Omegamon XE for Storage – Hints and Tips to Improve Performance and Usage

Deborah Reynolds
IBM Corporation
debrey@us.ibm.com

March 12, 2014
Session 14987
Agenda

• Maximizing Performance
 • Monitoring Activities
 • Demand on System Resources
 • Understanding of Data Collection

• Product Usage Guidelines
 • Defining masks and Using wildcards
 • Data Collection Usage

• Best Practices
 • Situations and Policies
 • Storage Toolkit
 • Data Collection Parameters
Maximizing Performance

- **Reduce the impact of monitoring activities**
 - Review collection intervals and data filtered
 - Use masking to reduce the data collected
 - Adjust collection intervals

- **Demand on system resources**
 - Improve the Performance of ITM by reducing the demand on system resources

- **Make collection of historical data more efficient**
 - Understand short vs long term historical data collection
 - Review the types of data to collect as well as the interval settings
Maximizing Performance – Monitoring Activities

• Use masks to reduce the amount of resources required to retrieve data (exclude non-critical devices)

• Specify appropriate collection intervals to collect sufficient information. It is a balance between using resources and getting the information on resources.
Maximizing Performance – Demand on System Resources

• Reduce steady-state demand
 • reviewing and limiting processes that use resources
 • Demand on System Resources
 • Historical Data Collection

• Reduce user demand

• Utilize zIIP (new with V5.2.0)
Maximizing Performance – Reduce Steady-state Demand

- **Reviewing and limiting processes** that use resources all of the time such as background collectors, historical collection, auto-started situations and policies.

- Determine critical vs noncritical thresholds
 - For less critical events define an interval for the threshold
 - Production vs nonproduction
 - One size does not fit all

- **Tune Thresholds**
 - Use method that uses less system resources. Not all methods use the same resources.
 - Omegamon XE uses Boolean logic which provides for more complex situations.
Maximizing Performance – Reduce Steady-state Demand

• Reviewing and limiting processes…

 • Disable data collection for noncritical resources

• Configure data collection intervals

 • Understand how intervals control data collection.

• Situation monitoring

 • Omegamon XE for Storage comes with many pre-built situations. Only turn on/activate the ones that are necessary
Maximizing Performance –
Reduce Steady-state Demand

• **Example 1:**
 • The Navigator view is like a tree with leaves.
 • Each leaf has a name such as Application Summary, Cache CU Performance, etc.
 • Leaf names link to workspaces. Workspaces contain numerous columns of data gathered by a single data collector.
 • Right click a leaf to view all situations associated with the leaf. All situations on a leaf use the same data collector.
 • All situations are grouped if the same interval setting is used for all situations.
 • *However, if different interval settings are used, then the data collector is called for each situation on the leaf*
Maximizing Performance – Reduce Steady-state Demand

- Workspaces on a leaf
Maximizing Performance – Reduce Steady-state Demand

• Situations on a leaf
Example 2:

- All situations with the same interval setting are scheduled together.
- Generally 4 or less situations are grouped together (have 2 conditions as most situations do).
- More than 4 situations or complex situations will require more data collections.
- You can apply four warning situations for one interval and four critical situations for another higher interval to save on resources.
- You must restart the HUB TEMS in order to see the benefits of combining (or recombining) situations.
Maximizing Performance – Reduce User Demand

• Each time a user requests data, a demand is made on system resources especially tabular views that return large volumes of data.

• When a workspace is opened or refreshed, a query is run.
 • Customize queries to filter out nonsignificant data - reduces memory
 • Limit the number of rows and columns. Default queries return all columns.
 • Apply same query to multiple views in a workspace (one query per table in a workspace)
 • Set auto-refresh to a long interval or turn off
Maximizing Performance – Reduce User Demand

• **Example:**
 • Use the Dataset Attribute Database feature to write a query that targets data sets on a specific control unit.
 • Refine your query so that it retrieves only monitoring information about space utilization.
 • Substantially reduce the amount of data that the query returns and reduce demand on system resources:
 • By limiting the query to the specific control unit
 • By specifying the attribute that you want to monitor

• It is more efficient to use queries than View filters.
Maximizing Performance – Reduce User Demand

- Example:
 - Use the Dataset Attribute Database feature to write a query that targets data sets on a specific control unit.
 - Refine your query so that it retrieves only monitoring information about space utilization.
 - Substantially reduce the amount of data that the query returns and reduce demand on system resources:
 - By limiting the query to the specific control unit
 - By specifying the attribute that you want to monitor

It is more efficient to use queries than View filters.

