Develop an IMS Application using Java and
Open Database

Skill Level: Beginner to Intermediate

Poonam Chitale (pchitale@us.ibm.com)
Software Engineer, IBM®

Joshua Newell (newelljo@us.ibm.com)
Software Engineer, IBM®

IBM Corporation
March 2014

Abstract

This tutorial takes you through the steps of using IBM® IMS™ Enterprise Suite Explorer for Development
Version 3.1to write a Java™ application to access IMS databases through the IMS Universal DL/I driver and
the IMS Universal JDBC driver.

About this tutorial

This tutorial will take you through the steps of writing a Java application to access IMS databases using the
IMS Universal DL/I driver and the IMS Universal JDBC driver.

Customers who store business data in IMS databases want an easy way to access their data. They also want
to be able to develop applications for IMS using modern and standardized programming solutions. The IMS
Universal drivers, part of the IMS Version 12 Open Database solution, are software components that provide
Java applications with connectivity to IMS databases from z/OS® and from distributed environments through
TCP/IP.

The IMS Universal drivers are built on industry standards and open specifications. Java applications that use
the IMS Universal drivers can reside on the same logical partition (LPAR) or on a different LPAR from the IMS
subsystem. Two types of connectivity are supported by the IMS Universal drivers: local connectivity to IMS
databases on the same LPAR (type-2 connectivity) and distributed connectivity through TCP/IP (type-4
connectivity).

This tutorial will help to familiarize you with using two of the IMS Universal drivers:

¢ IMS Universal JDBC driver, which provides a stand-alone Java Database Connectivity (JDBC) 3.0
driver for making structured query language (SQL)-based database calls to IMS databases.

¢ IMS Universal DL/I driver, which provides a stand-alone Java application programming interface (API)
for writing granular queries to IMS databases using programming semantics similar to traditional IMS
DL/l calls

In this tutorial, you will run Java applications in a Windows® environment and connect to the IMS database
using type-4 connectivity mode.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
1of42

Distributed and local connectivity with the IMS Universal drivers

The IMS Universal drivers support distributed (type-4) and local (type-2) connectivity to IMS databases. The
connectivity type is specified in the driverType connection property. In this tutorial exercise, you will use type-4
connectivity.

e Type-4 connectivity: With type-4 connectivity, the IMS Universal drivers can run on any platform that
supports TCP/IP and a Java Virtual Machine (JVM), including z/OS. To access IMS databases using type-4
connectivity, the IMS Universal drivers first establish a TCP/IP-based socket connection to IMS Connect.
IMS Connect is responsible for routing the request to the IMS databases using the Open Database Manager
(ODBM), and sending the response back to the client application. The DRDA® protocol is used internally in
the implementation of the IMS Universal drivers. You do not need to know DRDA to use the IMS Universal

drivers.
Figure 1: Distributed (type-4) connectivity

Distributed environment z/0S environment

WebSphere
Application Server

Java EE application 4+
DRDA
protocol

IMS Universal over =
Stand-alone Drivers with TCP/IP g
JDBC application [type-4 <ol 8
connectivity §

Stand-alone DL/

application in Java —
Open Database

Manager
(ODBM)

IMS DB

e Type-2 connectivity: Local (or type-2) connectivity with the IMS Universal drivers is targeted for the z/OS
platform and runtime environments. You would use type-2 connectivity when connecting to IMS subsystems
in the same logical partition (LPAR). In this tutorial, you will not need type-2 connectivity.

Objectives

To understand and gain hands-on experience creating Java applications to access and manipulate enterprise
data residing on the IMS database.

Upon completion of this study, you will be able to perform these tasks:

e Create a Java application to access IMS data by issuing SQL calls to the IMS database through the
IMS Universal JDBC driver

e Create a Java application to access IMS data by issuing IMS DL/l calls to the IMS database through
the IMS Universal DL/I driver

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
2 of 42

e Deploy and run a Java application in a Windows environment

System requirements for the tutorial:

Software installed on Windows
e IMS Enterprise Suite Explorer for Development Version 3.1
e IMS Universal drivers libraries
o imsudb.jar
e Sample Java project
o IMSDBJavaApplicationLab.zip

System software installed on IBM z/OS
e IMS Version 13 configured with Open Database Manager (ODBM)
e IMS Connect Version 13

Checklist for first-time implementation

You may find it helpful have the following information and resources ready before proceeding with your first
implementation of the Java applications using the IMS Universal drivers. The information and resources to
run this tutorial is provided in the checklist below.

Table 1. Implementation checklist

Information or resource Your environment For this tutorial

IMS Connect host name (or IP Obtain this information Host name: ZSERVEROS.DEMOS.IBM.COM
address) and DRDA port from IMS system

number programmers. DRDA port number: 7001

IMS data store name (IMS ID) Obtain this information Datastore name: IMSD
from IMS system
programmers.

z/OS user ID and password Obtain this information Userid: EM4ZIMS
from IMS system

programmers.
MetadataURL to the Java Obtain this information MetadataURL : (DatabaseName)

metadata file generated by the from IMS application class://com.ibm.ims.db.databaseviews.DFSSAMO09Dat
IMS Explorer programmers. abaseView

Workspace directory and A naming standard is Workspace directory:

project name to be used when recommended. C:\share\imsjavalab\workspace

generating artifacts

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
3 of 42

Overview of development tasks

To complete this tutorial, you will perform the following tasks:

1 Task 1 - Install the tutorial sample project
1.1 Switch to the Java perspective
1.2 Import the IMSDBJavaApplicationLab sample project
1.3 Verify that the IMS Universal drivers library is located on the build path
2 Task 2 - Access IMS data with the IMS Universal JDBC driver
2.1 Connect to the IMS database through the IMS Universal JDBC driver
2.1.1 Open the JDBCApiAssignment.java sample application
2.1.2 Set the connection properties
2.2 Issue SQL calls to access the IMS database
2.2.1 Exercise 1 - Retrieve all fields of a segment
2.2.2 Exercise 2 - Retrieve fields of a segment based on a conditional statement
2.2.3 Exercise 3 - Order SQL query output by field values
2.2.4 Exercise 4 - Retrieve a specific field of a segment
2.2.5 Exercise 5 — Retrieve multiple fields from multiple segments
3 Task 3 - Access IMS data with the IMS Universal DL/I driver
3.1 Connect to the IMS database through the IMS Universal DL/I driver
3.1.1 Open the DLIAPIAssigment.java sample application
3.1.2 Set the connection properties

3.2 Issue DL/I calls to access the IMS database
The following exercises in this section will show you how to issue DL/I calls in your Java application to
retrieve data from the IMS database using the IMS Universal DL/I driver.
3.2.1 Exercise 1 - Retrieve data in an IMS database
3.2.2 Exercise 2: Retrieve batch data in an IMS database
3.2.3 Exercise 3: Create SSALists with multiple segments, specify qualifications, and
mark specific fields for retrieval
3.2.4 Exercise 4: Utilize command codes for DL/I

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
4 of 42

1 Task 1 - Install the tutorial sample project

In this task, you will import the tutorial sample project to IMS Enterprise Suite Explorer for Development, and
verify that the Java library with the code to run the IMS Universal DL/I and JDBC drivers is installed.

1.1 Switch to the Java perspective
Switch from the default z/OS Projects perspective to the Java perspective.

1. IMS Enterprise Suite Explorer for Development is started and you are using the
C:\share\imsjavalab\workspaceas your workspace directory.

Important:
For this tutorial, you will use C:\share\imsjavalab\workspace as your workspace directory.

The Workspace

In Explorer, a workspace is a directory that stores files for your projects. You can select
your own directory or take the default directory. Artifacts created by Explorer will be
stored in this directory.

2. From the menu bar, select Window > Open Perspective > Other.

Figure 2: Opening a perspective in IMS Enterprise Suite Explorer for Development

File Edit Mavigate Search Project Run Help

i : . . . | MNew Window

- B0 QR

N - 0 o

) 2/05 Projects 12 = Open Perspective 2 Q} CICS SM
Show View 3 ﬁ"‘ Debug
Customize Perspective... @ Enterprise Service Tools
Save Perspective As... £7, Fault Analyzer Perspective
Reset Perspective... :

P) ﬁ: £/05 Projects

Close Perspective
M=avinatinm 3

3. Scroll down and select Java from the Open Perspective dialog box.

Figure 3: Choosing the Java perspective

& Open Perspective

CIc5 5M

%C\!S Repository Exploring
[__i;;DaEbase Debug

[__f] Database Development
ﬁDEbug

EEnterprise Service Tools
£% Fault Analyzer Perspective

ST

w2 Java Browsing

4. Press OK to switch to the Java perspective.
5. To verify that you are in Java perspective, make sure that the Java button appears in
the upper right corner of Explorer, as shown in the figure below.
Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
50f42

Figure 4: Verifying that the Java perspective is opened.

