRADE

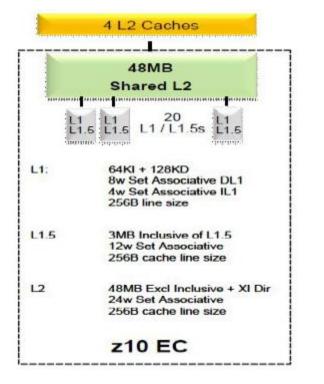

Prod2 : SYSB Prod3: SYSZ Test2:TESD Test4:TESE

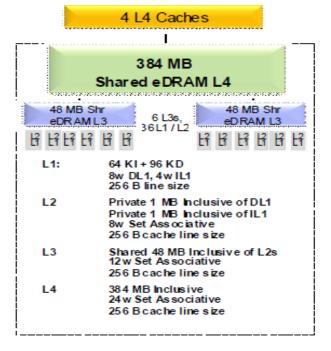
z10 – zEC12 Differences




z10 – zEC12 Differences

zEC12 PU chip, SC chip and MCM





z10 – zEC12 Differences

CacheLEVEL	z10	zEC12
L1 Cache	64KB D-128KB I	64KB D-96KB I
L1,5 Cache	ЗМВ	N/A
L2 Cache	48MB	1MB D- 1MB-I
L3 Cache	N/A	48MB
L4 Cache	N/A	384MB

in Anaheim

Workload Performance Is Sensitive To

Instruction Path Length For A Transaction Or Job

Instruction Complexity(Microprocessor Design)

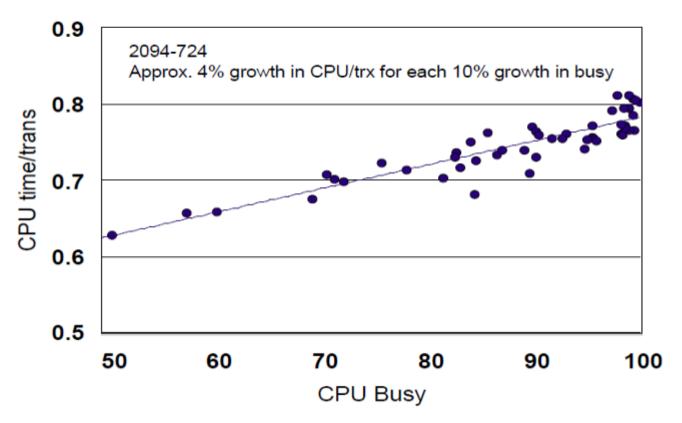
Memory Hierarchy Or Nest

RNI – Relative Nest Intensity

A R E Canactions - Reults

DASD IO rate has been used for many years to separate workloads into two categories: those whose DASD IO per MSU (adjusted) is <30 (or DASD IO per PCI <5) and those higher than these values. The majority of production workloads fell into the "low IO" category and a LoIO-mix workload was used to represent them. Using the same IO test, these workloads would now use the AVERAGE RNI LSPR workload. Workloads with higher IO rates may use the HIGH RNI workload or the AVG-HIGH RNI workload that is included with zPCR.

For z10 and newer processors, the CPU MF data may be used to provide a more accurate workload selection. When available, this data allows the RNI for a production workload to be calculated. Using the RNI and another value from CPU MF, the L1 cache misses per 100 instructions, a workload may be classified as LOVV, AVERAGE or HIGH RNI. This classification and resulting workload selection is automated in the zPCR tool. It is highly recommended to use zPCR for capacity sizing. For those wanting to perform the workload selection by hand, the following table may be used for z10, z196 and zEC12 (note L1MP stands for L1 misses per 100 instructions and is a value that may be calculated using the CPU MF counters data):


L1MP	RNI	Workload Hint	
<3	>= 0.75 < 0.75	AVERAGE LOW	
3 to 6	>1.0 0.6 to 1.0 < 0.6	HIGH AVERAGE LOW	
>6	>= 0.75 < 0.75	HIGH AVERAGE	

Changes In CPU Time by the Effect Of Changes In CEC Utilization

OLTP Client Workload Example Growth in CPU time/trans as CPU busy increases

CPU Utilization Effect & Capacity Planning

You can estimate by using IBMs Study For Different Workload Types AND YOU CAN MEASURE !. Sync SMF 70s and SMF 113s....

CPU Utilization Impact to Capacity Planning When Using MIPS

- Impact to capacity planning comes in two flavors
 - may have less headroom on the box than you think
 - when moving a workload, it may not fit in the new container

Example

- assume a workload is running at 50% busy on a 2000 MIPS box
 - without factoring in utilization effect, it will be called a 1000 MIPS workload
 - in fact, it may be an 1200 MIPS workload when running at the efficiency of a 90% busy box
- caution #1: there is NOT room to double this workload on the current box
- caution #2: if moved to a new box or LPAR, it will likely need a 1200 MIPS container (not 1000 MIPS) to fit
- Estimating the impact conservative approach
 - For a change in utilization of 10%, plan for the capacity effect to be
 - 3% for LOW RNI workloads
 - 4% for AVERAGE RNI workloads
 - 5% for HIGH RNI workloads

ZPCR STUDY

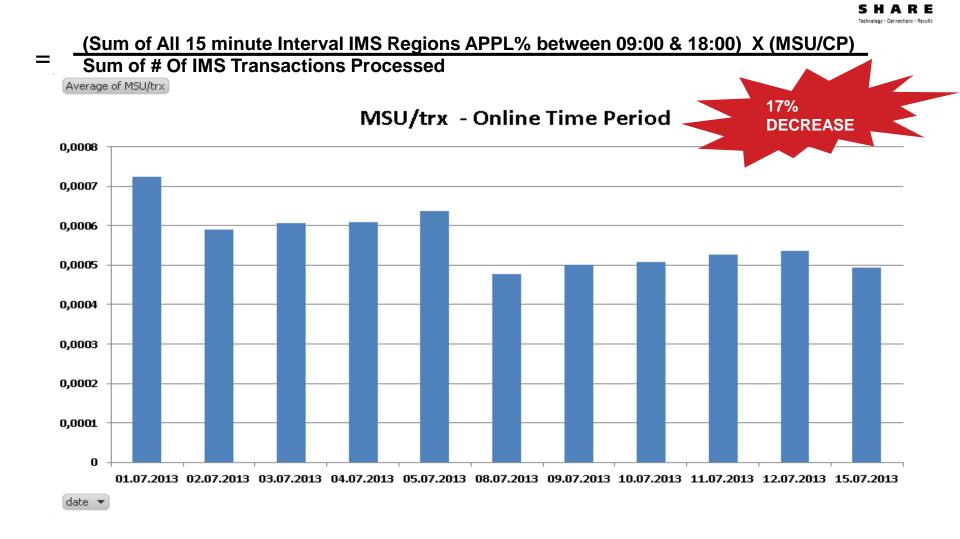
Capacity & PERFORMANCE Planning LPAR Configuration Planning ZPCR STUDY

zPCR Is NOT ONLY CAPACITY PLANNING PRODUCT Please use zPCR!.

Host Capac										zPCR V8.2b
					PCR-Study2-IS <mark>shared sing</mark> l	BANK e-partition				
		LPAR Co	nfiguration			Full CPC C	apacity (bas	ed on usable	e RCP count)	
Iden	tity	Hardware			GP	zAAP	zIIP	IFL	ICF	Total
#1🛕 Configu	uration #1	2097-E26/700	: GP=14 zIIP=2 ICF=2		15,704		2,247		2,708	20,659
#2 🛕 Configu	uration #2	2827-H43/700	: GP=8 zIIP=3 IFL=1 ICF=3		16,012		6,123		5,753	27,887
 	ontent Control				Show capacit	y as				
	Show Capa	acity Deltas	Based on "Configuration #1" Incremental		 Full C Single 					
			ant configuration changes, capaci Upgrading the processor fa loes not guarantee the results fro expressed or implied. You are res	amily is consider m this tool. This	red a significant s information is	t configuration provided "as i	change. s", without wai	rranty,		