- Query Formula
Maximizing Performance – Reduce User Demand

- Example:
 - Use the Dataset Attribute Database feature to write a query that targets data sets on a specific control unit.
 - Refine your query so that it retrieves only monitoring information about space utilization.
 - Substantially reduce the amount of data that the query returns and reduce demand on system resources:
 - By limiting the query to the specific control unit
 - By specifying the attribute that you want to monitor

It is more efficient to use queries than View filters.

- Query Selection
Maximizing Performance – ZIIP Processing

First offloading of cycles to zIIP processor by Omegamon XE for Storage

• Logical volume statistics calculations are made available to zIIP

• Offloading will take place *automatically* when zIIP processors are online
Maximizing Performance – Understanding Historical Data Collection

• **Short Term history**
 - Stored in the Persistent Data Store files usually 24 hours
 - Short-term historical data is used to investigate and determine the nature of problems that arise
 - Data is stored on z/OS

• **Long term history**
 - Stored in the Tivoli Data Warehouse
 - Used to analyze trends and determine workload balance
 - Data is stored in a relational database (DB2, Oracle, Microsoft SQL)
 - Requires Warehouse Proxy Agent
Maximizing Performance – Understanding Historical Data Collection

• Sample Historical Collection Intervals
 • Realtime - 5 minutes
 • Short term - 15 minutes
 • Long term - 1 hour
Agenda

• **Maximizing Performance**
 • Monitoring Activities
 • Demand on System Resources
 • Understanding of Data Collection

• **Product Usage Guidelines**
 • Defining masks and Using wildcards
 • Data Collection Usage

• **Best Practices**
 • Situations and Policies
 • Storage Toolkit
 • Data Collection Parameters
Product Usage Guidelines

• Masks
 • Keep amount of data small
 • Use unique masks
 • Limit time to collect data
 • For data set masks, clear the Space Data option if space data is not required or if the last reference date is not required
 • For more information on masking, see IBM Tivoli OMEGAMON XE for Storage on z/OS: User's Guide

• Wildcards
 • Do not use wildcard characters in the first qualifier
Product Usage Guidelines

• Historical Data
 • For data set groups, collect only data that you need
 • Use an appropriate data collection rate (5, 15, 30, 60, or 1440 minutes)

• Optimize the collection of cache statistics
 • For shared DASD environments that share a HUB TEMS:
 • Use one LPAR to collect cache space statistics
 • Turn off cache space collection on all other LPARs
 • Note: this feature is available to turn off in Omegamon XE for Storage V5.2.0 with PTF
Agenda

• Maximizing Performance
 • Monitoring Activities
 • Demand on System Resources
 • Understanding of Data Collection

• Product Usage Guidelines
 • Defining masks and Using wildcards
 • Data Collection Usage

• Best Practices
 • Situations and Policies
 • Storage Toolkit
 • Data Collection Parameters
Best Practices – Situations

• **Situations** are queries run on a specified interval and report results to the TEMS Situation Monitor. The Situation Monitor forwards alerts to the TEPS.

• **Situation Distribution**
 • Only run critical situations from those provided
 • Distribute certain situations to only one z/OS image in a shared environment
 • Those with space attributes, cache status or performance attributes, hardware related
Best Practices – Situations

• **Situation Take Action**
 • Be careful with Take Action on volume and data situations. Can produce unexpected results. Don't want a situation true for 500 volumes at once and kick off 500 tasks.
 • Run situations on DASD groups and not all volumes at once
 • Time slice situations
 • Know your environment

• **Situation Sampling Interval**
 • Set sampling interval to the collection interval of the data
 • Data set attributes database is collected only once every 24 hours
Best Practices – Policies

- **Policies** allow you to combine Boolean logic with multiple situations and actions to be taken.
- Very flexible and powerful.
Best Practices – Storage Toolkit

• The Storage Toolkit is a feature rich function available only in Omegamon XE for Storage

• Interfaces with DFDSS and HSM to issue commands

• Storage Toolkit Take Action facility.
 • This allows for Volume actions, Dataset actions, Commands, and Batch jobs when a Situation becomes true
Best Practices – Data Collection Parameters