S|l=Ije3

i ﬁmy Java |

ﬁ: z{05 Projects

ﬂ(ﬁf Outline &3 = Eq

What is a perspective?

A perspective defines the initial set and layout of views in the Workbench window. Within the window,
each perspective shares the same set of editors. Each perspective provides a set of functionality
aimed at accomplishing a specific type of task or works with specific types of resources. For example,
the Java perspective combines views that you would commonly use while editing Java source files,
while the Debug perspective contains the views that you would use while debugging Java programs.

1.2 Import the IMSDBJavaApplicationLab sample project
Import the files for the IMSDBJlavaApplicationLab sample project into the Explorer workspace.

The IMSDBJavaApplicationLab sample project

The sample project includes the Java library that contains the IMS Universal drivers
required for this tutorial. The sample also includes sample Java application code that
you will customize to connect to an IMS database and issue database access calls.

1. From the menu bar, click File > Import to open the Import dialog box.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
6 of 42

Figure 5: Launching the Import dialog box
Edit Mavigate Search Project Run Wine
Alt+shift+d P 4

New
Open File...
u
Close Ctrl+w
Cloze Al Ctrl+5hift-+w

Conwert Line Delimiters To

Switch Workspace
Restart

2% Export...

2. From the Import dialog box, select General > Existing Projects into Workspace and

click Next.

Projects into Workspace wizard

the Import Existing

Figure 6: Launching

& Import

Select \
Create new projects from an archive file or directory. I E - 5 i

Select an import source:

|type filter text

[

=== General
[E Archive File
Existing Projects into Workspace
[Existing RAD &.x Data Definition Project
[:L File System
=L preferences
[= Application Deployment Manager
[=Y

3. From the Import Projects page, select Select archive and click Browse.
4. Browse to the directory C:\IMS Java Lab choose IMSDBJavaApplicationLab.zip and

click Open.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
7 of 42

Figure 7: Importing a project from an archive file

Olmport « W - - - =l=] &
Import Projects B
Select a directory to search for existing Eclipse projects. -
() Select root directory: Browse...

Browse...

Select All
Deselect All

@) Select archive file: CAIMS Java Lab\IMSDBJavaApplicationLab.zip

Projects:

IMSDBJavaApplicationLab (IMSDBJavaApplicationLab)

[V] Copy projects into workspace
Working sets
Add project to working sets

Working sets: 2 Select...

@ T)|

5. Make sure that the checkbox for IMSDBJavaKEpIi;:ationLab is éelected and click
Finish.

Next > 1 [Finish Cancel]

The sample project IMSDBJavaApplicationLab should appear in the Package Explorer view.

Figure 8: Package Explorer view after successfully importing the sample project

BMS sk Launcher - IMS Enterprise Suite Explorer
File Edit Navigate Search Project Data Run IMS Expiorer
i £ =1 R = =0 tar v & Act

f 5 > - % > - | =
= Project Expl... 2| = O ||E IMS Explorer Task Launcher &2 L

B&|Z T
« g2 IMSDBJavaApplication
- &8 src
| - =i JRE System Library [
- (@ imsudb.jar
> s imsutm.jar Task Overview
~ == =
¢ s Vaultjar @ Getting Started Task
':/ Get started with IMS ¢
< | i | > populate the IMS catz
IWpar. =|@mMm.. [= O §3, DBD and PSB Tasks
Bk EX(E)Spud ~ 17 Work with your DBD :
= Configuration Repositc =" SQL and pureQuery
- &= Database Connections = Work with SQL and pt
, ﬂ_:? Unit Test Tasks
| Define IMS transactio
< | 1

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
8 of 42

1.3 Verify that the IMS Universal drivers library is located on the build
path

Verify that the Java archive file imsudb.jar is correctly located in the build path of this project.

1. Right click on the project in the Package Explorer view and select Build Path >
Configure Build Path

Figure 9: Opening the Java Build Path properties page
File Edit Source Refactor Mavigate Search Project Run ClearCase Window Help

i B[g [LE

1 L= 1 =t = = o
D New r
— Go Into
[# padage E: /05 Projects &2
Open in Mew Window
Open Type Hierarchy F4
] pp—
=] {3.7 Show In Alt+shift+ #
= /
: (
e ey i »me to z/0S Pr
G2 s 5= Copy Qualified Mame:
[Z Paste Ctrl+v
¥ Delete Delete
Build Path 4 % Link Source... I
Source Alt+shift+8 ¥ &% New Source Folder...
Refactor Alt+Shift+T # £
(2 Use as Source Folder
S
g Import... o Add External Archives. .. i
A
iy Export. .. =, Add Libraries. .. r
L]
o Refresh Fs & Configure Build Path...
Close Project r [T T E RN I T}

2. From the Java Build Path page, click on the Libraries tab. Verify that the file
imsudb.jar - IMSDBJavaApplicationLab is present.

The imsudb.jar library
The imsudb.jar file contains the Java classes, interfaces, and metadata required to use
the IMS Universal DL/I driver and the IMS Universal JDBC driver.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
9of42

Figure 10: Verifying that the imsudb.jar library is in the build path

© Properties for IMSDEJavaApplicationlLab

type fiter bext | Java Build Path N
BemIn:Pam | (8 souree | 13 Projects | B Lbraries | &4 Order and Expert
Bulders 14Rs and dass folders on the buld path:
ﬁ::ﬂ:: LRl rrsuch.jor - IMSOE JevaAppicationd s [add 1aRs...]
Java Code Shyle £ e iemsutm. jar - IMS0EJavasppicationlab
H Java Compiar # W JRE System Library [ik] [Add Externall JRts. .,]
+ Java Editer [PP]
Javades Location
Project Referances [eTT—]
s:““‘" o [AddClassFoider... |
* e oo [Add External Class Foider... |
Web Debug
(Edit... |
[Remove]
[migrate marFie... |
” Lox [coxm |

3. Click OK to save your changes and exit the Java Build Path page.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
10 of 42

2 Task 2 - Access IMS data with the IMS Universal JDBC driver

In this task, you will write a Java application to connect to an IMS database and manipulate data using
structured query language (SQL) with the IMS Universal JDBC driver.

What is IDBC?

Java Database Connectivity (JDBC) is an application programming interface (API) that
Java applications use to access relational databases or tabular data sources. The JDBC
API is the industry standard for database-independent connectivity between the Java
programming language and any database that has implemented the JDBC interface.
The client uses the interface to query and update data in a database.

IMS support for JDBC lets you write Java applications that can issue dynamic SQL calls
to access IMS data and process the result set that is returned in tabular format. The
IMS Universal JDBC driver is designed to support a subset of the SQL syntax with
functionality that is limited to what the IMS database management system can process
natively. Its DBMS-centric design allows the IMS Universal JDBC driver to fully leverage
the high performance capabilities of IMS. The IMS Universal JDBC driver also provides
aggregate function support, and ORDER BY and GROUP BY support.

Basic programming model for a Java application using the IMS Universal JDBC
driver

The IMS Universal JDBC driver supports the standard programming model for using
JDBC drivers. For more information about the JDBC programming model, see the JDBC
Basics tutorial by SUN.

2.1 Connect to the IMS database through the IMS Universal JDBC driver

Before you can execute SQL calls from your IMS Universal JDBC driver application, you must connect to an
IMS database.

2.1.1 Open the JDBCApiAssignment.java sample application

The JDBCApiAssignment.java sample application
This sample application contains skeleton Java code for connecting to the IMS database
and issuing SQL data access calls using the IMS Universal JDBC driver.

1. In the Package Explorer view, expand IMSDBJavaApplicationLab > src >
com.ibm.ims.db.exercise

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
11 of 42

Figure 11: Navigating to the JDBCApiAssignment.java sample application

& Java - IBM Rational Developer for System z
File Edit Source Refactor Mavigate Search Project Run Window He

il - 0-Q- 4 EFE- =
i Package Explor i Te Hierarchy = O
Bg "

= =% IMSDBJavaApplicationLab
= gre

=8 com.ibm.ims.db.databaseviews
[J] DFSsAMDSDatabaseView.java
com.ibm.ims.db.exercise
m DLIApiAssignment.java
m InputMessage.java
m JBPApplication.java
il 0B Apitssignment. java
[J] MPApplication.java

=

R R = R = s

2. From the Package Explorer view, double click on JDBCApiAssignment.java to open the
sample application in the Java editor.