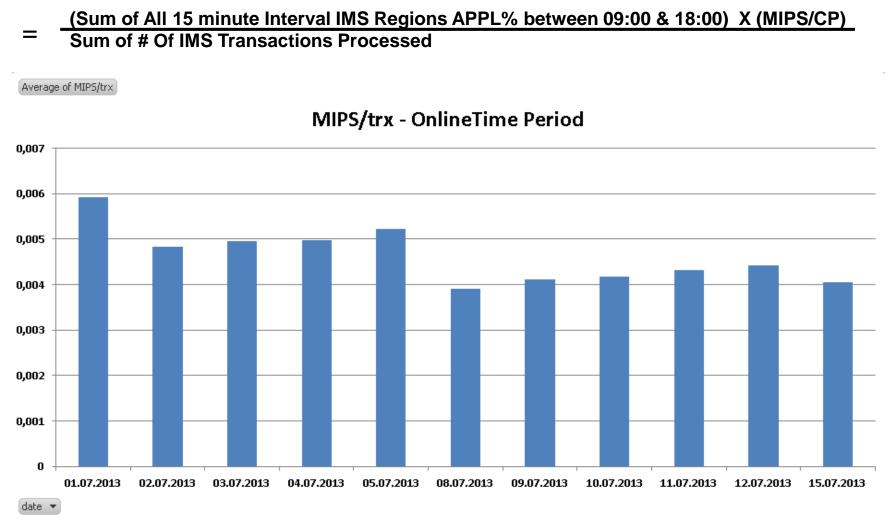
Only 1.9% ITR Increase

zPCR STUDY – ISBANK02 – Second CEC – Move From z10 -710 To zEC12- 708



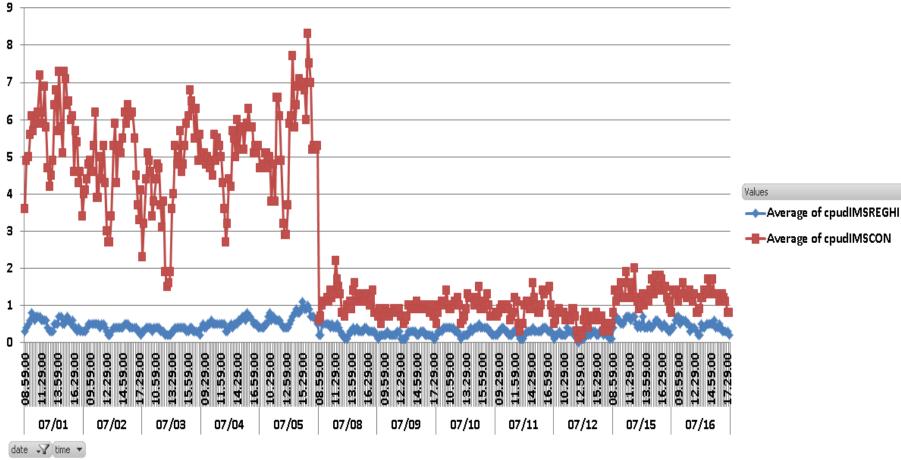
📊 Host Capacity Summary							zPCR V8.2b
	LPAR Host Capacity Study ID: Meral-Temel-Z Capacity basis: 2094-701 @ 1,000 for a Capacity for z/OS on z10 and later processors i	PCR-Study1-IS shared sing	BANK le-partition				
	LPAR Configuration		Full CPC C	apacity (bas	ed on usable	e RCP count)	
Identity	Hardware	GP	zAAP	zIIP	IFL	ICF	Total
#1 🛕 Configuration #1	2097-E26/700: GP=10 zIIP=2 ICF=2	11,639		2,381		2,744	16,765
2 🛕 Configuration #2	2827-H43/700: GP=8 zIIP=3 ICF=3	16,238		6,164		5,751	28,153
Content Control	 Based on "Configuration #1" Incremental 	Show capaci Full C Single	PC			39.5% INCREAS ITR	K
	For significant configuration changes, capacity comparisons Upgrading the processor family is conside IBM does not guarantee the results from this tool. Thi expressed or implied. You are responsible for th	red a significan is information is	t configuration provided "as i	n change. is", without wai	rgip rranty,		

SHARE zPCR LAB Sessions – John Burg



Effect Of CPU Efficiency To MSUs Consumed

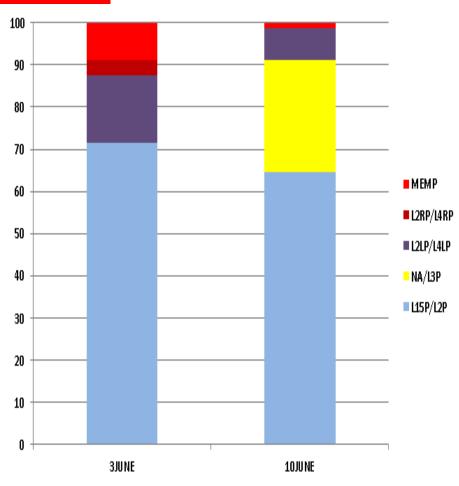
Effect Of CPU Efficiency To MIPS Consumed



Effect to CPU Delays Of IMS Regions

CPU Delay % Of SYSA -IMS –IREGHI Service Class CPU Delay % Of SYSA- IMSConnect Address Space Service Class

Average of cpudIMSREGHI Average of cpudIMSCON


SMF113 Study - SYSY System

10 JUNE / 3 JUNE SYSY ONLINE WORKLOAD TIME (09:00-18:00) COMPARISON

Cycle Per Instruction Decreased By %49

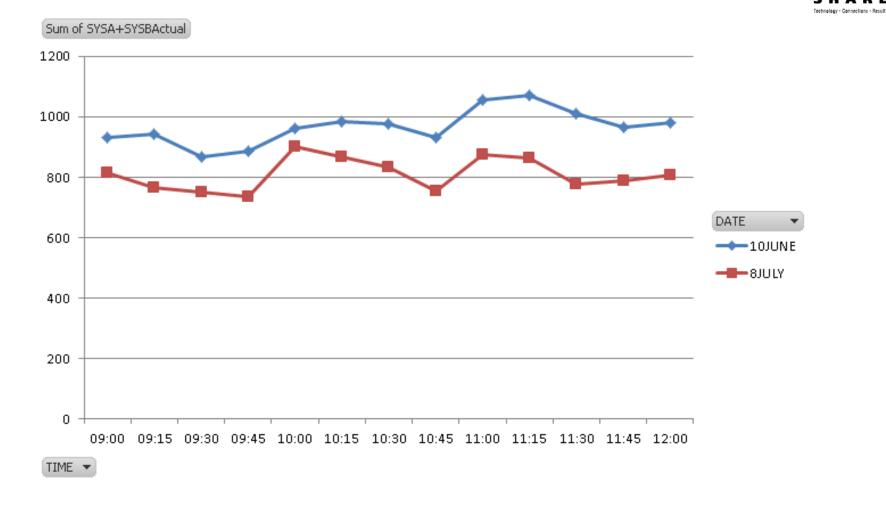
DATE	3JUNE	10JUNE	DECREASE%
CPI	7,46	3,81	49
ЦМР	4,26	4,85	
L15P	71,58	NA	
L2P	NA	64,48	
L2LP	15,90	NA	
L2RP	3,84	NA	
L3P	NA	26,58	
L4LP	NA	7,74	
L4RP	NA	0,03	
LPARBUSY	7,89	54,67	
МЕМР	8,68	1,16	87
MIPSEXEC	46,73	791,00	
ESTICCPI	3,07	2,10	32
ESTFINCP	4,40	1,71	61
ESTSCP1M	103,40	35,23	66
RNI	0,90	0,65	
EFFGHZ	4,40	5,50	
TLB1MISS	8,10	5,62	31
TLB1CYCL	79,49	27,28	66
РТЕРСТМІ	36,74	27,57	25

SMF113 Study - SYSA & SYSB System

%40 DECREASE In CPI (Cycle Per Instruction) = THIS IS OUR MIPS that we gain back!

	SYSA	SYSA			SYSB	SYSB	
ITEM	10JUNE	8JULY	%DECREASE	ITEM	10JUNE	8JULY	%DECREASE
СРІ	7,79	4,62	40,6	CPI	8,12	4,35	46,4
ЦМР	4,91	5,60		L1MP	5,23	5,13	
L15P/L2P	71,07	64,10	9,8	L15P/L2P	72,74	66,87	8,1
L2LP/L4LP	21,82	7,11	67,4	L2LP/L4LP	22,63	4,93	78,2
L2RP/L4RP	3,07	0,44	85,5	L2RP/L4RP	0,09	0,13	
L3P		27,14		L3P		27,01	
LPARBUSY	53,23	335,97		LPARBUSY	40,58	191,48	
МЕМР	4,04	1,21	70,2	МЕМР	4,55	1,07	76,5
MIPSEXEC	301,53	3999,24		MIPSEXEC	220,07	2436,59	
ESTICCPI	4,02	2,55	36,5	ESTICCPI	4,35	2,73	37,2
ESTFINCP	3,76	2,07	44,9	ESTFINCP	3,77	1,62	56,9
ESTSCP1M	76,74	37,10	51,6	ESTSCP1M	72,06	31,73	56,0
RNI	0,60	0,67		RNI	0,57	0,57	
EFFGHZ	4,40	5,50		EFFGHZ	4,40	5,50	
TLB1MISS	6,07	6,20		TLB1MISS	6,06	5,66	
TLB1CYCL	55,47	33,73	39,2	TLB1CYCL	54,65	31,04	43,2
ртерстмі	35,26	37,01		РТЕРСТМІ	36,13	32,17	

