
Real Cost of Ownership Lessons from Customer Engagements

Innes Read, IBM

Understanding TCO means understanding multiple dimensions of cost

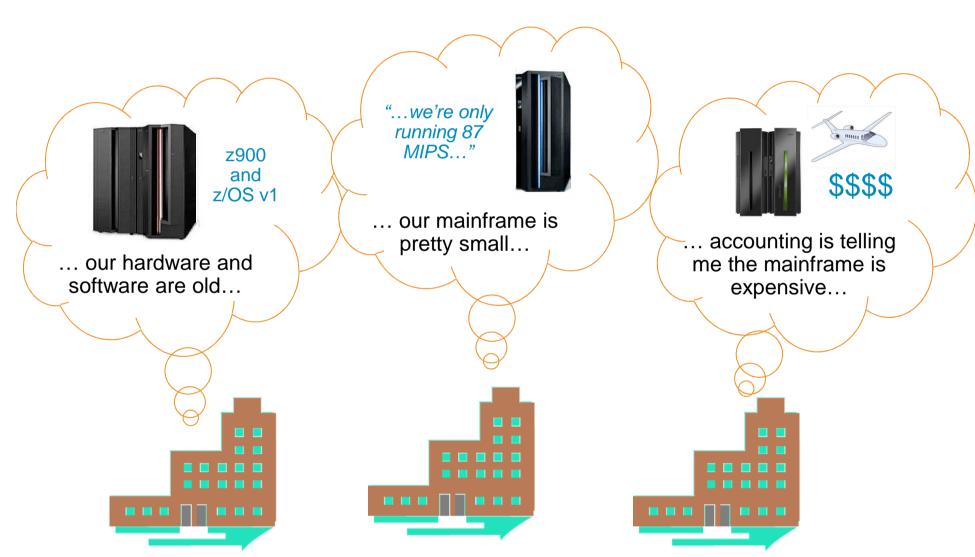
Most mainframe customers are very focused on cost and efficiency

- Most mainframe customers are exploiting the obvious
 - Specialty processors
 - Linux consolidation if Linux fits your organization
 - Capping to control 4-hr rolling average extremes
 - Spreading workload throughout the day where possible
 - Specific pricing metrics and LPARs for certain work
 - etc.
- We'll touch on some of them briefly just to make sure!
- But we'll also approach this top down, as well as bottom up

Bottoms up improvement examples...

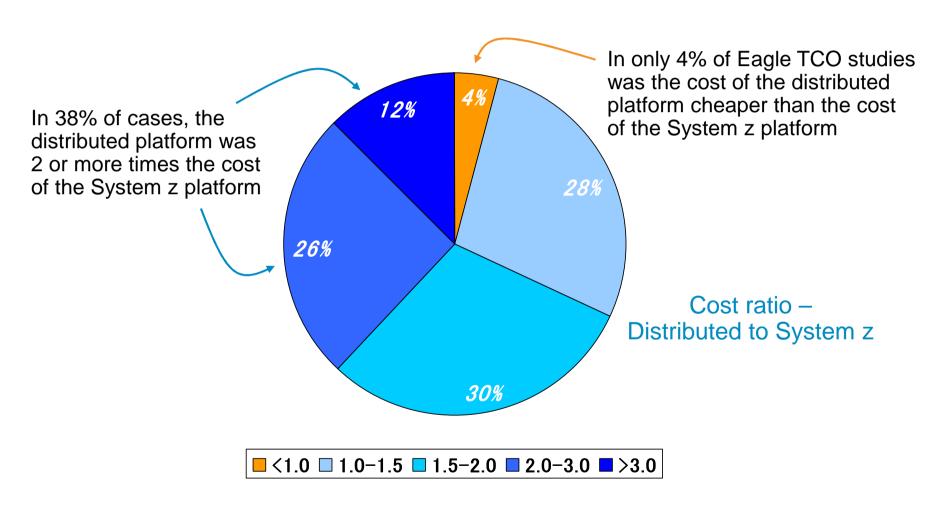
- Use the system better
 - Flatten monthly 4-hr average usage profile if sub-cap
 - Improve unit cost of components (eg. 3rd party tools)
 - Use spare MIPS to further amortize fixed costs
 - Collocate workloads for higher performance and efficiency
- Break workload up to exploit unique pricing metrics
 - Often less efficient computationally so this is a balance
 - Likely more useful when introducing new workloads
- Reduce "expensive" usage
 - This could be tuning the software stack that runs in the peak hours
 - Or it could be removing applications from the peak hour altogether
 - Assuming there is another time, or perhaps somewhere else, that can do the same work cheaper (or work is not actually required!)

...