Figure 11: The opened JDBCApiAssignment.java sample application in the Java editor
[J] JDBCApiAssignment.java =3

package com.ibm.ims.db.exercise;
Fimport java.sgl.Connection:[]
pukblic class JDBCApifAssignment {

= poblic =s=tatic void main((String[] args) {
JDECApifA=ssignment j = new JDECApifAssignment ()7

Maximizing a view is the ability to increase a view to the maximum possible size on the screen. This
can be accomplished by double-clicking on the view tab. To go back to the original view size, double-
click on the view tab again.

2.1.2 Set the connection properties

The Java editor

The Java editor provides specialized features for editing Java code. The editor includes
support for syntax highlighting, content/code assist, code formatting, import
assistance, and integrated debugging features.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.

12 of 42

Figure 13: Java main method in the JDBCApiAssignment.java sample application
@ IMS Explorer Task Launcher ‘@ JDBCApiAssignmentjava &
‘ 1 package com.ibm.ims.db.exercise;

2
3® import java.sqgl.Connection;[]
10
11 public class JDBCApiAssignment {
| 12
| IEE Vi
L4 * @param args
15 */
16= public static void main(String[] args) {
17 JDBCApiAssignment j = new JIDBCApiAssignment();
18
lei19 //TODO Add a SQL statement between the quotes
: 20 String query = "";
‘:'si.ézzl
|sa22 String result = j.sqlMethod(query,REPLACE THIS);
223

1. In the Java editor, scroll down the application source code until you find the Java main
method shown in the screenshot above.

Moving your cursor to a specific line number

Explorer provides a shortcut to move your cursor directly to a specific line in an editor. To go to a
specific line, press Ctrl + L from the editor. Enter the line number and press OK.

Displaying line numbers in the editor

Line numbers can be displayed directly in the editor by going to Windows > Preferences. In the
Preferences Dialog Menu navigate to General > Editors > Text Editors and check the box next to
Show line numbers.

Figure 124: Configuring the editor to display line numbers

G Preferences

|t§.-'|:ue filter text | Text Editors = hd

[=)- General
Appearance Undo history size:

Capabilities Displayed tab width:

|

Compare Patch []insert spaces for tabs
Content Types

- Editors Highlight current line
File Associations [] shaow print margin
Structured Text Edi
Text Editors
Error Reporting Shaow line numbers

2. Inline 22 of the code, delete the constant REPLACE_THIS and replace it with
IMSConnectionSpec.DRIVER_TYPE_4 to set the driver connectivity type.

Java code assist

Explorer provides code assist for Java applications. By pressing CTRL + space, the Java editor will
display a list of possible commands variables for that line. Try specifying the driver type by typing IMS
and pressing CTRL + space and scrolling to the constant IMSConnectionSpec. Alternatively, when

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
13 of 42

you type a period (.) after a class, the Java code assist displays a menu of methods and variables
that the class can invoke. Try it after IMSConnectionSpec and select DRIVER TYPE 4.

3. Inline 32 of the code, delete the string "your.host.name.com" and replace it with
"zserveros.demos.ibm.com" to set the host.

Figure 15: Setting the connection properties
2 IMS Explorer Task Launcher] JDBCApiAssignmentjava 2

27< public String sqlMethod(String sqlQuery, int driverType){
28 StringBuffer result = new StringBuffer();
// TODO - assign the host name or IP address of the IMS Connect you are connecting to.
String host = "your.host.name.com";
String datastoreName = ""; // The IMS alias name defined in ODBM
String username = "yourID"; // User Name

String password = Vault.getPassword(username);; // Password
int drdaPort = 7001; // the ICON DRDA port number
IMSDataSource ds = new IMSDataSource();
ds.setMetadataURL(REPLACE THIS);

39 ds.setDatastoreName(datastoreName);
40 ds.setPortNumber(drdaPort);

41 ds.setDatastoreServer(host);
42 ds.setUser(username);

43 ds.setPassword(password);

44 ds.setDriverType(driverType);

The datastoreServer property

The host variable in the sample application is used to set the datastoreServer property. This
connection property contains the name or IP address of the data store server (IMS Connect). You
can provide either the host name (for example, dev123.svl.ibm.com) or the IP address (for example,
192.166.0.2). In this tutorial, the target IMS Connect has already been pre-configured for you. Use
zserveros.demos.ibm.com as the dataStoreServer.

4. In line 33 of the code, delete the string "" and replace it with "IMSD" to set the
datastoreName.

The datastoreName property

This connection property contains the name of the IMS data store to access. When using type-4
connectivity, the datastoreName property must match either the name of the data store defined to
Open Database Manager (ODBM) or be blank. In this tutorial, the target IMS data store has already
been created for you and pre-populated with data. Use IMSD as the dataStoreName.

5. In line 34 of the code, delete the string "yourID" and replace it with "EM4ZIMS" to set
the username.

The user and password properties

The user and password connection properties are the user name and password used for the
connection to IMS Connect. This information can typically be obtained from your RACF®
administrator.

6. Inline 36, verify that 7001 is set as the IMS Connect DRDA port number.

The portNumber property

The drdaPort variable in the sample application is used to set the portNumber property. This
connection property is the TCP/IP server port number to be used to communicate with IMS Connect.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.

14 of 42

The portNumber property is not required when using type-2 connectivity. In this tutorial, the target
IMS Connect has already been pre-configured for you. Use 7001 as the drdaPort.

7. In line 38 of the code, delete the constant REPLACE_THIS and replace it with the string
"class://com.ibm.ims.db.databaseviews.DFSSAMO09DatabaseView" to set the
metadataURL.

The metadataURL property

This connection property is the location of the database metadata representing the target IMS
database. The metadataURL property is the fully qualified name of the Java metadata class
generated by the IMS Enterprise Suite DLIModel utility plug-in, based on the PSB and DBD source
files of the target IMS database. The Java metadata class must be generated before coding a Java
application to access the target IMS database using the IMS Universal drivers. The format of the
metadataURL is: “class://packageName.className”

In this tutorial, the Java metadata class has already been generated for you. Use
class:\\com.ibm.ims.db.databaseviews.DFSSAM09DatabaseView as the metadataURL.

Figure 13: Setting the metadataURL connection property
&) JDBCApiAssignmentjava &

D76 public String sqlMethod(String sqlQuery, int driverType){
28 StringBuffer result = new StringBuffer();
29
130 // TODO - assign the host name or IP address of the IMS Connect you are connecting to.
32 String host = "your.host.name.com";
33 String datastoreName = ""; // The IMS alias name defined in ODBM
34 String username = "yourID"; // User Name
35 String password = Vault.getPassword(username);; // Password
36 int drdaPort = 7001; // the ICON DRDA port number
37 IMSDataSource ds = new IMSDataSource();
838 ds.setMetadataURL(REPLACE THIS);
39 ds.setDatastoreName(datastoreName);
40 ds.setPortNumber(drdaPort);
41 ds.setDatastoreServer(host);
42 ds.setUser(username);
43 ds.setPassword(password);
A4 ds.setDriverType(driverType);
a5

8. Press Ctrl + S to save your code changes.

After completing this step, your Java application should be ready to connect using the Universal
JDBC driver. Next, you will need to modify the Java application code to issue SQL calls to IMS.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
15 0f 42

The Parts Order sample database

This tutorial uses the Parts Order database that is provided in the IMS Installation Verification
Program (IVP). You can refer to this diagram when working on the exercises in this tutorial.

The diagram below shows the hierarchical structure of the segments in the Parts Order database.
Each rectangle represents a database segment. PARTROOT is the root segment of this database,
and STANINFO and STOKSTAT are its child segments. STOKSTAT has CYCCOUNT and
BACKORDR as its child segments. Each segment contains one or more fields that contain data. For

example, PARTKEY is a field in the PARTROOT segment.