SYSA & SYSB MSU Decrease



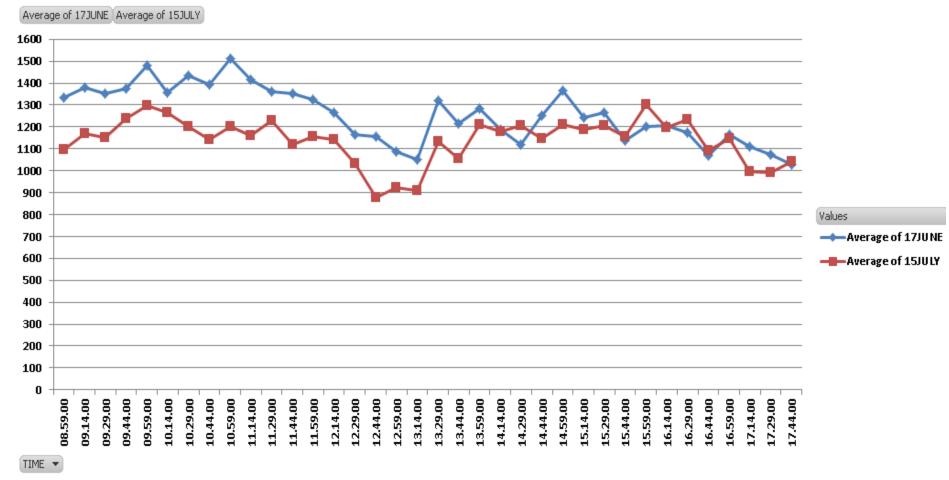
%14 - %23 Decrease In MSU for nearly same amount of Workload

										SYSA+SYSBActual						
DATE	TIME	SYSAactualMSU	dayaverage	decrease%	DATE	TIME	SYSBactualMS	U DATE	TIME	SYSA+SYSBActe daya	verag	decrease%		Time	IntervalCo	mparison
8JULY	09:00	490	516		8JULY	09:00	326	8JULY	09:00	816	810			09:00	12,35	
8JULY	09:15	483			8JULY	09:15	281	8JULY	09:15	764				09:15	18,81	
8JULY	09:30	504			8JULY	09:30	248	8JULY	09:30	752				09:30	13,26	
8JULY	09:45	481			8JULY	09:45	254	8JULY	09:45	735				09:45	16,95	
8JULY	10:00	580			8JULY	10:00	322	8JULY	10:00	902				10:00	6,14	
8JULY	10:15	565			8JULY	10:15	301	8JULY	10:15	866				10:15	11,99	
8JULY	10:30	524			8JULY	10:30	310	8JULY	10:30	834				10:30	14,55	
8JULY	10:45	476			8JULY	10:45	278	8JULY	10:45	754				10:45	18,92	
8JULY	11:00	555			8JULY	11:00	318	8JULY	11:00	873				11:00	17,41	
8JULY	11:15	564			8JULY	11:15	301	8JULY	11:15	865				11:15	19,31	
8JULY	11:30	498			8JULY	11:30	278	8JULY	11:30	776				11:30	23,09	
8JULY	11:45	485			8JULY	11:45	302	8JULY	11:45	787				11:45	18,53	
8JULY	12:00	503			8JULY	12:00	305	8JULY	12:00	808				12:00	17,72	
10JUNE	09:00	552	605	14,7	10JUNE	09:00	379	10JUNE	09:00	931	966	16,2	12,35			
10JUNE	09:15	569			10JUNE	09:15	372	10JUNE	09:15	941			18,81			
10JUNE	09:30	495			10JUNE	09:30	372	10JUNE	09:30	867			13,26			
10JUNE	09:45	535			10JUNE	09:45	350	10JUNE	09:45	885			16,95			
10JUNE	10:00	587			10JUNE	10:00	374	10JUNE	10:00	961			6,14			
10JUNE	10:15	615			10JUNE	10:15	369	10JUNE	10:15	984			11,99			
10JUNE	10:30	595			10JUNE	10:30	381	10JUNE	10:30	976			14,55			
10JUNE	10:45	591			10JUNE	10:45	339	10JUNE	10:45	930			18,92			
10JUNE	11:00	699			10JUNE	11:00	358	10JUNE	11:00	1057			17,41			
10JUNE	11:15	679			10JUNE	11:15	393	10JUNE	11:15	1072			19,31			
10JUNE	11:30	639			10JUNE	11:30	370	10JUNE	11:30	1009			23,09			
10JUNE	11:45	637			10JUNE	11:45	329	10JUNE	11:45	966			18,53			
10JUNE	12:00	667		ļ	10JUNE	12:00	315	10JUNE	12:00	982			17,72			

SYSA & SYSB MSU Decrease

Peak Day SYSA & SYSB MSU Decrease %15 Although 15 July Is The Record Breaking Day For # Of Transactions

Sum of SYSASYSB17 Sum of SYSASYSB15

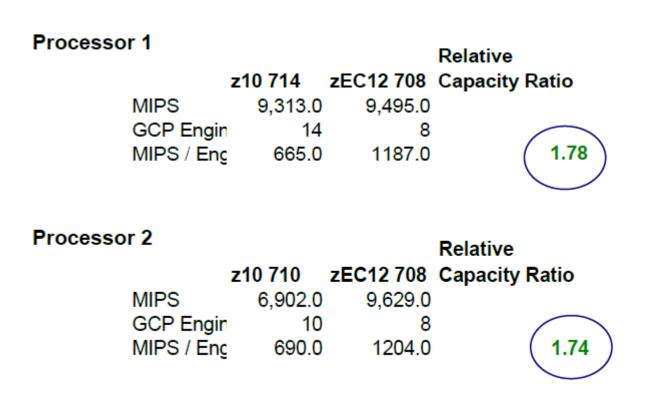


SYS	A & SYSB TOTA	AL ACTUAL MSU	(Average)
PERIOD	17June	15July	%DIFFERENCE
09-12	1395	1189	85
14-18	1180	1157	98

Peak Day SYSA & SYSB MSU Decrease %15 Although 15 July Is The Record Breaking Day For # Of Transactions

TIME	TOTAL-SU-10June	TOTAL-SU-8July	%DIFFERENCE
09:00	6040549	5096530	15,63
09:15	6812501	5966145	12,42
09:30	7108471	6565781	7,63
09:45	7379635	7024891	4,81
10:00	8010046	7653798	4,45
10:15	8200481	7785963	5,05
10:30	8026827	7583087	5,53
10:45	8213571	7536075	8,25
11:00	9466314	7924118	16,29
11:15	9049287	7778164	14,05
11:30	9016012	7740987	14,14
11:45	8694807	7617411	12,39

IMSCON AS CPUTIME (in seconds)												
time	tot10june	tot8july	%DECREASE									
09:00	173,867	79,391	54,3									
09:15	196,31	92,095	53,1									
09:30	204,125	101,352	50,3									
09:45	211,709	108,445	48,8									
10:00	230,696	118,147	48,8									
10:15	237,257	120,199	49,3									
10:30	232,276	117,059	49,6									
10:45	237,786	116,338	51,1									
11:00	274,394	122,338	55,4									
11:15	261,751	120,075	54,1									
11:30	261,421	119,493	54,3									
11:45	252,42	117,595	53,4									
12:00	256,096	118,286	53,8									


IBM WSC – JOHN BURG's ANALYSIS Special Thanks To John Burg For This Study

zPCR used to set Expectations based on actual configuration

- Accuracy of zPCR is within +/- 5%
 - Measurement is Average for all workloads
 - Capacity Levels set with z9-701 set to 593 MIPS

zEC12-708 Processor 1 Performance Vs Expectation

Overall the zEC12 appears to be performing above expectations by 22% to 23%

Prime 9 AM to Noon	1	SMF 113	SMF 11	3 SMF 7	0x SM/ 70x	SMFT	72a		2PCR GCP Expectation				SMF 72s			SMF 70e		SMF 113	SMF 113
zEC12-708	LPAR	AVG GCP CPI	Median GCP CP	AVG IRATE I ITR	Nedlan IRATE II		PU Avg GC ITR		sPCR QCP Expectation	Neasured LPA Nedlan GCP IT Vs Expectation	R	1 % Total LPAR CPU	Weighted LPARs Median GCP ITR V Expectation	SSCHa	DASD VC Resp	Measured LPARs Weighted Actual "After" IRATE ITR Vs Expectation	IRATE ITR V	Measured LPARs Weighted Actual GCP CP ITR Vs Expectation	Weighted 1 Actual CP1 ITR Va Expectation
25012-708	SYSA SYSY	21	15 2.1 16 0.1	2 4 1	25 1 06 1	23 2 04 1	24 23 .41 1.3	M 22 M 1.1	1.7 1.0	:	1.25 302 1.10 0.			8 0.90 0.82	0.9		85 1.20 M 0.00	11	3 1.23 4 0.00
	Avg/Sum ==0		11	17 1	.00 1	83	0	N 17	•		302		s 1.2	5 0.00		• 1.	ıs 1.25	i 10	o 1.23
											Average	zEC12 Box Lower Utilization Amount Vs z10 - "Low" workload 4.9	Lower Utilization Effect (LUE) Facto				0.985	1	0.905
												LUE Adjusted Weighter Actual 25012 GCP ITR Vs Expectation	12	3			1.23	\mathbf{D}	1.22