... vs. top down opportunities

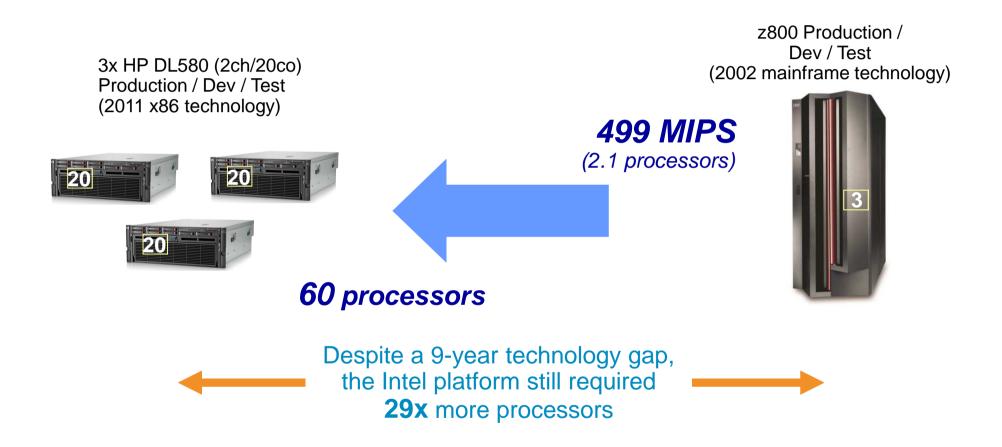
- The mainframe is a long term asset for most organizations
- Most of the cost of a mainframe is already in the base
 - ie. sunk or associated with major core business applications
- The incremental cost of growth on a mainframe is much lower than the average cost of existing applications
 - Incredible economy of scale in software, labor, hardware
 - IBM continues to invest in new technology to enable higher business value workloads
- The value of centralized computing continues to grow
 - Shared resources, common infrastructure aka cloud
 - Big data and analytics, potentially integrated in real-time with OLTP
 - Seamless integrated views of customers and the business
- Existing IT rules of thumb may be driving inefficient deployments from a technology and cost perspective



Some mainframe clients are tempted to move workloads off the mainframe, allegedly to save money

But Eagle team data shows that in 96% of mainframe rehosting cases, clients ultimately end up spending *more* for an offload

Why are rehosting costs underestimated?


From HP's "Mainframe Alternative Sizing" guide, published in 2012...

MIPS Level	z196 Models	Actual MIPS	z10 EC Models	z10 Actual MIPS	z10 BC Models	z10 BC Actual MIPS	z114 Models	z114 Actual MIPS	HP Cores Estimate	Total HP equivalent MIPS
1,000	2817- 701	1,202	2097- 701	889	2098- Z02	1250	2818- Z01	782	2	866
2,000	2817- 702	2,272	2097- 702	1,667	2098- Z03	1784	2818- Z03	2026	5	1,860
3,000	2817- 703	3,311	2097- 704	3,114	2098- Z05	2760	2818- Z05	3139	8	3,021

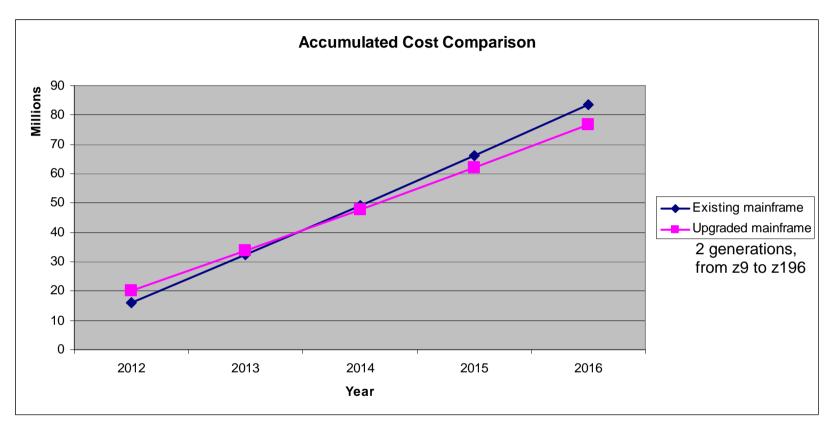
Can a 2-chip, quad-core x86-based Blade server really replace 3,000+ MIPS?

- Simple core comparisons are inherently inaccurate...
- Real world use cases suggest this number is off by a factor of 10-20 times

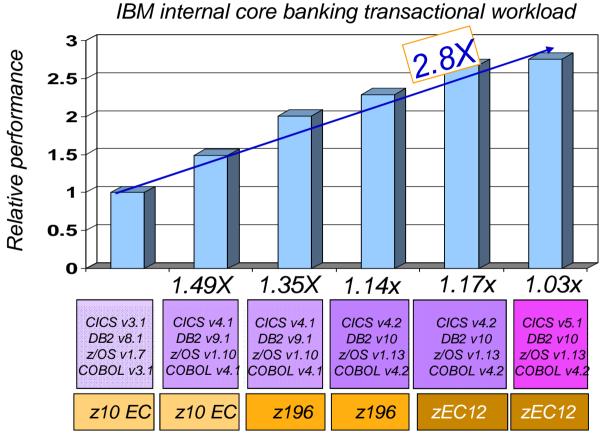
I have a whole pitch on the ugly truth around mainframe rehosting but in summary... it's ugly! A recent example that actually finished...