Figure 14: Segments of the Parts Order database (reference only)

Total length:

50

-9 PARTKEY
&2 PART
2 PARTDESK

el
el
e

2

~ Total length: 85 Total length: 160
f§STANKEY [e] {g STOCKEY &
2 PROCCODE [e] (3 AREA &,
f2INVCODE [e] g DEPT _@
2 PLANNUM [€] L2 PRO) lfl
2 MAKEDEPT [e] a0 &
2 MAKECOST [e] 03 UNITPRICE &,
2 COMMCODE [e] &g UNIT _@
= 2 STKCTDATE el
2 CURRENTREQMTS [€]
2 UNPLREQMTS (]
-2 ONORDER (€]
2 INSTOCK (€]
2 PLANDISB [e]
-2 UNPLDISB (€]
A
Total length: 25
5 CYCLKEY (€]
2 PHYSICALCOUNT [€]
fZTOTALSTOCK [€]
-~

Total length: 75

-9 BACKKEY [e]
-2 WORKORDER [€]

2 ORDERQTY [€]

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.

16 of 42

2.2 Issue SQL calls to access the IMS database

The following exercises in this section will show you how to issue SQL calls in your Java
application to retrieve data from the IMS database using the IMS Universal JDBC driver.

How do IMS database elements map to relational database elements?

The IMS Universal JDBC driver performs the necessary translation between IMS and relational
database elements. The table below summarizes the database element mappings.

Hierarchical database elements in IMS Equivalent relational database elements
Segment name Table name
Segment instance Table row
Segment field name Column name
Segment unique key Table primary key
Virtual foreign key field Table foreign key
2.2.1 Exercise 1 - Retrieve all fields of a segment

In this exercise, you will retrieve all the fields of a segment by issuing a SELECT statement
using the IMS Universal JDBC driver.

Using the SELECT keyword

Use the SELECT statement to retrieve data from one or more tables. The result is returned in a
tabular result set. The syntax for a simple SELECT query is:

SELECT column_name(s) FROM table_name
An asterisk * can be used in place of column_name to represent all columns of that table. Because

IMS is a hierarchical database, column_name maps to field_name and table_name maps to
segment_name.

When using the SELECT statement with the IMS Universal JDBC driver:

e If you are selecting from multiple tables and the same column name exists in one or more of
these tables, you must table-qualify the column or an ambiguity error will occur.

e The FROM clause must list all the tables you are selecting data from. The tables listed in the
FROM clause must be in the same hierarchic path in the IMS database.

e InJava applications using the IMS JDBC drivers, connections are made to PSBs. Because
there are multiple database PCBs in a PSB, queries must specify which PCB in a PSB to
use. To specify which PCB to use, always qualify segments that are referenced in the FROM
clause of an SQL statement by prefixing the segment name with the PCB name. You can
omit the PCB name only if the PSB contains only one PCB.

1. Move your cursor to line 20 of the sample application. You will modify this statement to
issue different SQL queries in this task.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
17 of 42

Figurel8: Modify the query string to issue different SQL queries in the sample application
[J| IDBCApiAssignment.java 2

y Add a 5QL statement between
String guery = "";

the guotes

String result = j.=sglMethod (gquery, IMSConnectio

2. Inline 20, construct a SQL query to retrieve all of the fields of the
PARTSPCB1.PARTROOT segment. Note that the segment name must start with the
PCB qualifier.

e Set the query string to "SELECT * FROM PARTSPCB1.PARTROOT"

3. Press Ctrl + S to save your changes to the files.

4. Right click on the Java editor and select Run As > Java Application

Figurel9: Run As Java Application

— Try running the application
} catch (DLIException e) {

< Undo Typing Cirl+Z
H
= private Open Dedaration F3 atchRetrieve (F5B psb) {
try Open Type Hierarchy F4
Open Call Hierarchy — Ctrl+Alt+H FCE PRRTSPCBL
Show in Breadcrumb Alt+Shift+8 ("PRRTSPCBL™) ;
Quick Qutline Cirl+0 1ified S5 T
unqualifi 55h List contai
Quick Type Hierarchy Ctrl+T qua = = = 2
Shaw In Alt+shift+w ¥
1 .get5SAList ("BARTROOT™) ;
Copy Qualified Name rieve call
Paste Ctrl+v issue a batchRetrieve
hSet or a set of IORAREA's.
Quick Fixx Cirl+1 presents data from a single
Source Alt+5hift+5 ¥ Brabase.
Refactor Alt+shift+T ¥
Local History 4
Y\ ECNECPRRTYC\CPARTDESC™) ;7
References L4 _
Dedarations L4
[Add to Srippets... foesn't have another path.
Y] . 1 Run on Server AIL+Shift+, R
Debug As 4 2 Java Application Alt+5hift+x, 1
Profile As 3
validate Run Configurations...

5. An Errors in Workspace dialog box will appear but you can safely ignore it. Click on
Proceed to continue.
6. In the Console view, verify that the result output looks like the screenshots below.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
18 of 42

Figure20: Beginning of Task 2 - Exercise 1 result output
[3_ Problems | @ Javadoc @ Dedaration ﬁ'@ Annotations | & Consale &3]
<terminated = JDBCApiAssignment [Java Application] C:\Program Files\IBM\SDPYjdk\binjavaw.exe

FLRTEEY FLET FARTDESC
02AN9e0C10 ANSe0CI10 WASHER
02CEOSCWIES1E CEOSCWIB1E CAPACITCR
02C5R13G104EL CS5R13G104EL ER1JSOES

02 JANINST a5 JANINST 65 DICDE CODE-&
02M5169395-28 M5165895-28 SCEEW
02ME51P3003F000 H51P3003ZF000 SCEEW
02RCOTGEF273J RCOTGF273J RESISTCE
02106B1253P00%5 106B1293P005 RESISTCE
02250236-001 250236-001 CLAPACITCR
02250238 250238 TELNSISTOR
02250241-001 250241-001 CONNECTCR

Figure 21: End of Task 2 - Exercise 1 result output

<terminated > JDBCApiAssignment [Java Application] C:'Program Files\IBM\SDP jdkbinY

02930331-123 930331-123 FILTER
02930333-001 930333-001 DISCRTMTIHATO
02946325-086 946325-086 EIN
02950060-006 350060-006 RELAY
02954017-001 954017-001 RESISTCR
02958007-180 358007-180 REESISTCR
02960528-067 S960528-067T RESISTOR
02968534-001 988534-001 S0OCEET
029748210-010 9748210-010 THEEMOSTAT
02975105-001 975105-001 TRANSFOEMER
02989036-001 5989036-001 TRANSFORMER
2.2.2 Exercise 2 - Retrieve fields of a segment based on a

conditional statement

In this exercise, you will retrieve specific fields of a segment based on a conditional statement
by issuing a SELECT statement with a WHERE clause using the IMS Universal JDBC driver.

Using the WHERE keyword

Use the WHERE keyword in SQL to select data conditionally. The syntax for a conditional select

query is:

SELECT column_name(s) FROM table_name WHERE column_name operator value

Note that for text values, the value must be enclosed in quotes. Operators on text values perform
binary comparisons. The IMS Universal JDBC driver converts the WHERE clause in an SQL query to
a segment search argument (SSA) list when querying a database. SSA rules restrict the type of

conditions you can specify in the WHERE clause.

1. Inline 20, construct a SQL query that will display all fields of the
PARTSPCB1.PARTROOT segment where the PARTKEY field is greater than a ‘025’.
Note that the PARTKEY field contains data that is alphanumeric.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
19 of 42

e Set the query string to "SELECT * FROM PARTSPCB1.PARTROOT WHERE
PARTKEY > '025""

2. Press Ctrl + S to save your changes to the files.
3. Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.

4. An Errors in Workspace dialog box will appear but you can safely ignore it. Click on

Proceed to continue.

5. In the Console view, verify that the beginning of the result output looks like the

screenshot below.

Figure 22: Beginning of Task 2 - Exercise 2 result output
(2 Problems | @ Javadec @ Dedaration | L@ Annotations | & &3 3
<terminated> JDBCApiAssignment [Java Application] C:\Program Files\IBM\SDPYjdkbin javaw.exe (

PARTEEY
0256134-016
0260003-118
02652540-002
02652799
02686683-102
0263663-104
0263857-635
027060654F001
02T438995F002
0274545949F001
02Tel8032F101

EAERT
26l34-016
60003-118
652540-002
652799
68663-102
086863-104
69857-635
T0e0654F001
T4389895F002
T45459489F001
Tel3032F101

FARTDESC
NASeT1C1l HUT
TT34304P8661T0 ERES
WIRE WEAF
PULSE TRANSFCEMER
CMOSC100ED3
CHMOSD200J03
CPOSRIFE153K3 CAFLC
ELE TUEBE
NUT
LAMPF HOLDER
CAPFLACITOR

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
20 of 42

2.2.3 Exercise 3 - Order SQL query output by field values

In this exercise, you will retrieve data from a segment in sorted order issuing a SELECT
statement with an ORDER BY clause using the IMS Universal JDBC driver.