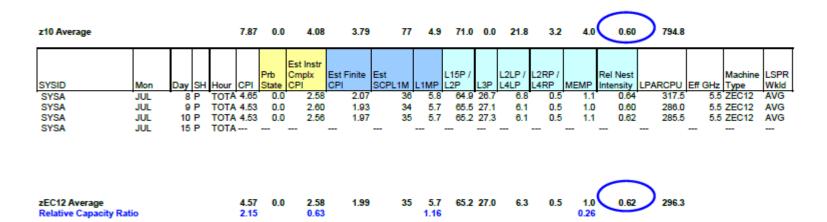
zEC12-708 Processor 2 Performance Vs Expectation

Overall the zEC12 appears to be performing above expectations by 15% to 26%

				_		_												
Prime 9 AM to Noon		SMF 113	SMF 1	13 SMF 7	0s SMF 70s	SMF 72		zPCR GCP Expectation				SMF 72a			SMF 70s		SMF 113	SMF 113
	LPAR	AVG GCP CP	Mediar I GCP C		Nedian IRATE IT		J Avg GCP ITR	zPCR GCP Expectation	Measured LPARs Median GOP ITR Vs Espectation		% Total LPAR CPU	Weighted LPARs Median GCP ITR V Expectation	SSCHa		Versured LPARs Weighted Actual "After" IRATE ITR Vs Expectation	IRATE ITR V	Measured LPARs Weighted Actual GCP OP ITR Vs Expectation	Weighted Actual CPI ITR Vs Expectation
	SYS8 SYS2 Avg/Sum ==>		0.00 2		09 2 20 2 14 2	04 2.1 17 2.2 19	5 2.14 1 2.17 2.19	1.74	1.2	200.8	23.6%	۰ o.	27 1.2	0 1.1	5 12	5 0.30	1.2	
										Average	2012 Box Lower Utilization Amount Vs 210 - "Low" workload 10.23	Lower Utilization Effect (LUE) Facto 6 0.9				0.970		0.970
											LUE Adjusted Weighted Actual 2E012 GCP ITR Vs Expectation	1.1	5			1.15		1.26

Performance Summary Vs zPCR Expectations

- Summary
 - Both zEC12s appear to be performing better than expectations
 - zEC12 Processor 1 by 22% to 23%
 - zEC12 Processor 2 by 15% to 26%
 - As suggested by <u>3 independent metrics SMF 70s</u>, SMF 72s and SMF 113s


	SMF 72	SMF 70 IRATE ITR Vs	SMF 113	
	GCP ITR Vs Exp	ectation Expectation	CPI ITR V	s Expectation
zEC12-708 SYSA		1.23	1.23	1.22
zEC12-708 SYSB / SYSZ		1.15	1.15	1.26
zPCR Expectation	1.00			

CPU MF Characteristics - SYSA

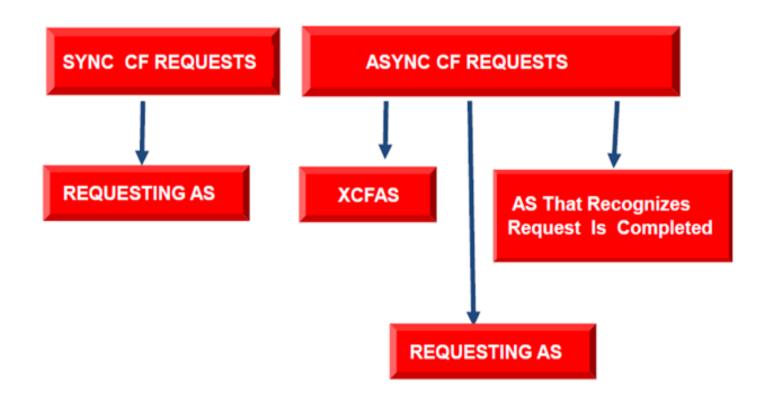
SYSID	Mon	Day	SH	Hour	CPI			Est Finite CPI	Est SCPL1M		L15P / L2P			L2RP / L4RP		Rel Nest Intensity	LPARCPU		Machine Type	LSPR Wkld
zEC12-708														-			•		•	
Prime 9 AM to I	Noon																			
SYSA																				
SYSA	JUN	17	P	TOTA	7.96	0.0	3.91	4.06	84	4.8	69.4	0.0	22.5	3.4	4.8	0.67	962.9	4.4	Z10	AVG
SYSA	JUN	18	P	TOTA	8.25	0.0	4.52	3.72	74	5.0	71.6	0.0	21.6	3.2	3.7	0.57	732.9	4.4	Z10	LOW
SYSA	JUN	19	P	TOTA	7.40	0.0	3.80	3.60	73	4.9	72.1	0.0	21.2	3.1	3.6	0.56	688.6	4.4	Z10	LOW

RNI metric is consistent between Processors .60 Vs .62

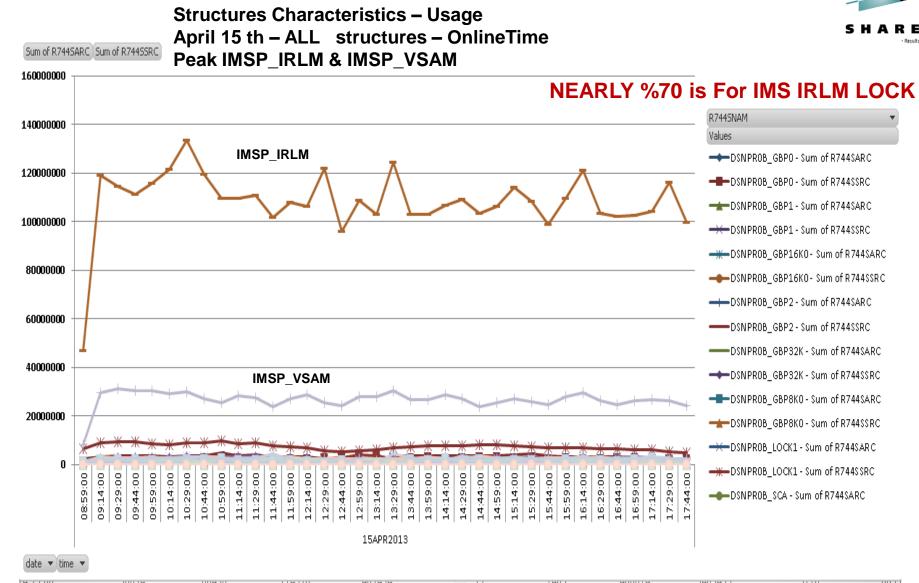
Observations

Observations

- Both zEC12s appear to be performing better than expectations
 - zEC12 Processor 1 by 22% to 23%
 - zEC12 Processor 2 by 15% to 26%
- RNI metrics are consistent across 2 processor generations
 - SYSA and SYSB
- IS Bank benefitted from zEC12 Processor Architecture Vs z10
 - GHz, Larger Caches and Enhanced Out-Of-Order Execution


CF VIEW

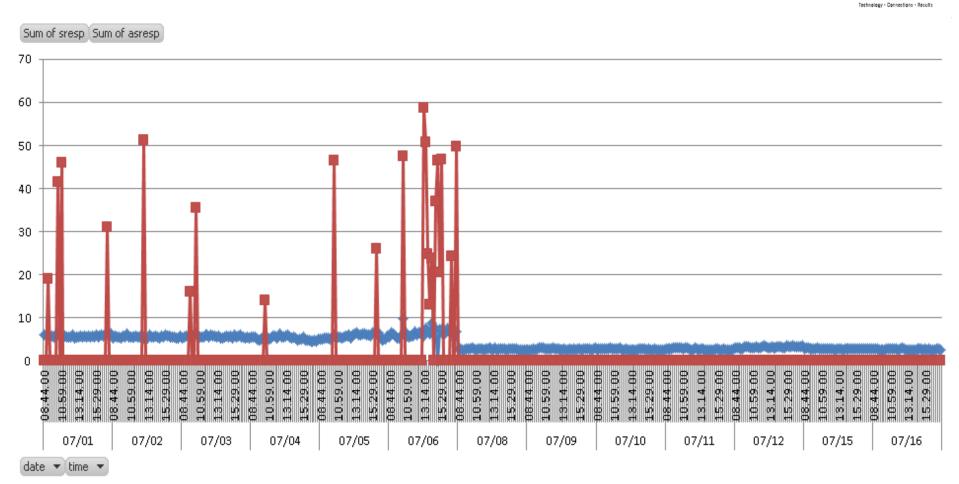
HOW IS MY CF WORKLOAD EFFECTED ? CF VIEW


Sync/Async Conversion

NON-HEURISTIC HEURISTIC

- Subchannel Busy Condition
- Path Busy Condition
- Serialized List or Lock Contention
- Introduced with z/OS v1r2...
- CF Link Technology
- Types Of Workload Variable Workload Amount
- Range Of CF Utilization, Shared CP or not,...
- Actual Observed Sync Request Service Time
- Amount Of Data That Needs To Be Transfered
- Other items that effect CF response ex:Distance
- Moving Weighted Averages Of Actual CF Requests
- Every 1 of N Request not converted and send as Sync