768 Performance Units per MIPS

Lessons learned can be grouped into three broad categories


- Always compare to an optimum System z environment
- Look for not-so-obvious distributed platform costs to avoid
- Consider additional platform differences that affect cost

All examples discussed are from actual Eagle Team customer studies

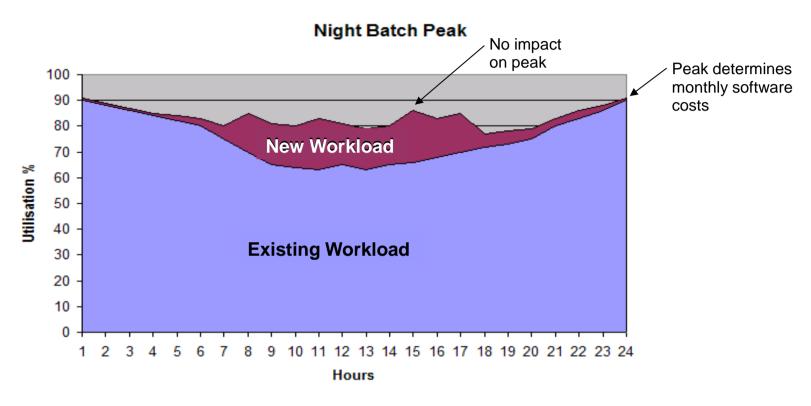

Keeping current with respect to hardware saves money

- Typical customer (European bank) hardware refresh scenario
 - 2M investment pays back >1M savings every year most cases positive in a 3 year period
 - Savings from technology dividends and specialty processor offload
- Comparing latest technology servers to old mainframes is unfair but often done

Currency reduces cost for software too (in fact, more than for hardware, just not aligned with a single "upgrade" event)

Customer examples:

(1) Large MEA bank


- Delayed upgrade from z/OS 1.6 because of cost concerns
- When they upgraded to z/OS 1.8
 - Reduced each LPAR's MIPS 5%
 - Monthly software cost savings paid for the upgrade almost immediately

(2) BMW Autos

- Upgraded to DB2 10
- Realized 38% pathlength reduction for their heavy insert workload
 - Other DB2 10 users saw 5-10% CPU reduction for traditional workloads

Take advantage of sub-capacity pricing to create free workloads

- Standard "overnight batch peak" profile drives monthly software costs
- Hardware and software are free for new workloads using the same middleware (e.g. DB2, CICS, IMS, WAS, etc.)
- Ensure you exploit any free workload opportunities, and conversely, avoid offloading free applications!

Save money by replacing ISV software with IBM software

A medium-sized European financial company...

Average Profile (BEFORE)					
Weighted MIP	8,800				
Cost Per MIPS	ner Year	Profile			
IBM Software	1,000.00	24.72%			
		0.00%			
ISV Software	1,540.00	38.07%			
TOTAL SW	2,540.00				

IBM software costs increased slightly...

Actuals (AFTER) Weighted MIPS 8,900 Cost Per MIPS per Year Profile **IBM OTC** 376.09 13.66% 1 023 77 **IBM MLC** 37.20% 136.09 **ISV Software** 4.94% **OTAL SW** 1.535.95

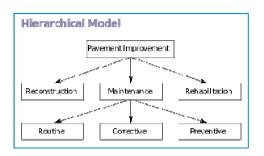
... but ISV software costs decreased dramatically!

Result: \$1,000 per MIPS per year savings!

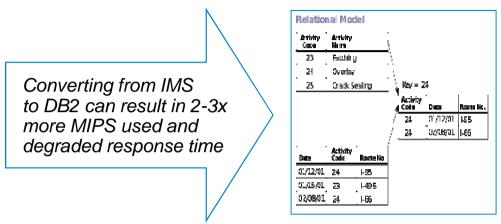
Replacing ISV software with IBM software is also more cost-effective than offloading

A major global bank considered two options...

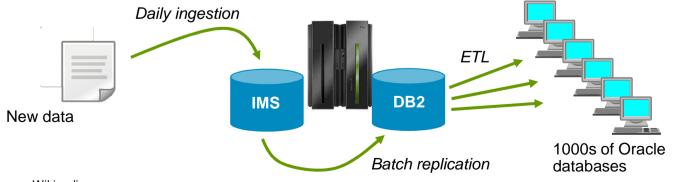
	Mainframe Offload	Move to IBM Tooling
Investment cost -> time period	\$54M -> 2 years	\$3M -> 1 year
Predicted annual cost savings	\$13M (from year 3)	\$6M (from year 2)
5 Year TCO, breakeven time	\$140M, year 7	\$101M, year 2
Assessed level of risk	Very high	Very low


The choice was obvious!

Large project, expensive, high risk, distant payback



Changing databases can have dramatic capacity impacts



IMS is the most widely used hierarchical data store

SQL databases, including DB2

A European financial company is attempting a conversion while continuing to run the business...

In 4 years, only 30% converted and €500M spent so far

Source: Wikipedia

Linux on System z consolidation usually has lower costs

Which platform provides the lowest TCA over 3 years?