Using the ORDER BY keyword
Use the ORDER BY clause in SQL to sort the results of a SQL query in ascending or descending
order. The syntax for a ordered select query is:
SELECT column_name(s) FROM table_name ORDER BY column_name ASC|DESC
Note that ASC is used for ascending order and DESC is used for descending order. The field names

that are specified in an ORDER BY clause must match exactly the field name that is specified in the
SELECT statement.

1. In line 20, construct a SQL query that will retrieve all fields of the
PARTSPCB1.PARTROOT segment and sort the results by the PART field in descending

order.
e Set the query string to "SELECT * from PARTSPCB1.PARTROOT ORDER BY
PART DESC"

Press Ctrl + S to save your changes to the files.

Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.

4. An Errors in Workspace dialog box will appear but you can safely ignore it. Click on
Proceed to continue

5. In the Console view, verify that the result output looks like the screenshots below.

wWN

Figure23: Beginning of the Task 2 - Exercise 3 result output

[‘“_ Problems | & Javadoc @ Dedaration E‘@ snnotations | Bl Console 3
<terminated> JDBCApiAssignment [Java Application] C:'Program Files\IBMASDPjdkbinjavaw.

PARTEEY EART EARTDESC
02RCOTGF273T RCOTGF273T RESISTOR
02N51P3003F000 WMS1P3003F000 SCREW
02M518995-28 M516935-28 SCREW

02 JAN1N9T6E JAN1HNSTEE DICDE CODE-&
02C5R13G104EL CSR13G104EL KR1JS0KES
02CKOSCW181KE CEOSCW1S81E CAPACITCR
02BN960C10 LN960C10 WASHER
02989036-001 989036-001 TELNSFORMER
02975105-001 975105-001 TRANSFORMER
02974810-010 974810-010 THERMCOSTAT
02968534-001 968534-001 SOCKEET
ﬁgggiggbgndoftheTaQ<2—Egggggsfresunouuﬁqﬁaa¢:
02252252-003 252252-003 COUPLING
02250891 250891 SERVC VALVE
02250796 250796 SWITCH
02250794 250794 EESISTCR
02250241-001 250241-001 CONNECTOR
02250239 250239 TRANSISTOR
02250236-001 250236-001 CAPACITCR
02106B1293P00% 106B1293P008 EESISTCR

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
21 of 42

2.2.4 Exercise 4 - Retrieve a specific field of a segment

In this exercise, you will retrieve a specific field in a segment. By querying only specific fields
instead of selecting all the fields in a particular segment, you can reduce network overhead
when using the IMS Universal JDBC driver.

1.

W N

In line 20, construct a SQL query that will display only the PART field from the
PARTSPCB1.PARTROOT segment.

e Set the query string to "SELECT PART FROM PARTSPCB1.PARTROOT"

Press Ctrl + S to save your changes to the files.

Right click on the Java editor and select Run As > Java Application, as shown in
section 2.2.1.

An Errors in Workspace dialog box will appear but you can safely ignore it. Click on
Proceed to continue.

In the Console view, verify that the result output looks like the screenshots below.

Figure 25: Beginning of Task 2 - Exercise 4 result output

{2 Problems | @ Javadoc | &, Dn

<terminated = JDBCApiAssignment
EART
ANSs0C10
CEOSCW1E1E
CSR13G104EL
JEMNIMNST&E
M516995-28
MS1P3003F000
RCOTGEZ2T73J
106B1293F00%
250236-001
2502389
250241-001

Figure26: End of Task 2 - Exercise 4 result output

<terminated = JDBECApiAssignment
930331-123

930333-001
946325-086
950060-006
354017-001
958007-180
960528-067
968534-001
974810-010
975105-001
5985036-001

2.2.5 Exercise 5 — Retrieve multiple fields from multiple

segments

In this exercise, you will issue a SELECT query to retrieve data from segments that are on the
same and on different hierarchical paths in the IMS database. Note that the PARTROOT and the
BACKORDR segments are on the same hierarchic path, while the CYCCOUNT segment is on a
separate hierarchic path.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
22 of 42

Retrieving fields from multiple segments

In SQL queries to relational databases, the JOIN keyword is typically used to query data from
multiple tables based on a relationship between the tables. IMS does not support using the JOIN
keyword explicitly, because IMS is a hierarchical database and it is possible that two segments are
unrelated to each other. However, an implicit join will be performed if the segments fall within the
same hierarchical path. The syntax for this is the same as for a SELECT query. Note that multiple
column names and table names can be specified as long as a comma is used to separate them. IMS
allows issuing a SELECT call to retrieve data from segments that are not on the same hierarchical
path, if a logical relationship has been defined between them.

wWN

In line 20, construct a SQL query that will display the PART field from the

PARTSPCB1.PARTROOT segment and the BACKKEY field from the

PARTSPCB1.BACKORDR segment.

e Set the query string to "SELECT PART, BACKKEY FROM PARTSPCB1.PARTROOT,
PARTSPCB1.BACKORDR"

Press Ctrl + S to save your changes to the files.

Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.

An Errors in Workspace dialog box will appear but you can safely ignore it. Click on

Proceed to continue.

In the Console view, verify that the result output looks like the screenshot below.

Figure 27: Result output of Task 2 - Exercise 5 part 1

(%1 Problems | @ Javadoc |_fq> Dedaration |_=@.ﬂ.r

<terminated > JDBCApiAssignment [Java Application

FLRT BLCEEEY
JLNINITEE 30FPR237942
250236-001 30PR265243
250236-001 30PR347921
250236-001 30PR4Z2E134
3003806 3050536609
3003806 3050536610
TE18032P101 30PR149329
TE18032P101 30PR149376
TE18032P101 Z0PR1S3096
TE18032F101 30PR153098
TE18032P101 S0PR1EQEEE
TT36847P001 Z0PR135640
D25363-136 30PRT29437
In line 20, construct a SQL query that will display the PHYSICALCOUNT field from the

6.

®© N

PARTSPCB1.CYCCOUNT segment and the WORKORDER field form the

PARTSPCB1.BACKORDR segment.

e Set the query string to "SELECT PHYSICALCOUNT, WORKORDER FROM
PARTSPCB1.CYCCOUNT, PARTSPCB1.BACKORDR"

Press Ctrl + S to save your changes to the files.

Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.

In the Console view, verify that the query fails with this error message: "The tables

BACKORDR and CYCCOUNT specified in the query cannot be joined together.

They are not along the same hierarchic path in the database".

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
23 0of 42

3 Task 3 - Access IMS data with the IMS Universal DL/I driver

In this task, you will write a Java application to connect to an IMS database and manipulate data using a DL/I-
based syntax with the IMS Universal DL/I driver.

What is DL/I?

Data Language/I (DL/I) is the IMS data manipulation language, which is a common
high-level interface between a user application and IMS. DL/I calls are invoked from
application programs written in languages such as Java, PL/I, COBOL, VS Pascal, C,
and Ada. It also can be invoked from assembler language application programs by
subroutine calls. IMS lets the user define data structures, relate structures to the
application, load structures, and reorganize structures.

By using the IMS Universal DL/I driver, you can build segment search arguments
(SSAs) and use the methods of the program communication block (PCB) object to read,

insert, update, delete, or perform batch operations on segments. You can gain full
navigation control in the segment hierarchy.

Basic programming model for a Java application using the IMS Universal DL/1
driver
In general, to write a IMS Universal DL/I driver application, follow these steps:

1. Import the com.ibm.ims.dli package that contains the IMS Universal DL/I driver
classes, interfaces, and methods.

2. Connect to an IMS database subsystem.

3. Obtain a program specification block (PSB), which contains one or more PCBs.

4. Obtain a PCB handle, which defines an application's view of an IMS database
and provides the ability to issue database calls to retrieve, insert, update, and

delete database information.

5. Obtain an unqualified segment search argument list (SSAList) of one or more
segments in the database hierarchy.

6. Add qualification statements to specify the segments targeted by DL/I calls.
7. If retrieving data, mark the segment fields to be returned.

8. Execute DL/I calls to the IMS database.

9. Handle errors that are returned from the DL/I programming interface.

10. Disconnect from the IMS database subsystem.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
24 of 42

3.1 Connect to the IMS database through the IMS Universal DL/l driver

Before you can execute DL/I calls from your IMS Universal DL/I driver application, you must connect to an
IMS database.