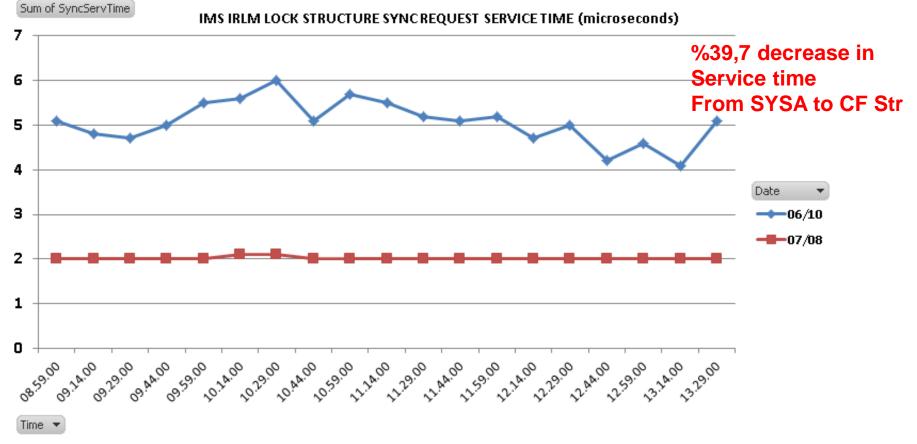
OUR CF WORKLOAD CHARACTERISTICS


Complete your session evaluations online at www.SHARE.org/AnaheimEval

SHARE in Anaheim

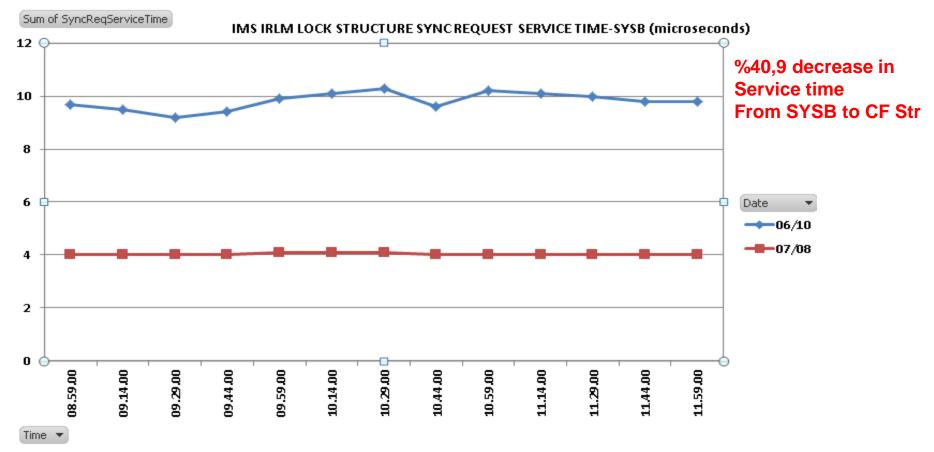
Effect to CF Request Service Times for IMS IRLM Lock Structure

Effect to CF Request Service Times for IMS IRLM Lock Structure - Sync Req Service Time & Async Req Service Time (microseconds) S H A R E



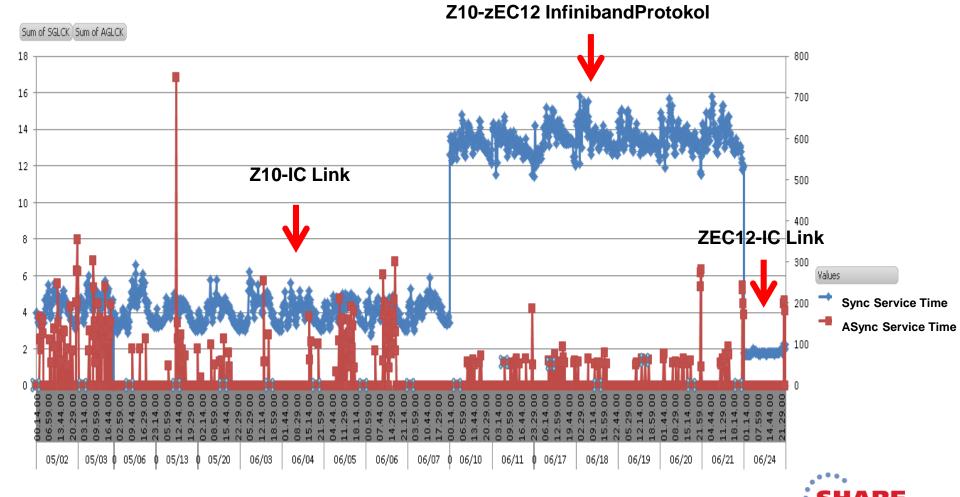
IC Links Performance Improvement CF Request Service Times for IRLM Lock Structure

Z10 IC Link – ZEC12 IC Link Performance Improvement This is Seen For IMS Lock Structure Access from SYSA


CF Processor Speed & 2 ICFs to 3 ICFs (1 CF to 2 CFs for production) increase also causes this result

ICB4 To Infiniband Links Change Effect to Performance CF Request Service Times for IRLM Lock Structure

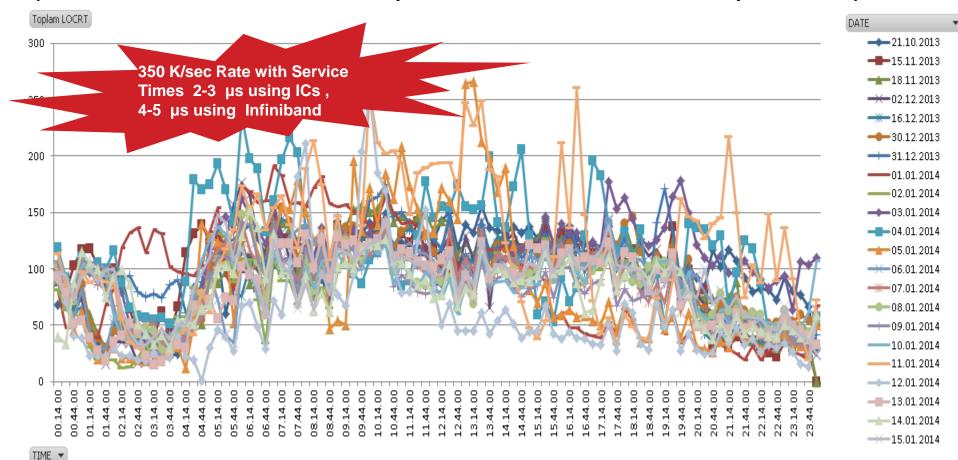
Z10 2 ICB4 Links – ZEC12 3 Infiniband Links Performance Improvement This is Seen For IMS Lock Structure Access from SYSB


CF Processor Speed & 2 ICFs to 3 ICFs (1 CF to 2 CFs for production) increase also causes this result

Effect to CF Request Service Times for DB2 Lock Structure

SYSY – DB2 Lock Structure Sync & Async ServiceTime (microseconds) %50 DECREASED ServiceTime

Because z10 Supports Only Earlier InfinibandProtokol-This Was Something We Have Expected



in Anaheim

Excellent CF Service Time Even With 350K/sec CF request rates

15 Min Interval Average IMS Lock Str Request Rate/sec (In 10 sec interval 350K /sec was reported with 2-4 microseconds responsetimes)

CF\Host z10 BC ISC3

z10 BC 1x IFB

z10 BC ICB4

z10 BC 12x IFB

DataSharing Cost Value Changes Estimated To Be Changed From %10 To %11

z10 BC

16%

13%

12%

10%

Coupling Technology versus Host Processor Speed

Host effect with primary application involved in data sharing Chart below is based on 9 CF ops/Mi - may be scaled linearly for other rates