3 Oracle RAC clusters4 server nodes per cluster

12 total HP DL580 servers (192 cores)

\$13.2M (3 yr. TCA)

Oracle DB workload

3 OLTP Database Workloads, each supporting 18K tps

Oracle Enterprise Edition
Oracle Real Application Cluster

3 Oracle RAC clusters 4 nodes per cluster Each node is a Linux guest zEC12 with 27 IFLs

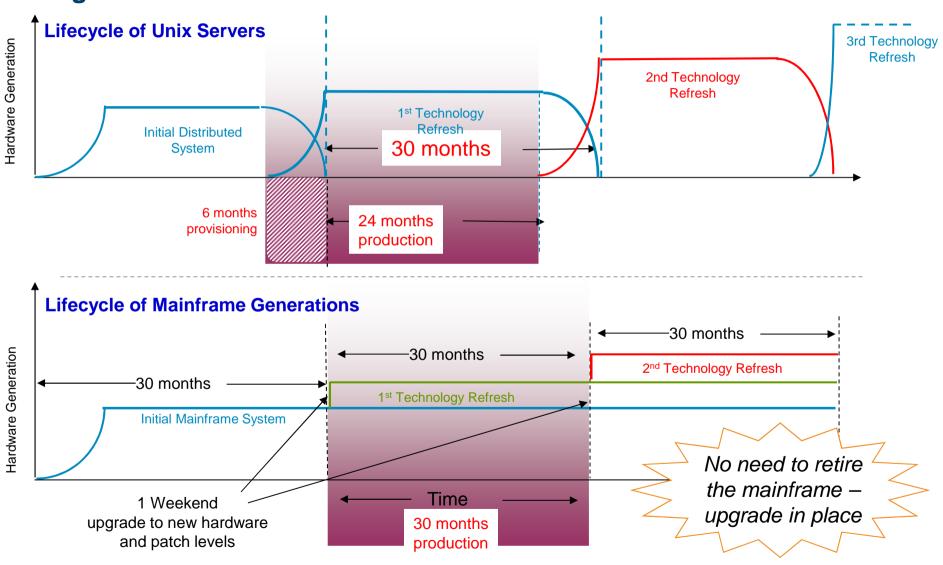
\$5.7M (3 yr. TCA)

Lessons learned can be grouped into three broad categories

- Always compare to an optimum System z environment
- Look for not-so-obvious distributed platform costs to avoid
- Consider additional platform differences that affect cost

All examples discussed are from actual Eagle Team customer studies

Distributed servers are typically replaced every 3-5 years

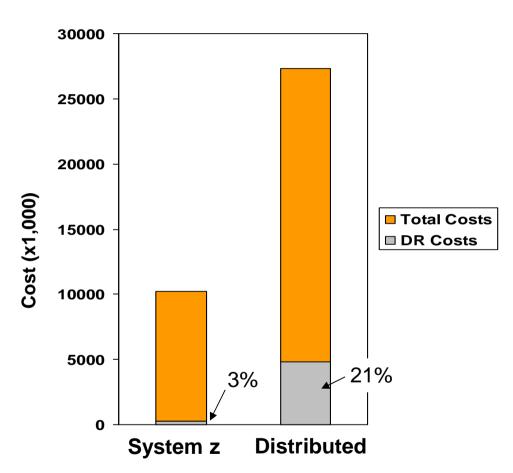


- Hardware refreshed in 2-7 year intervals, with average 3-5 years
- New, complete servers purchased each time
 - Typically additional growth capacity added (e.g., CPU, memory, I/O, etc.)
- Upgrade normally consists of purchase of additional (new) MIPS capacity
- Existing MIPS, memory, I/O facilities, specialty processors, etc. often carried over to new hardware

5 year TCO studies make sure to include 1 hardware refresh

Distributed server refresh leads to periods of reduced productivity along with extra costs

Disaster Recovery on System z costs much less than on distributed servers


A large European insurance company with mixed distributed and System z environment:

Disaster Recovery Cost as a percentage of Total Direct Costs:

System z – 3%

Distributed – 21%

Two mission-critical workloads on distributed servers had DR cost > 40% of total costs

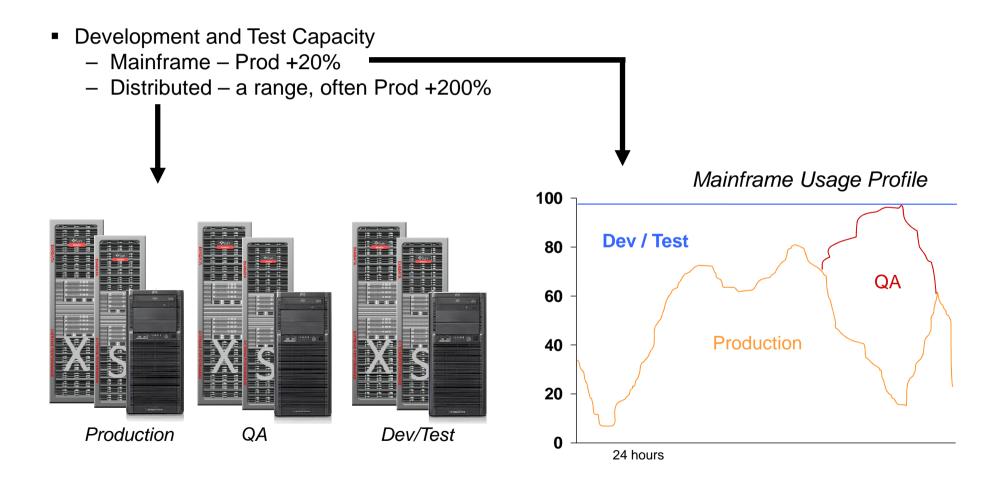
Disaster Recovery testing is also more expensive on distributed platforms