3.1.1 Open the DLIAPIAssigment.java sample application

The DLIApiAssignment.java sample application
This sample application contains skeleton Java code for connecting to the IMS database

and issuing DL/I data access calls using the IMS Universal DL/I driver.

1. From the Package Explorer view, expand IMSDBJavaApplicationLab > src >
com.ibm.ims.db.exercise.

Figure 28: Navigating to the DLIApiAssignment.java sample application

& Java - Welcome to z/05 Projects - IBM Rational Developer f
File Edit Source Refactor Mavigate Search Project Run Window

il -0 4 EEF G A
[& Package Explor &3 'Eg Hierarchy =08 ij Welcome to zf05 Pra;
=

= {3:'5- IMSDEJavaApplicationLab
-5 src ‘n’
B com.ibm.ims.db. databaseviews EIcomE
=g com.ibm.ims.db. exerdse
@ DLIApiAssignment.java

[J] InputMessage.java = !

m JEPApplication.java

2. From the Package Explorer view, double click on the file DLIApiAssignment.java to
open the sample application in the Java editor.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
25 o0f 42

Figure 2915: The opened DLIApiAssignment.java sample application in the Java editor
¢4 DLIApiAssignment.java &2

package com.ibm.im=s.db.exercise;

Fimport com.ibm,ims.dli.DLIERception;[]

* Purpose: This client application is a sample that is used in the EM4Z Sandbox
and IMS 50CA Workshops to demonstrate the capabilities of DL/I for Java AFPI

* that is shipped with the Universal Drivers(imsudb.jar) with the service

* process in IMS WV11.

* This sample accesses the Parts database provided in the IMS IVE.

* This application uses the IVFDBl1 DE and DFSIVF1 PSE Needs as input 5

* parameters IP address Port NHumber IMS5 alias name defined in CODBM UserName
* Paszsword

* Created: 0B/06/200%9

3.1.2 Set the connection properties

1. In the Java editor, scroll down the application source code until you find the Java main
method shown in the screenshot below.

Figure 30: Javamain method in the DLIApiAssignment sample application
i | DLIApiAssignment.java 2

= public static void main(String[] args) {
DLIApiAssignment dliAPT = new DLIApiAssignment ()’
f/Call a method or subroutine to make wvarious IMS5 calls

- The dliMethod i= defined to accept a parameter of the Driv
—=»Driver Type 2 indicates we are making database calls on the
——>Driver Type 4 indicates we are making database calls from an

You can either provide the integer wvalue for the driver type or
dliAPT.dliMethod{ BEEPLACE THIS };

N

In line 44 of the code, REPLACE_THIS is already corrected for you to indicate the
driver connectivity type IMSConnectionSpec.DRIVER_TYPE_4

In line 56 of the code, verify that host is set to "zserveros.demos.ibm.com”

In line 57 of the code, verify that the datastoreName is set to “"IMSD"”

In line 58 of the code, verify id "EM4ZIMS" is set to username.

In line 60 of the code, verify that the drdaPort value 7001 has already been set for you.
In line 82 of the code, verify that the metadataURL is set to the string
"class://com.ibm.ims.db.databaseviews.DFSSAM09DatabaseView"

Press Ctrl + S to save your code changes.

Nouhw

o

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
26 of 42

After completing this step, your Java application should be ready to connect using the Universal
DL/I driver. Next, you will need to modify the Java application code to issue data access calls
to IMS.

3.2 Issue DL/l calls to access the IMS database

The following exercises in this section will show you how to issue DL/I calls in your Java application to retrieve
data from the IMS database using the IMS Universal DL/I driver.

Lab exercises

This task contains several programming exercises for you to complete. These exercises will help to
familiarize you with basic data access operations using the IMS Universal DL/l driver. At certain
points indicated in the instructions, you will be asked to provide the correct code. For your reference,
we have provided the exercise solutions. You can find the code with the exercise solutions from the
Package Explorer view by opening IMSDBJavaApplicationLab >
com.ibm.ims.db.exercise.solution > DLIApiAssignment.java

3.2.1 Exercise 1 - Retrieve data in an IMS database

In this exercise, you will retrieve data in an IMS database by issuing DL/I Get Unique and Get
Next calls through the IMS Universal DL/I driver.

Using the Get Unique (GU) and Get Next (GN) DL/I calls

If an input message contains more than one segment, a Get Unique call retrieves the first segment of
the message and Get Next (GN) calls retrieve the remaining segments.

When issued from the IMS Universal DL/I driver, the Get Unique call retrieves a specific segment or
collection of segments on a hierarchic path from an IMS database. The GU call also establishes the
position in the database from which additional segments can be processed in a forward direction.

The Get Next call retrieves the next segment or collection of segments on a hierarchic path from an
IMS database. The GN call usually proceeds forward along the hierarchy of a database from the
current database position to the next required segment. To modify the GN call to start at an earlier
position than the current position in the database, you can use an IMS command code. The Get Next
call returns a Path object representing the hierarchic path from the root segment to the segment the
cursor is currently positioned on. The Path object includes the data stored in the segments along the
hierarchic path.

Exercise 1 begins on line 103 of the DLIApiAssignment.java sample application, where the
function displayPARTROOT (psb) is invoked. To go to the start of the function, go to line 107,
move the mouse over the displayPARTROOT (psb) function invocation, and press F3.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
27 of 42

Figure 31: Navigating to the start of Exercise 1
¢ DLIApiAssignment.java &2

f Exercise 1: Izsue Get TUnigque and Get Hext cal

f for Jawva

f Uzez getUnigque and getNext calls.
Syatem.ont.println("Starting Exerci=ze 1:");

displayPARTROOCT (psb) ;

System.out.println("Completed Exercise 1%nhn");

3.2.1.1 Exercise 1 - Step 1: Define an unqualified SSAL.st to specify the segments
to retrieve

1. In line 146 of the code, delete the constant REPLACE_THIS and replace it with the Java
code statement to get an unqualified SSAList for the PARTROOT segment. You can find
the answer after Figure 32 below.

Hint:
Use the PCB object that has been created (partspcb1l) to call the getSSAList(String)
method. Pass in the segment name ("PARTROOT") as the input parameter.

The SSAList interface

The com.ibm.ims.dli.SSAList interface represents a list of segment search arguments (SSAS)
used to specify the segments to target in a particular database call. Use the SSALi st interface to
construct each segment search argument in the list, and to set the command codes and lock class for
the segment search arguments. Each SSA in the SSAList can be qualified or unqualified. A SSA
qualification can be used to filter the segments to update or retrieve on a hierarchic path.

Figure 32: Defining the unqualified segment search argument list
i | DLIApiAssignment.java &7

= private void displavPARTROOT (PSE psb) {
try {
'/ GFet an instance of the PCE PARTSPCE1
PCE partspckl = psb.getPCE("PARTSPCEL"™) ;

- Create the S534AList using the PCE partspcbhbl.
f Do this by using the pch to build an ungualified 55A List
' containing a =single segment/parameter: PBARTROOT

%é SS5ATdst ssalist = BN N

Verify your Java code statement:
In line 146, your Java code statement should look like this:

SSAList ssalist = partspcbl.getSSAList ("PARTROOT") ;

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
28 of 42

3.2.1.2 Exercise 1 - Step 2: Issue a Get Unique DL/I call to retrieve segments

1. In line 164 of the code, delete the constant REPLACE_THIS and replace it with the Java
code statement to issue a Get Unique DL/I call. You can find the answer after figure 33
below.

Hint:
Use the PCB object that was previously created (partspcb1) to call the getUnique(Path,
SSAList, boolean) method.
e Pass in the Path object that was previously created (path) as the 1% input parameter.
e Pass in the SSAList object that was previously created (ssaList) as the 2" input
parameter.
e Pass in the boolean value false as the 3™ input parameter. False indicates that this DL/I
call is not a Get Hold Unique call.

Figure 33: Insert code to issue the Get Unique call
¢J| DLIApiAssignment.java 2

- Make a Get Unigque call using partspcbl
The call takes 3 parameters: Path, 55AList, and a boolean
indicating if this is a HOLD call (GHU, GHN, GHHNP).
ff The call will return true if the call is successful or false if
EliREPLACE THISIE
/f Format the output

System.out.println ("EFARTEEY \t\tPART c\cEARTDESC") ;
5ystem.out.println("------------- - - - - - - - - - - - - -\ -\ "\ —"\—(—\——"—"\—"—"—"—————-

Verify your Java code statement:
In line 164, your Java code statement should look like this:

if (partspcbl.getUnique (path, ssalist, false)) {

3.2.1.3 Exercise 1 — Step 3: Issue a Get Next DL/I call

1. In line 178 of the code, delete the constant REPLACE_THIS and replace it with the Java
code statement to issue a Get Next DL/I call. You can find the answer after Figure 34
below.