- DASD Space and Fragmentation Collection
- VTS Collection
- HSM Collecton
- Dataset Performance Collection
- Dataset Statistics Collection
- Collection Parameters Information
Best Practices – DASD Space and Fragmentation Collection

• Collect space data on one image in a shared DASD environment

• Use exclude list RKANPARU(KDFDEVSU) for system volumes (Page, JES and SYSRES)
Best Practices – VTS Collection

• Collect VTS data on one image only.
• Data is hardware specific.
• BVIR dataset collects the data and must reside on the VTS.
Best Practices –
HSM Collection

- Collect HSM messages where the HSM work is done
Best Practices –
Dataset Performance Collection

• Dataset level I/O monitoring involves the TEMS address space which handles the data collected by the I/O exits. This collection of data needs to be tuned for the environment.

• Decide which volumes need to be monitored. Set appropriate thresholds for each volume.
Best Practices – Dataset Performance Collection

• Collecting dataset level I/O can be done 2 ways:
 By a fixed interval or by exceptions during degraded performance.

• Sample Count can be set from 1 - 99.
 If set to 1, every I/O is monitored
 If set to greater than 1, not every I/O is monitored reducing resources (e.g. 5 is every 5 I/Os is monitored)

• Exception monitoring uses 2 values:
 • MSR exception value (response time threshold)
 • Global trip count (number of exceptions that must occur before logging of exception)
Best Practices – Dataset Statistics Collection

• Data Set Groups
 • Do not mask high level index
 • Do not collect data for same dataset or same space data multiple times

• Data Set Attributes Database ad hoc queries
 • Include volser in predicate
 • Include dataset name or mask
 • Include volser in situations
Best Practices – Collection Parameters Information

• Monitoring Sampling Intervals

• Historical data collection

• DASD Device Monitoring

• PARMGEN Fields
Best Practices – Monitor Sampling Intervals

• **Cache Statistics**
 - Controls the frequency of data collections for cached volumes and control units (0-999 secs)
 - Set to greater than zero on one LPAR per shared DASD environment. Zero will disable the collection as documented in the manuals with Omegamon XE for Storage V5.2.0 and PTF.
 - *Note: with APAR OA43607 (PTF UA71330), this field can be set to 0*

• **Cache reset interval**
 - 0-999 minutes or RMF
Best Practices – Monitor Sampling Intervals

• DASD response time
 • Controls how often response time statistics for DASD volumes are collected (0-999 secs)
 • *Note: with APAR OA43607 (PTF UA71330), this field can be set to 0*

• DASD space and fragmentation
 • Controls how often to retrieve space and fragmentation statistics for DASD volumes. (0-99 intervals or RMF)
 • If set to a value, collection value is calculated
 \[\text{FREQ} \times \text{RESPINTV} \]
Best Practices – Monitor Sampling Intervals

• Tape monitoring interval
 • 0-999 secs or OFF

• Application volumes and datasets
 • Controls how often to rebuild the list of volumes and data sets of the applications that it monitors. (0-999 secs)
Best Practices – Monitor Sampling Intervals

• Example:
 • Monitor sampling intervals

Cache statistics: 300 (5 minutes)
Cache reset interval: RMF
DASD response time: 60 (1 minute)
DASD space/fragmentation RMF
Tape monitoring interval: 900 (15 minutes)
Application vols/datasets: 300 (5 minutes)
Best Practices – Historical Data Collection

• Dataset collection enabled and DASD collection enabled?
 • Writes information about the DASD and data sets that it monitors to IBM Tivoli Enterprise Monitoring Server's persistent data store (PDS)
 • Y/N - set to N to disable

• Application collection enabled?
 • Y/N - set to N to disable

• Recommendation: set all 3 to Y
Best Practices – DASD Device Monitoring

• You can specify one of three monitoring methods for each volume (actually 2)

• Method 1
 • Track every I/O transaction to every data set on a volume and maintain statistics for each I/O transaction.
 • Tracking and maintaining statistics for every I/O transaction to a volume causes more resource consumption.
 • Using response time information to selectively turn on data set tracking for the volume is relatively inexpensive.
 • Tracking any data set activity to the volume uses resources.
Best Practices – DASD Device Monitoring

• Method 2
 • Track every \(n \)th I/O transaction to a volume based on a specified sample count and maintain statistics only for each sample observed.
 • This method provides a reasonable overview, while reducing the demand on system resources that is required to monitor every I/O transaction.
Best Practices –
DASD Device Monitoring

• **Method 3 (Recommended Method)**

 • Based upon a specified MSR (millisecond response time) threshold, only track I/O transactions to the volume that exceed the threshold.