A major US hotel chain calculated how much it was spending for DR testing of its 200 distributed servers...

	Person-hours	Elapsed days	Labor Cost
Infrastructure Test (3 times)	1,144	7	\$89,539
Full Test (4 times, inc. Infra Test)	2,880	13	\$225,416
Annual Total – Distributed	14,952*	73	\$1,170,281
Estimated Total – Mainframe	2,051*	10	\$160,000

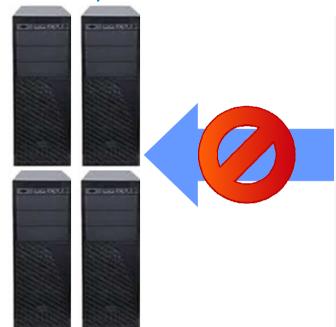
Customer estimates for Recovery Time Objective (RTO):

48-60 hrs 20 mins. Distributed


Mainframe

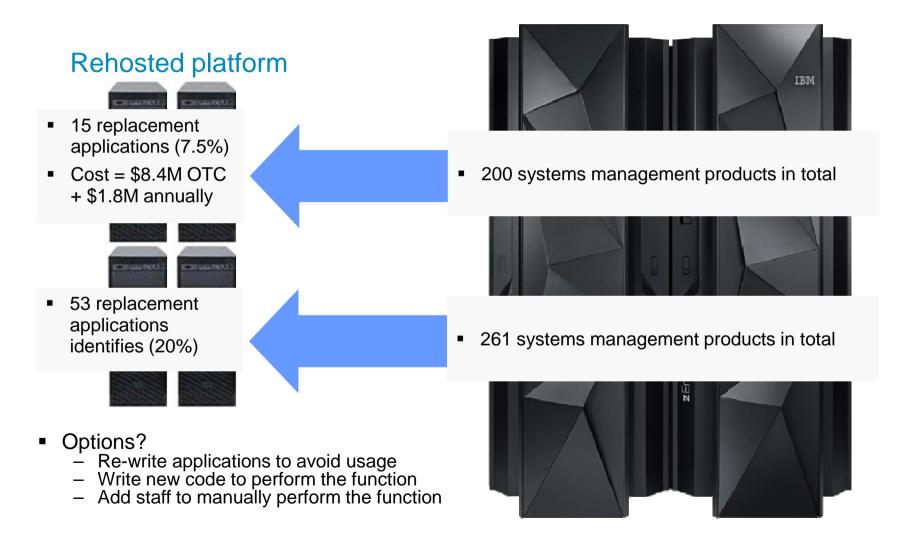
Mainframe both simplifies and improves DR testing!

^{*} Does not include DR planning and post-test debriefing


Non-production environments require fewer resources on the mainframe

Replacement technologies are not always available for many mainframe functions

Rehosted platform



- Hierarchical databases e.g., IMS DB and IMS DC
- Languages e.g., PL/I, ASM ...
- Batch environments including JCL with symbolic substitution, Batch pipes, Generation Data Group files for batch recovery
- System management and database tools
- 3270-style user interfaces, BMS maps, APIs...
- File structures e.g., VSAM (alternate indexes not supported), QSAM and Partitioned Data Sets
- Print facilities including PSF, AFP, Info Print Server, JES2/3 spool
- Ability to read old backup tapes

Eagle studies for two US retailers highlight missing systems management functionality

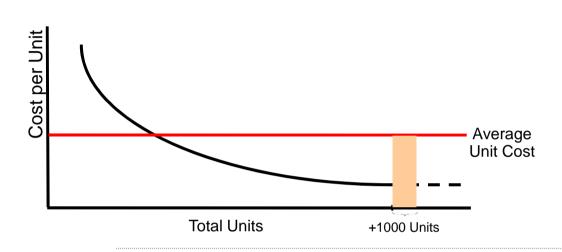
Lessons learned can be grouped into three broad categories

- Always compare to an optimum System z environment
- Look for not-so-obvious distributed platform costs to avoid
- Consider additional platform differences that affect cost

All examples discussed are from actual Eagle Team customer studies

Mainframes with Capacity on Demand can respond to unforeseen business events

- Transportation company experienced a natural disaster
 - Required them to re-run a whole weeks worth of business while continuing to operate normally
 - Able to turn on double capacity immediately to achieve this