Hint:
Use the PCB object that was previously created (partspcb1l) to call the getNext(Path,
SSAList, boolean) method.
e Pass in the Path object that was previously created (path) as the 1% input parameter
e Pass in the SSAList object that was previously created (ssaList) as the 2" input
parameter
e Pass in the boolean value false as the 3™ input parameter, to indicate that this DL/I call
is not a Get Hold Next call.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
29 of 42

Figure 34: Insert code to issue a Get Next call
¢ DLIApiAssignment.java &2

f TODD — Make a get Next Call

/ How lets continue to get more results by calling ge
(GH) . The getMHext Jawva call is used similarly to th

" howewver this time we wWill use a while loop to go th

{ segments matching the 55AList are returned.

while (ENMisNEE]) |
System.out.println(path.get3tring ("PARTEEY") .trim|
+ "WwtA\t" + path.getString ("FARTDESC") .trim

Verify your Java code statement:
In line 178, your Java code statement should look like this:
while (partspcbl.getNext (path, ssalist, false)) {

3.2.1.4 Exercise 1 — Step 4: Run the application and verify the output results

1. Press ctrl + S to save your changes to the files.
2. Right click on the Java editor and select Run As > Java Application.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
30 of 42

Figure 35: Running the Java application
{4 DLIApiAssignment.java &=

\2-.. SATODO - Try running the application
} catch (DLIExXception e} {

. <= Undo Typing cirl+z
}
= private Open Dedaration F3 atchRetrieve (P56 psb) {
try Open Type Hierarchy F4
Open Call Hierarchy Ctrl+Alt+H PCE PRRTSPCEL
Show in Breadcrumb — Alt+Shift+8 ("PARTSECEL"};
Quick Outline Ctrl+0 . -
Quick Type Hierarchy Ctrl+T angualified 554 List contain
Show In Alt+Shift+w *
1.getSSAList ("BARTROOT") ;
Copy Qualified Name rieve call
Paste il izsue a batchRetriewe
hSet or a set of IQORREA's,
Quick Fix Ctrl+1 presents data from a single
Source Alt+shift+5 * Btabase.
Refactor Alt+Shift+T
Local History L4
Y ENECPARTYENCPRRTDESC™) ;
References L
Dedarations L4
4 Add to Snippets... foesn't have another path.
EE 1 Run on Server Alt+5hift+X, R
Debug As ’ 2 Java Application AlE+Shift+¥,]
Profile As 4
validate Run Configurations. ..
Team » E.getStringt"PARTKEY"}.trimt}

3. An Errors in Workspace dialog box will appear but you can safely ignore it. Click on
Proceed to continue.
4. In the Console view, verify that the output results look like the screenshots below.

Figure36: Beginning of Exercise 1 result output in the Console view
(2! Problems | @ Javadoc @> Dedaration | C@ Annotations | & Console 3 %

<terminated = DLIApiAssignment [Java Application] C:'Program Files\IBMSDPYjdk\binjavaw.exe (Mo
lopenDBIVE main

Host: zserveros.demos.ibm.com

IMS Connect's DEDA port: 7001

IMS Datastore name: IMSD

Starting Exerciszse 1:

EARTEEY FART FARTDESC

02AN9ae0C10 ANSe0CI1O WASHER
02CEOSCWIE1E CEOSCWIBIK CRAPACITCR
02C5R13G104EL CSR13G104EL FR1IJSOES

02 JAN1INATeE JAMTINST 65 DICDE CODE-&
02M516995-28 M516595-28 SCEEW

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
31 of 42

Figure 37: End of Exercise 1 result output in the Console view

02974810-010 974810-010 THEEMOSTAT
02975105-001 8975105-001 TEANSFORMER
029859036-001 8985036-001 TEANSFCORMER

Completed Exercise 1

3.2.2 Exercise 2: Retrieve batch data in an IMS database

In this exercise, you will retrieve batch data from an IMS database by issuing a Batch Retrieve
call through the IMS Universal DL/I driver.

Batch Retrieve

You can use the batch retrieve call to retrieve multiple segments from an IMS database in a single
call. Instead of a client application making multiple GU and GN calls, IMS performs all the GU and
GN processing and returns the results back to the client in a single batch network operation. The
fetch size property determines how much data is returned on each batch network operation.

Exercise 2 begins on line 110 of the DLIApiAssignment.java sample application. At the
beginning of Exercise 2, the code for this exercise has been commented out.

3.2.2.1 Exercise 2 — Step 1: Uncomment the code for Exercise 2

1. In the Java editor, highlight lines 112 to 114 of the DLIApiAssignment.java sample
application and press ctrl + / to uncomment the code.

Figure 3816: Code for Exercise 2 (before uncomment)
| *DLIApiAssignment.java

f Exercize 2: Use batchRetrieve for the DL/I APT

/{ Usesz batchRetrieve calls.

Code comments allows comment statements that will not be compiled and executed to be inserted
directly into the application source code. In Explorer, blocks of code can be commented and
uncommented by highlighting that block and pressing Ctrl + /.

Figure 39: Code for Exercise 2 (after uncomment)
| *DLIApiAssignment.java &2

'/ Exercise 2: Use batchRetriewve for the DL/I APT £
'y Uses batchRetrieve calls.
Syztem.out.println("Starting Exercise 2:");
di=plavPARTROCTU=zingBatchRetrieve (p2hb)
System.out.println("Completed Exercise 2%\n\n"):

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
32 of 42

2. The function displayPARTROOTUsingBatchRetrieve contains the Java code for the
batch retrieval operation. In line 113, move your mouse over the
displayPARTROOTUsingBatchRetrieve (psb)function invocation and press F3 to open
the function declaration.

3.2.2.2 Exercise 2 — Step 2: Issue a Batch Retrieve call to retrieve multiple
segments
1. Inline 210 of the code, delete the constant REPLACE_THIS and replace it with the Java

code statement to issue a Batch Retrieve call. You can find the answer after the figure
below.

Hint:
Use the PCB object that was previously created (partspcb1) to call the
batchRetrive(SSAList) method.

e Pass in the SSAList object that was previously created (ssalist) as the input parameter.

Figure 40: Insert code to issue a batch retrieve call
i | DLIApiAssignment.java 2

- Make a Batch ERetriewve call
Uzing the pcbh, vou can issue a batchRet
which will return a PathSet or a set of
Each path in the =et represents data fr
J/f segment or row in the database.
PathSet p=z = BREPLACE THIS:

Verify your Java code statement:
In line 210, your Java code statement should look like this:

PathSet ps = partspcbl.batchRetrieve (ssalist) ;

3.2.2.3 Exercise 2 — Step 3: Commit the unit of work

1. Inline 227 of the code, delete the constant REPLACE_THIS and replace it with the Java
code statement to commit your unit of work. You can find the answer after the figure
below.

Hint:
Use the PSB object was previously created (psb) to call the commit() method.

Committing and rolling back DL/I transactions

The IMS Universal DL/I driver provides support for local transactions with the commit and rollback
methods. A local transaction consists of a unit of work with several units of recovery. An IMS
Universal DL/I driver application can commit or roll back changes to the database within a unit of
recovery. In the IMS Universal DL/I driver, the local transaction is scoped to the PSB instance. No
explicit call is needed to begin a local transaction. After the unit of work starts, the application makes
DL/I calls to access the database and create, replace, insert, or delete data. The application commits
the current unit of recovery by using the PSB. commit method. The commit operation instructs the
database to commit all changes to the database that are made from the point when the unit of work

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
33 of 42

started, or from the point after the last commit or rollback method call, whichever was most recent.