 • This method is a cost-effective way to track data set statistics when the volume is not meeting your response time objectives.

 • It ensures that critical statistics are maintained during periods of response time degradation without using system resources when response times are satisfactory.
Best Practices – DASD Device Monitoring

• MSR exception trip count
 • Number of MSR exceptions on a device for every 100 I/O events. Applies to MSR monitored devices (1-99)

• For groups of volumes or selected volumes
 • Specify VOLSER, VOLSER pattern or device address or device address range

• Monitor Status
 • Set method of monitoring (ON or MSR)

• Sample Cnt/MSR
 • Sample count or MSR threshold
Best Practices – DASD Device Monitoring

• **Example for Method 3:**
 - DASD collection options:
 - Enable SMS storage class name collection? Y
 - MSR exception trip count: 51

• For Volsers/Patterns
 - Monitor Status: MSR
 - Sample Cnt/MSR: 25 (response time MS)

These settings will monitor every I/O but until an I/O MSR exceeds 25ms over 51 samples (100 consecutive I/Os) in this sampling interval, the I/O is not recorded as a problem.
Best Practices – DASD Device Monitoring

- DASD devices can be excluded from space and fragmentation monitoring on the EXCLUDE DASD DEVICE FROM MONITORING panel.
 - Exclude as many volumes as possible
 - Page packs, spool, SYSRES, etc.
New metric – added to I/O response time. Only for zEC12 processors.

New attribute Interrupt Delay Time: The time between I/O completion and when the processor is ready to issue the TSCH (test sub-channel command) indicating it is ready to process the results of the command.
Parmgen Fields
DASD Device Monitoring

DASD Device Monitoring:

Entries for RKANPARU(KDFDSCIN) member:

```
*KDF_FM       BEGIN             * Table begin *
*KDF_FM01_ROW  01
*KDF_FM01_VOL  ""
*KDF_FM01_FIRST_DEV  ""
*KDF_FM01_LAST_DEV  ""
*KDF_FM01_MON_STAT  MSR
*KDF_FM01_SAM_CNT  25
*KDF_FM       END               * Table end *

KDF_STG_CLAS_COLL  Y
KDF_MSR_TRIP_CNT   51
```

Note: Uncomment to activate table
** Parmgen Fields **

** DASD Device Monitoring **

** DASD Device Monitoring Exclude List: **

** Entries for RKANPARU(KDFDEVSU) member: **

KDF_FX
BEGIN 01
KDF_FX01_ROW
01
KDF_FX01_VOL
""
KDF_FX01_FIRST_DEV
""
KDF_FX01_LAST_DEV
""
KDF_FX
END

* Table begin *

* Table end *

Note: Uncomment to activate table
Parmgen Fields
Data Collection Options

** Data Collection Options:

- `KDF_MON_CACHE_STATS_INTV`: 0
- `KDF_MON_CACHE_RESET_INTV`: RMF
- `KDF_MON_DASD_RESP_INTV`: 60
- `KDF_MON_SPACE_FRAG_INTV`: 4
- `KDF_MON_TAPE_INTV`: 900
- `KDF_MON_APPL_VOLS`: 300
- `KDF_SMF_NUM`: 0
- `KDF_SMF_INTV`: OFF
- `KDF_SMF_IO_CNT_THRSH`: 25
- `KDF_HIS_DASD`: Y
- `KDF_HIS_DSN`: Y
- `KDF_HIS_APP`: Y
References

• IBM Tivoli OMEGAMON XE for Storage on z/OS, Version 5.2.0, *Tuning Guide* - SC27-4380

• IBM Tivoli Monitoring OMEGAMON XE Performance Guidelines, Mike Goodman, Dec 2010

• A Storage Admin’s Guide to Restful Nights and Productive Days: OMEGAMON XE for Storage, Vickie Dault, SHARE Session 12008, 08/07/12
Related SHARE Sessions

14614: OMEGAMON XE for Storage V5.2 Enhancements for z/OS 2.1

- Speaker: Vickie Dault
- Tuesday, March 11, 2014: 3:00 PM-4:00 PM
Thank You!