- Customer decided to run a Super Bowl advertisement with very short notice
 - Informed IT department to expect a massive capacity spike
 - Temporarily turned on additional capacity
 - Stress tested their systems prior to the event despite short notice

The cost of adding incremental workloads to System z is less than linear

- Mainframes are priced to deliver substantial economies of scale as they grow
- Doubling of capacity results in as little as a 30% cost growth for software on z/OS
- Average cost is significantly more than incremental cost

Example: European bank compared costs of growing WAS applications on distributed and on mainframe

Incremental cost of adding one large WAS application to platform (5 yr. TCO):

€1.56M

(378K OTC, 192K Y1, 249K Y2-5)

Distributed

€1.29M

(657K OTC, 42K Y1, 147K Y2-5) Mainframe Future deployments will be targeted to the mainframe!

Distributed platforms don't often benefit from consolidation and therefore MUST run at low utilizations – even with virtualization!

- Large insurance company considering moving applications to virtualized x86
 - Believed this was a high utilization, low cost platform compared to other alternatives
 - Note costs are normally impacted largely by core count and software cost per core
- Used readily available utilization data to demonstrate extremely low x86 utilization
 - On average the provisioned systems were used at less than 15%, peak less than 20%
 - This despite many of the 75 hosts running up to 40 VMs each (unusually high)
- Further investigation shows the various practical constraints that lead to this effect
 - RAM shortages (normally no physical RAM overcommit allowed)
 - Limited virtual CPU overcommit (vCPU co-scheduling issues)
 - Enforced separation of production from non-production (isolation issues)
 - Limit to the number of VMs per host (to limit workload migration time requirement)
 - Presence of many idle workloads (wasting RAM and driving up the RAM/core ratio to impossible levels, thereby forcing idle cores)
- System z does not suffer from these issues and normally runs at high utilizations
 - Averages normally above 50%, often see 65% and above, unheard of on other platforms
 - Most System z machines run more workloads in a single LPAR than other platforms run on the whole physical server, even for large servers – and hence benefit from significant consolidation

Typical x86 hypervisor deployment rules of thumb

- As reported by a very large x86 hypervisor customer
 - 1. Host memory virtualization <95%
 - 2. Number of VMs per host <40:1
 - 3. vcpu to physical <4:1
 - 4. PROD and Non-PROD separated
- Note that none of these constraints are associated with CPU utilization!
- Basically the primary constraint is physical RAM once virtual machines are defined that represent 95% of physical, no more guests are allowed
- The second constraint is the number of VMs on the server this is likely due to the hypervisor only allowing a limited number of concurrent migrations, and they take a long time, so shutting down a physical box can require hours of manual work
- The third constraint suggests there may be vCore overheads and/or restrictions around coscheduling of virtual to physical cores
 - ie. A VM will not run unless all of its virtuals can be backed by physicals at once
- The final constraint is not surprising given what we've seen in workload management testing –
 non production workloads can easily consume CPU intended for production workloads despite
 configuring the x86 hypervisor to explicitly avoid that ("bleed" between supposedly isolated
 workloads)

Consolidation capability is a much larger sizing factor than hardware age or differences in technology

Most customers use benchmark results to differentiate servers on some level

- e.g. RPE's from Gartner/Ideas, SAPS for SAP, tpcc results, etc.
- These generally give a good estimate of change in technology over time
- They may also be able to differentiate between specific technologies for specific workloads

Unfortunately these benchmarks do NOT capture the most significant factor in IT today

- The ability to effectively consolidate many mixed workloads into a shared pool of resource
 - Shared in this context means all unused resource is available to any workload immediately
 - x86 hypervisors try to define shared across "clusters" of servers but that is not truly shared
 - Oracle RAC tries the same thing with their "shared" cache still not actually shared!

So let's examine the magnitude of the different factors for an example case

- To keep things simple we'll stay with "distributed" style workloads and compare x86 to large POWER
 - The result going to System z is dramatically more impressive, especially going to z/OS
- Benchmarks suggest that the same generation x86 cores and POWER cores are similar on a core-to-core basis (of course some benchmarks say higher, others lower)
 - So the technology factor is basically 1 (and we set age factor to 1 by using same age hardware)
- So what is a typical consolidation factor (assuming both platforms are virtualized)?

A typical real customer example for a single mid-sized application suggests a 3-4x factor

- So the ability to consolidate effectively is substantially more important in sizing than benchmarks suggest
- Also note benchmarks tend to be single-image, incorrectly implying less capacity per additional core

Most customer cost tracking (or chargeback) creates adverse selection issues which require unintuitive steps to correct

Simple thought experiment involving a single shared infrastructure system

- We'll use a real customer example of an x86 based "private cloud" (production only)
 - 600+ virtual servers, mostly running Windows, some Linux
- Calculating an average cost per VM for the whole system gives us a \$/VM/yr

Now divide the same infrastructure into two pools

- Large pool of lightest VMs taking about 50% of the actual resource consumed
- Small pool of heaviest VMs, also taking about 50% of the actual resource consumed
- Calculate an average cost per VM for these two new pools
 - The light VM pool is now much cheaper than the heavy pool on a per VM basis
 - This is because both pools use about the same resources, but have very different VM counts

Follow the logic to understand that this creates a stunning case of adverse selection

- Line of Business users are now incented to move workload from the heavy to the light pool
- Even though the total cost of the whole infrastructure is unchanged whatever happens!