z114

17%

14%

13%

NA

z196

21%

17%

15%

NA

zEnterprise EC12

24%

19%

17%

NA

z10 EC

18%

14%

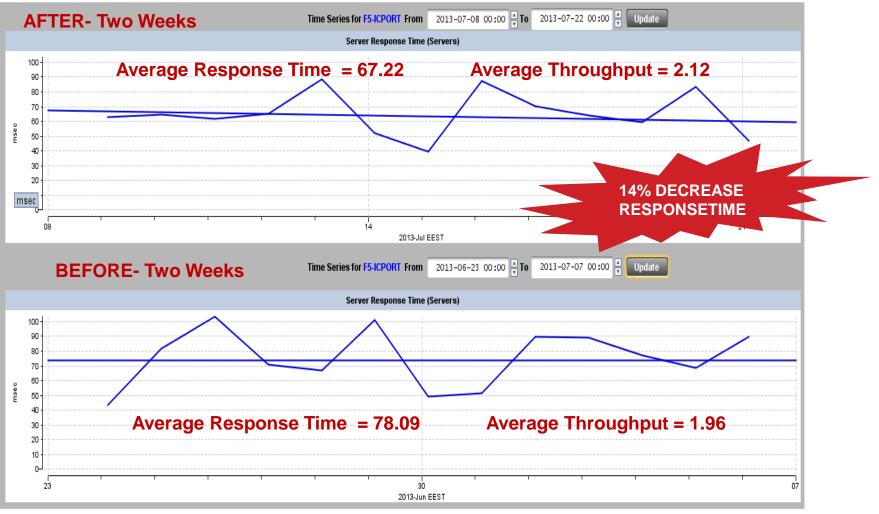
13%

11%

10 EC ISC3	16%	17%	17%	21%	Z4%							
10 EC 1x IFB	13%	14%	14%	17%	19%							
10 EC 12x IFB	11%	12%	12%	14%	16%							
10 EC ICB4	10%	10%	NA	NA	NA							
:114 ISC3	16%	18%	17%	21%	24%							
:114 1× IFB	13%	14%	14%	17%	19%							
114 12x IFB	12%	13%	12%	15%	17%							
114 12x IFB3	NA	NA	10%	12%	13%							
:196 ISC3	16%	17%	17%	21%	24%							
:196 1x IFB	13%	14%	13%	16%	18%							
196 12x IFB	11%	12%	11%	14%	15%							
:196 12x IFB3	NA	NA	9%	11%	12%							
Enterprise EC12 ISC3	16%	17%	17%	21%	24%							
Enterprise EC12 1x IFB	13%	13%	13%	16%	18%							
Enterprise EC12 12x IFB	11%	11%	11%	13%	15%							
Enterprise EC12 12x IFB3	9%	9%	9%	10%	11%							
With z/OS 1.2 and above, synch->asynch conversion caps values in table at about 18%												
	With 2005 1.2 and above, synch-asynch conversion caps values in table at about 16%											

IC links scale with speed of host technology and would provide an 8% effect in each case

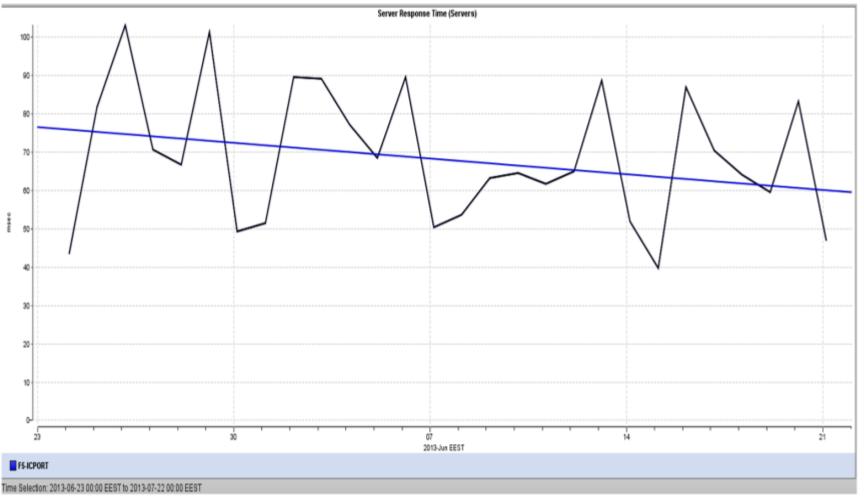
End User VIEW


How Are My End Users Effected ? End User View

How Did Upgrade Effect End Users?

ME SHARE Tethalogy - Connections - Results

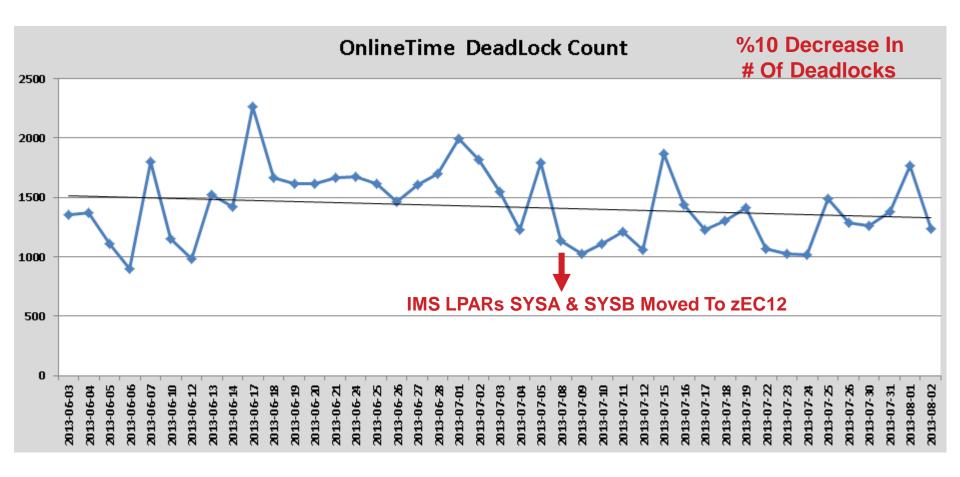
14 % DECREASE IN RESPONSETIME THAT IS SEEN FROM OUTSIDE OF MAINFRAME



How Did Upgrade Effect End Users?

TREND VIEW - RESPONSETIME

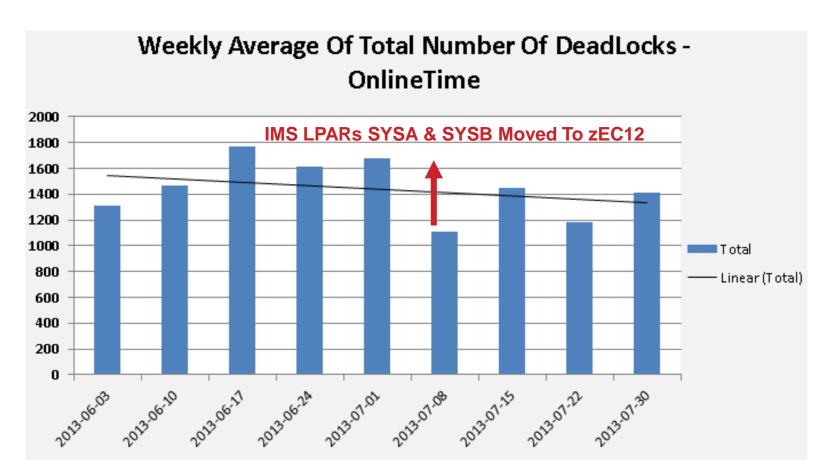
Side Effect ?



Are There Any Side Effects ?

Checking Side Effects

When We Checked 2 months of Data ,we realize that it is not a Side Effect! . Just opposite = There is nearly 10 % Decrease In # Of IMS Deadlocks

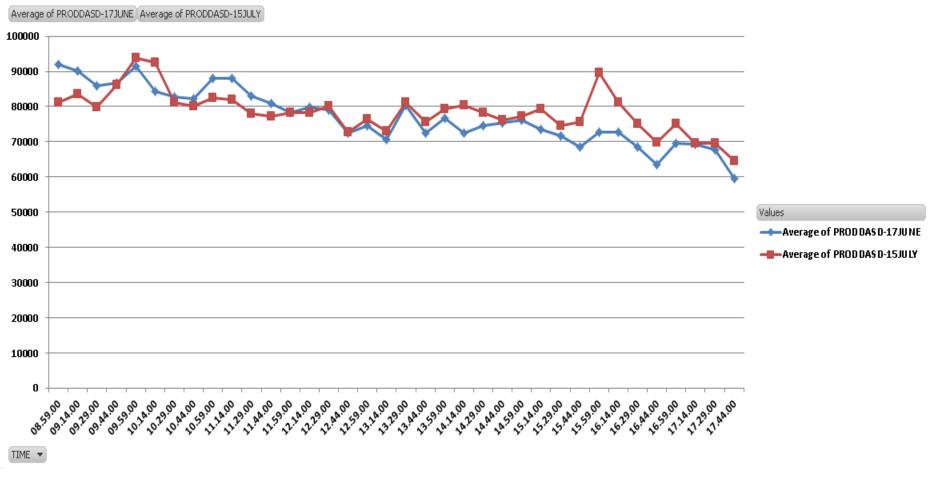


Checking Side Effects

Checked and realize that it is not Side Effect! .