What if you have a pool which is actually more efficient for most workloads?

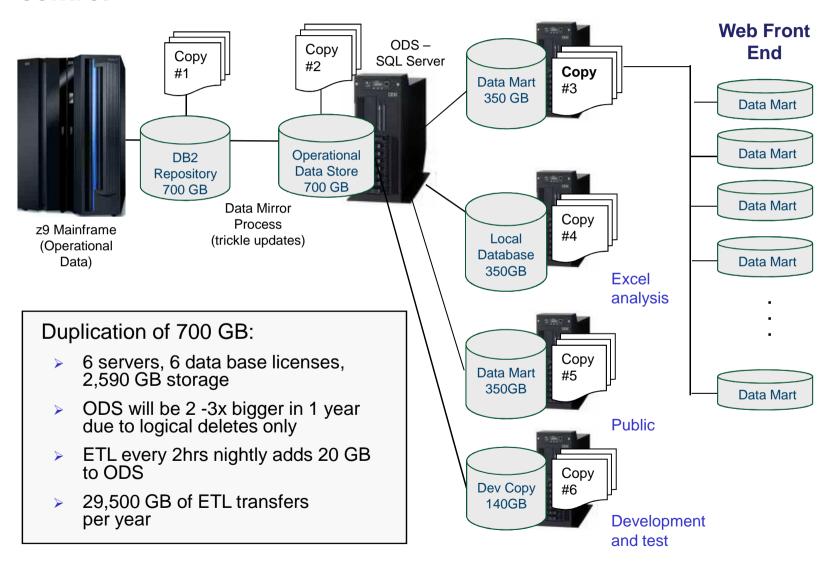
- It tends to run the heaviest workloads, and therefore shows up as more expensive sound familiar?
- The incentives and cost data tell the business they should move off to the cheaper pool(s)
- The real solution is actually the opposite to move more workload onto the more efficient pool
 - This is trivial to prove mathematically, I'll leave that as an exercise for the reader!

Operational Data

A common "Mainframe Quarantine" strategy can eventually result in

significant MIPS burn **Analytical** Data Analytical Data Analytical Data ETL **Analytical** Data **Analytical** Data

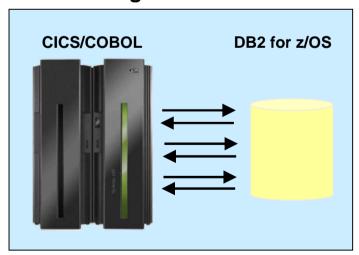
A large European bank:

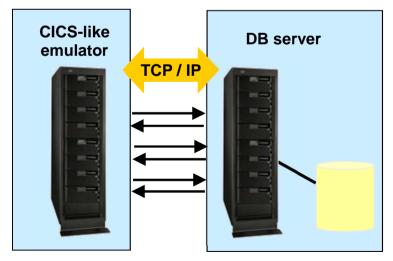

- 120 database images created from bulk data transfers
- 1,000 applications on 750 cores with 14,000 software titles
- ETL consuming 28% of total distributed cores and 16% of total MIPS

A large Asian bank:

- One mainframe devoted exclusively to bulk data transfers
- ETL consuming 8% of total distributed core and 18% of total MIPS

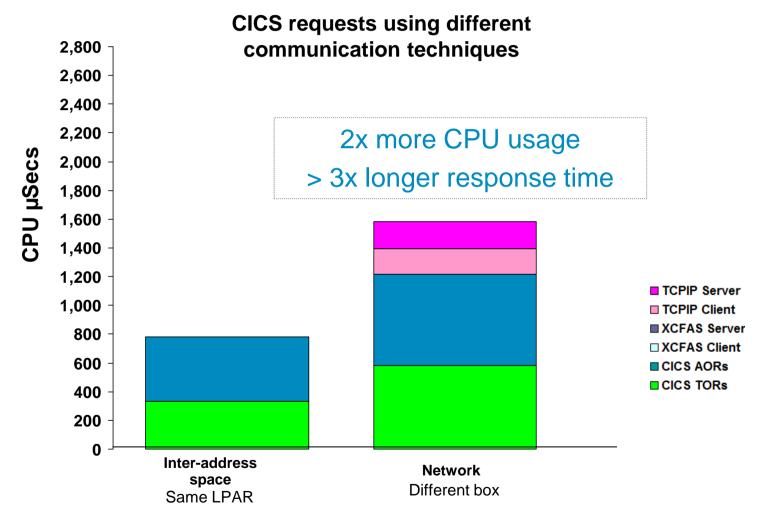
Data proliferation within a state government judicial system is out of control




Some applications originally designed with co-located data are not good offload candidates