Just opposite = There is nearly 10 % Decrease In # Of IMS Deadlocks

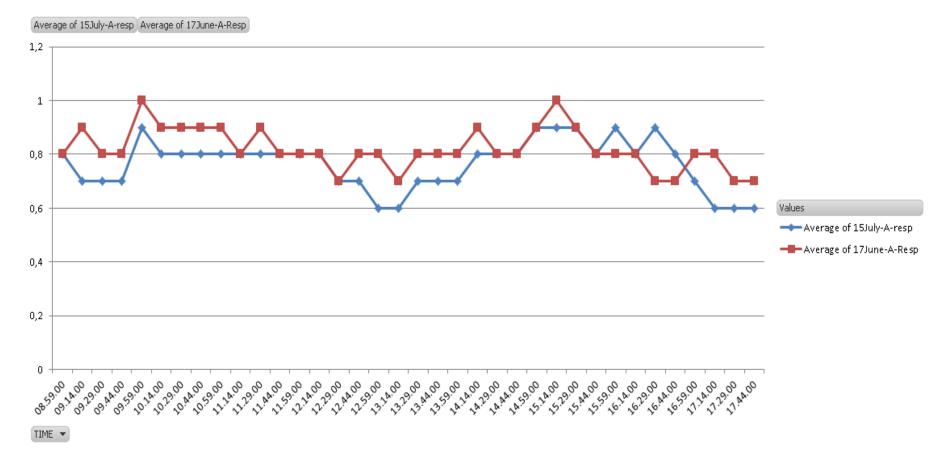
DASD I/O VIEW



PEAK DAY COMPARISON DASD I/O View (Also Side Effect Check)

Production Total DASD RATE Online Time

We were not high utilized in z10s, So not that much increase in DASD Rate + Not cause any bottleneck



Production SYSA DASD ResponseTime (millisecs) Online Time

Started Using New I/O Response Time Component – zEC12 Feature I/O Interrupt Delay – (Not like other components)

Continuing Processes & Future Plans

DS8870 Upgrade with SSDs Availability Related Items & Implementation Of Best Practices (Our analysis' results & z&OS HealthChecker & CPEXPERT items) WLM Policy Rearrangements COBOL Version Upgrade To Use Latest system z Instructions zEC12 GA2 Implementation – ABSOLUTE CAPPING + zEDC z/OS V2R1 Implementation – MANY GREATE FEATURES! zFlash Implementation zAWARE Implementation

Useful Links & More Information

For Sure SHARE Website

Great sessions in This SHARE as well as previous SHARE sessions – MVS Program

Resourcelink Website

https://www-304.ibm.com/servers/resourcelink/svc03100.nsf?Opendatabase

Exception Letter, CPU MF Counter document, PR/SM Planning, HMC & SE Users Guide and many more....

LSPR

https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex?OpenDocument&pathID=

zPCR Download Website

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1381?OpenDocument&TableRow=4.1.0#4.1.

IBM WSC Website - Techdocs

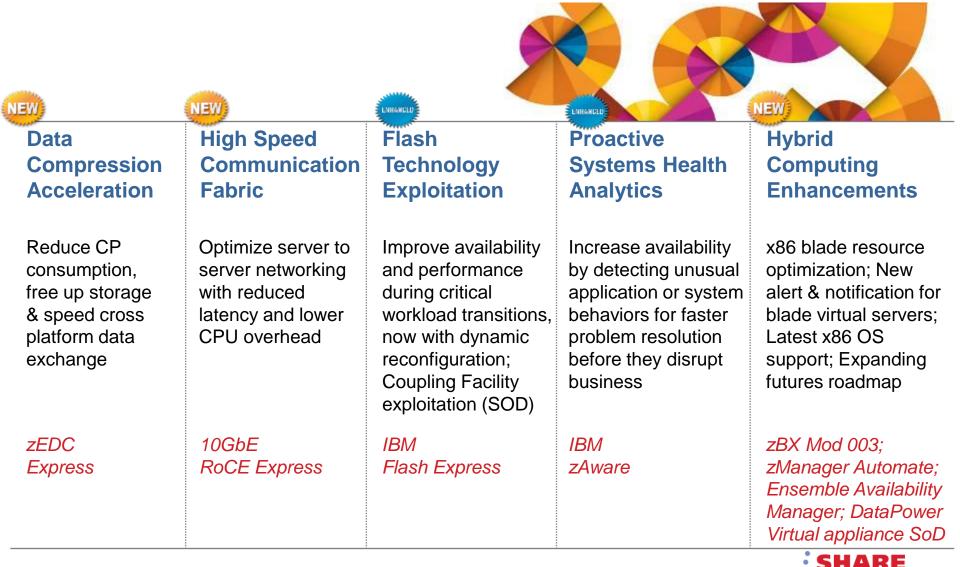
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs

IBM WLM – LPAR DESIGN TOOL DOWNLOAD

http://www-03.ibm.com/systems/z/os/zos/features/wlm/tools/WLMsetupdesigntools.html

RMF User Guide – Chapter 15 Overview And Exception conditions

2011-SHARE –Anaheim Using and Getting Benefit From SMF113 Records :Customer Experience 2012-SHARE-Atlanta Migrating From z10 ICBs To z196 Infiniband –Detail Performance Study 2012-SHARE-Atlanta Analyzing/Monitoring/Measuring Memory Usage And Understanding z/OS Memory Management : Performance View


zEC12 GA2 And Other ENHANCEMENTS Thanks To Harv Emery – IBM WSC

New innovations available on zBC12 and zEC12

in Anaheim

zEnterprise Data Compression (zEDC) - can help to reduce CPU and storage

Every day 2.5 quintillion bytes of data are created

Compress your data

4X* (efficient system data compression) Efficiently compress active data by providing a low CPU, high performance, dedicated compression accelerator Industry standard compliance compression for cross platform data distribution **

Up to 118X reduction in

CPU and up to 24X throughput improvement when zlib uses zEDC **

Typical Client Use Cases:

Significant disk savings with trivial CPU cost for large BSAM/QSAM sequential files ***

More efficiently store audit data in application logs

Reduce the amount of data needed for data migration and backup/restore **

Transparent acceleration of Java compressed applications **

NEW ZEDC Express

72 Con * The amount of data sent to an SMF logstream can be reduced by up to 75% using zEDC compression – reducing logger overhead ** These results are based on projections and measurements completed in a controlled environment. Results may vary by customer based on individual workload, configuration and software levels

*** All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Enterprise COBOL for z/OS v5.1

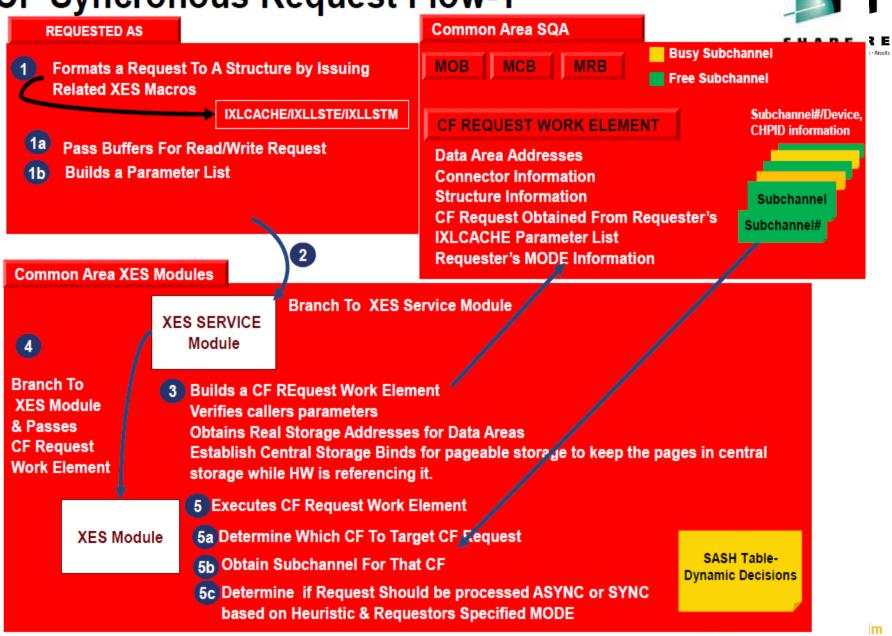
The key to supercharging IBM System z Applications

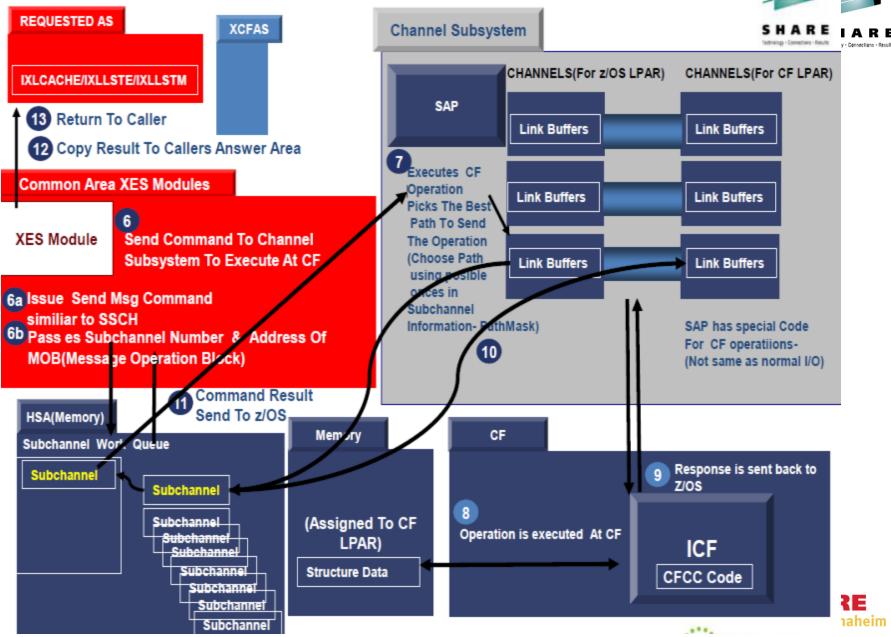
- Advanced technology designed to optimize COBOL programs and fully exploit System z hardware
 - Delivers greater than 10% performance improvement over Enterprise COBOL v4 for well structured, CPUintensive batch applications on System z¹
 - Many numerically intensive programs have shown . performance increases greater than 20%¹
 - Maintains compatibility with previous COBOL releases
- New programming and application modernization capabilities.

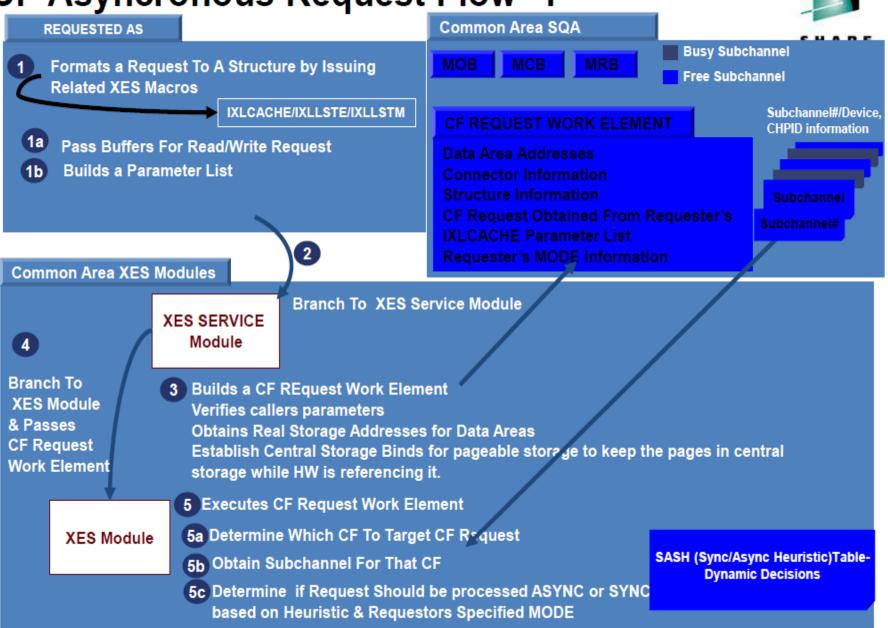
¹ Results are based on an internal compute-intensive test suite. Performance results from other applications may vary.

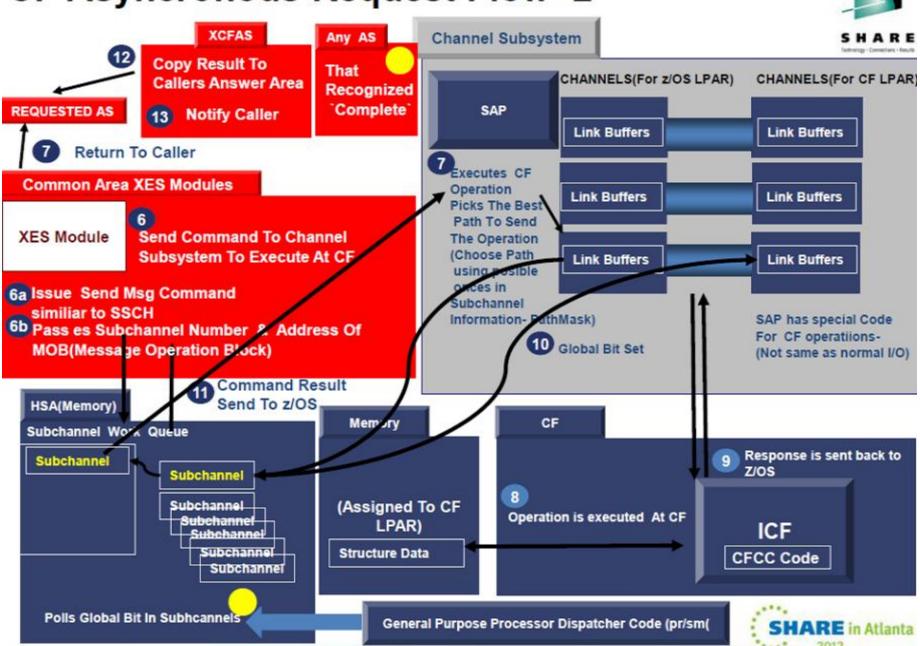
- Enables users to deliver enhancements to business critical applications quicker with less cost and lower risk
- Allows users, who implement sub-capacity
- Stasking the educe administrative overhead development tools supplied by IBM and ISVs.

GARY KING - IBM Performance JOHN BURG – IBM WSC GEORGETTE KURT – IBM Parallel Sysplex HORST SINRAM – IBM WLM HARV EMERY – IBM WSC

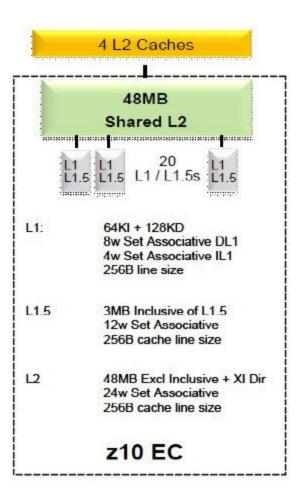

Backup Slides

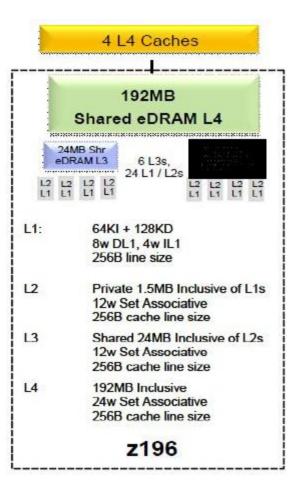

Backup Slides


CF Syncronous Request Flow-1


CF Syncronous Request Flow-2

CF Asyncronous Request Flow -1




CF Asyncronous Request Flow -2

Backup Slide z10 – z196 Differences

Backup Slide z196 – zEC12 Differences

z196 EC MCM vs zEC12 MCM Comparison

z196 MCM

MCM

-96mm x 96mm in size

-6 PU chips per MCM

Quad core chips with 3 or 4 active cores PU Chip size 23.7 mm x 21.5 mm 5.2 GHz Superscalar, OoO execution L1: 64 KB I / 128 KB D private/core L2: 1.5 MB I+D private/core L3: 24 MB/chip – shared

-2 SC chips per MCM L4: 2 x 96 MB = 192 MB L4 per book SC Chip size 24.5 mm x 20.5 mm

-1800 Watts

zEC12 MCM

MCM

–96mm x 96mm in size

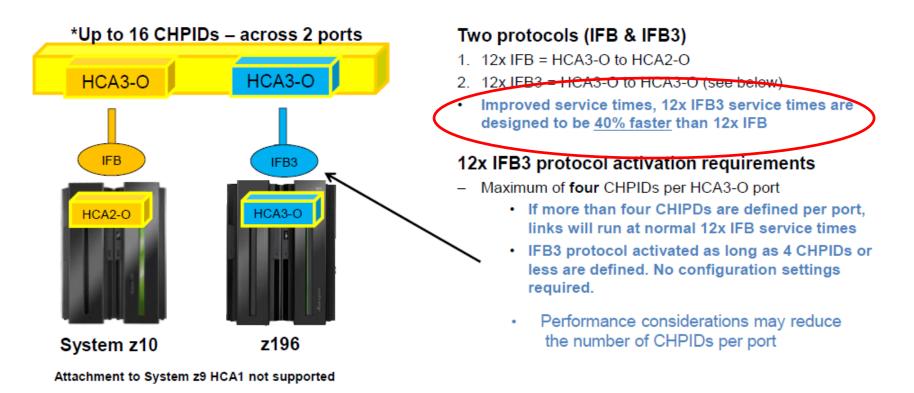
-6 PU chips per MCM

Hex-core chips with 4 to 6 active cores PU Chip size 23.7 mm x 25.2 mm 5.5 GHz Improved superscalar and OoO execution

Improved superscalar and OoO execution

- L1: 64 KB I / 96 KB D private/core
- L2: 1 MB I / 1 MB D private/core
- L3: 48 MB/chip shared

-2 SC chips per MCM


L4: 2 x 192 MB = 384 MB L4 per book SC Chip size 26.72 mm x 19.67 mm

-1800 Watts

New PSIFB Protocol & Infiniband Fanout Cards

New 12x InfiniBand fanout cards, exclusive to z196 and z114

Note: The InfiniBand link data rates of 6 GBps, 3 GBps, 2.5 Gbps, or 5 Gbps do not represent the performance of the link. The actual performance is dependent upon many factors including latency through the adapters, cable lengths, and the type of workload.