- Large insurance company rehosted portion of application as POC
 - Found TCP/IP stack consumed considerable CPU resource, and introduced security compromises and network latency
- European bank tried rehosting CICS workload to Linux while maintaining VSAM and DB2 data on System z
 - Induced latency resulted in CICS applications no longer meeting its SLA

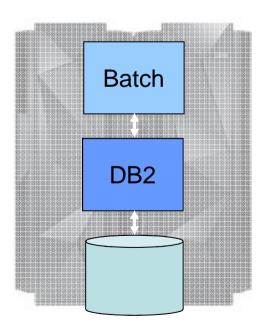
Single z/OS LPAR



Distributed architecture

Co-locating in the same address space is more efficient

Source: http://hurgsa.ibm.com/projects/t/tp_performance/public_html/OS390CICS/reports/CICS%20TS%20V4.2%20Performance.ppt and email with z/OS Communications Server development team



Moving Batch applications off the mainframe can have serious consequences

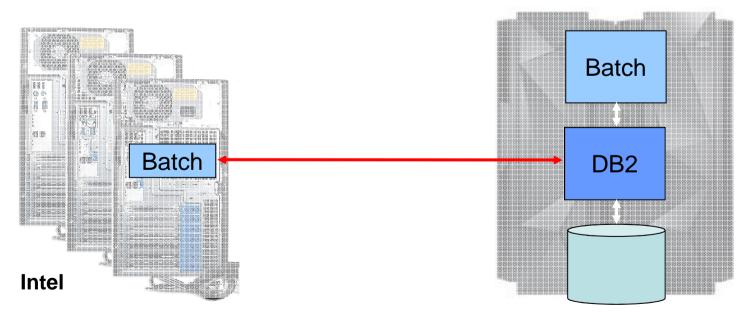
- Customer was facing large one-time charges for mainframe growth
- Rehosting vendor committed to a quick partial migration to avoid mainframe growth

Before:

- Mainframe CPU usage units
- 1 Units of elapsed job time

System z

Moving Batch applications off the mainframe can have serious consequences


- Additional DRDA processing doubled mainframe CPU usage even though the application was now running on Intel
- Additional network latency dramatically increased elapsed job time (10-25x)

After:

2 Mainframe CPU usage units

10-25

Units of elapsed job time

System z

38

Large systems with centralized management deliver better labor productivity

Large US Insurance Company

Production Servers
HP 9000 Superdome RP4440
HP Integrity RX6600

Dev/Test Servers
HP 9000 Superdome RP5470
HP Integrity RX6600

Claims per year 327,652

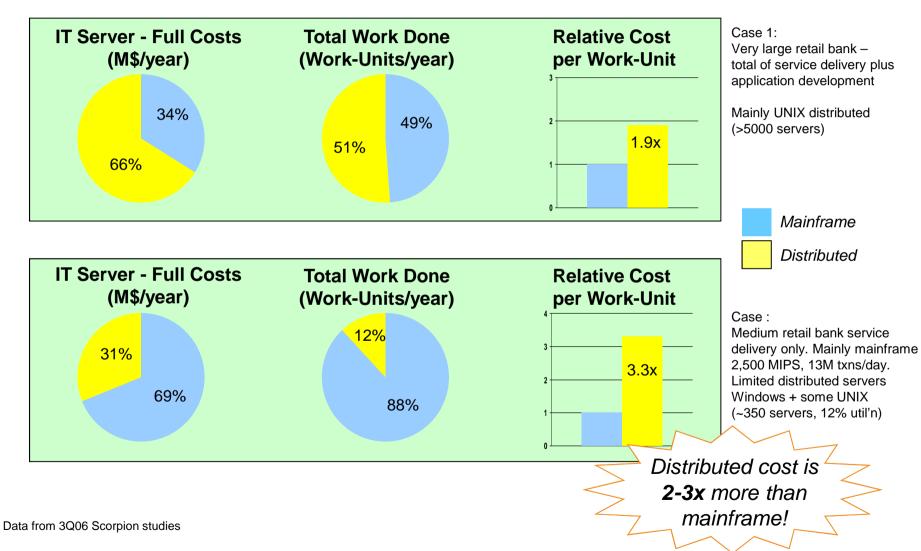
\$0.12 per claim

\$0.79 per claim

Mainframe support staff has 6.6x better productivity

IBM System z CICS/DB2

Total MIPS


11,302

MIPS used for commercial claims processing prod/dev/test **2,418**

Claims per year **4,056,000**


Cost per unit of work is much lower for the mainframe than for distributed platforms

The IBM Eagle team helps customers understand mainframe costs and value

- Worldwide team of senior technical IT staff
- Free of Charge Total Cost of Ownership (TCO) studies
 - Help customers evaluate the lowest cost option among alternative approaches
 - Includes a one day on-site visit and is specifically tailored to a customer's enterprise
- Studies cover POWER, PureSystems and Storage accounts in addition to System z
 - For both IBM customer and Business Partner customer accounts
- Over 300 customer studies since formation in 2007
- Contact: eagletco@us.ibm.com