Figure 41: Insert code to issue a commit call
i | DLIApiAssignment.java 52

Verify your Java code statement:
In line 227, your Java code statement should look like this:

psb.commit () ;

3.2.2.4 Exercise 2 — Step 4: Run the application and verify the output results

1. Press ctrl + S to save your changes to the files.

2. Right click on the Java editor and select Run As section > Java Application, as shown
in section 3.2.1.4.

3. An Errors in Workspace dialog box will appear. Click on Proceed.

4. In the Console view, verify that the output results look like the screenshots below.

Figure 42: Beginning of Exercise 2 result output in the Console view
(2 Problems | @ Javadoc | [, Dedaration | Bl Console £
<terminated = DLIApiAssignment [Java Application] C:YProgram Files\IBM\SDP_1Yjdk\binYjavaw.exe (Sep 16, 20

Starting Exercize 2:

FARTEEY FRRT FRRTDESC

02AN960C10 ANS60C1O WASHER
02CEOSCW1E1E CEOSCWI1B1E CAPACTITCR
02C5R13G104EL CSR13G104FL KR1IJS0ES

02 JANINSTeE JANINST6E DICDE CODE-&

Figure 43: End of Exercise 2 result output in the Console view

02974810-010 974810-010 THERMOSTAT
02975105-001 975105-001 TRANSFORMER
02989036-001 989036-001 TRANSFORMER

Completed Exerci=se 2

3.2.3 Exercise 3: Create SSALists with multiple segments,
specify qualifications, and mark specific fields for retrieval

In this exercise, you will mark specific segment fields for retrieval from the IMS database. You
will also specify the number of rows of data for the IMS Universal DL/I driver to retrieve.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
34 of 42

Marking segment fields for retrieval with the IMS Universal DL/I driver

In your Java application, you can specify which segment fields are to be returned from a database
retrieve call by using the markFieldForRetrieval orthe markAllFieldsForRetrieval
methods. Following the IMS default, all of the fields in the lowest level segment specified by the
SSAList are initially marked for retrieval.

The markFieldForRetrieval method

This ssAList method is used to mark a specific field for retrieval from the database. The
markFieldForRetrieval method is used together with getPathForRetrieveReplace() and
with the data retrieval methods in the PCB interface. When a retrieve call is made, the resulting Path
object will contain all the fields that have been marked for retrieval.

The markAllFieldsForRetrieval method

This method is used to mark all fields in the specified segment for retrieval from the database. The
markAllFieldsForRetrieval method is used together with getPathForRetrieveReplace () and
with the data retrieval methods in the PCB interface. When a retrieve call is made the resulting Path
object will contain only the fields marked for retrieval. Following the IMS default, all of the fields in the
lowest level segment specified by the SSALi st are initially marked for retrieval.

Exercise 3 begins on line 116 of the DLIApiAssignment.java sample application. At the
beginning of Exercise 3, the code for this exercise has been commented out.

3.2.3.1 Exercise 3 — Step 1: Uncomment the code for Exercise 3

1. In the Java editor, highlight lines 118 to 120 of the DLIApiAssignment.java sample
application and press ctrl + / to uncomment the code.

Figure 44: Code for Exercise 3 (before uncomment)
¢ DLIApiAssignment.java &2

- oo

' Exercise 3: Creating 55A Lists with multiple =

' gqualification=s, and marking specific fields fo

Figure 45: Code for Exercise 3 (after uncomment)

| *DLIApiAssignment.java 2

f Exercise 3: Creating 554 Lists with mumltiple
" gqualifications, and marking specific fields :
System.cout.println("Starting Exercise 3:");
di=splayBACKCRDE (psh) ;
System. out.println("Completed Exercise 3%Ynhn");

2. The function displayBACKORDR contains the Javacode for the retrieval. In line 119,
move your mouse over the displayBACKORDR (psb) function invocation and press F3 to
open the function declaration.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
35 of 42

3.2.3.2 Exercise 3 — Step 2: Build an unqualified SSAL.ist

1. In line 246 of the code, delete the constant REPLACE_THIS and replace it with the
Java code statement to build an unqualified SSAList for a hierarchic path of segments
ranging from the top-level PARTROOT segment to the bottom-level BACKORDR segment.
You can find the answer after the figure below.

Hint:
Declare a new SSAList variable (ssalList). Use the PCB object that has been created
(partspcb1l) to call the getSSAList(String, String) method.
e Pass in the PARTROOT segment name ("PARTROOT") as the 1% input parameter
e Pass in the BACKORDR segment name ("BACKORDR") as the 2" input parameter

Figure 46: Insert code to build the unqualified SSAList
7| *DLIApiAssignment.java &3

m tZ!'

H=s]

I m m 0

¥
e

REFLACE THIS:

Verify your Java code statement:
In line 246, your Java code statement should look like this:

SSAList ssalist = partspcbl.getSSAList ("PARTROOT", "BACKORDR") ;

3.2.3.3 Exercise 3 - Step 3: Mark the fields to retrieve

1. Inline 262 of the code, delete the constant REPLACE_THIS and replace it with the
Java code statement to mark the WORKORDER field for retrieval from the BACKORDR
segment. In line 263, add the Java code statement to mark the ORDERQTY field for
retrieval from the same segment. You can find the answer after the figure below.

Hint:
Use the SSAList object that has been created (ssalist) to call the
markFieldForRetrieval(String, String, boolean) method.
e Pass in the segment name ("BACKORDR") as the 1 input parameter, to indicate the
name of the segment in the SSAList containing the field
e Pass in the field name ("WORKORDER") as the 2" input parameter, to indicate the
name of the field to be marked for retrieval from the database
e Pass in the boolean value true as the 3™ input parameter, to indicate that this field
should be retrieved from the database
In the next line, create a similar statement to mark the ORDERQTY field for retrieval.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
36 of 42

Figure 47: Insert code to mark the segment fields to retrieve
¢ DLIApiAssignment.java &2

y — Only retrieve specific fields (1
 How we only want two fields to be retul

{ ——> WORECRDEER and ORDERQTY

f Uze the markFieldForBRetrieval method.
zzali=st . REPLACE THIS:

Verify your Java code statement:
In line 262 and 263, your Java code statements should look like this:

ssalist.markFieldForRetrieval ("BACKORDR", "WORKORDER", true):;
ssalist.markFieldForRetrieval ("BACKORDR", "ORDERQTY", true);

3.2.3.4 Exercise 3 — Step 4: Specify the number of rows to fetch per network call

1. Inline 274 of the code, delete the constant REPLACE_THIS and replace it with the
Java code statement to set the fetch size property to 30. You can find the answer after
the figure below.

Hint:
Use the PCB object that has been created (partspcb1l) to call the setFetchSize(int) method.
e Set the number of rows to fetch (30) as the 1% input parameter

Fetch size property

The fetch size is the number of rows physically retrieved from the IMS database per network call. A
list of rows is represented by a Path instance containing one or more segments that match the
segment search argument criteria specified by an SSAList. This is set for you internally. You can
also set the fetch size using the setFetchsSize method from the PCB interface. Setting the fetch
size allows a single request to return multiple rows at a time, so that each application request to
retrieve the next row does not always result in a network request.

Figure 48: Insert code to change the fetch size
i | DLIApiAssignment.java &7

— Using the PCE specify how many rc
Set the fetch =size for IM5 to send back
Thi=z helps to cut down on the number of

Verify your Java code statement:
In line 274, your Java code statement should look like this:
partspcbl.setFetchSize (30) ;

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
37 of 42

3.2.3.5 Exercise 3 — Step 5: Print the retrieved segment fields from the path

1. In line 287 of the code, delete the 1 instance of the constant REPLACE_THIS and
change the system.out.println statement to print the value of the WORKORDER field
returned by IMS. In the same line, delete the 2™ instance of the constant
REPLACE_THIS and change the Java code statement to print the value of the ORDERQTY
field returned by IMS. You can find the answer after the figure below.

Hint:
Use the Path object that has been created (path) to call the getString(string) method.
e Set the 1% parameter to the field name ("WORKORDER"), to retrieve the value of this
field.
Use a similar method call to retrieve the value of the ORDERQTY field.

Figure 49: Modifying the System.out.printin statement to print the retrieved segment fields

n x

Verify your Java code statement:
In line 287, your Java code statement should look like this:

System.out.println (path.getString ("WORKORDER") + "\t\t" +
path.getString ("ORDERQTY")) ;

3.2.3.6 Exercise 3 — Step 6: Run the application and verify the output results

1. Press ctrl + s to save your changes to the files.

2. Right click on the Java editor and select Run As > Java Application, as shown in
section 3.2.1.4.

3. An Errors in Workspace dialog box will appear. Click on Proceed.

4. In the Console view, verify that the output results look like the screenshots below.

Figure 50: Exercise 3 result output in the Console view
(2 Problems | @ Javadoc | [, Dedaration | Bl Console

<terminated = DLIApiAssignment [Java Application] C:\Program Files\IBMSDP _1Yjdk\bin'jaw:
Starting Exercise 3:

WORFORDER CRDERQTY
OPR14932 10
OPR14837 10
OPR15309 10
OPR15309 10
OPR163956 20

Completed Exercisze 3

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
38 of 42

3.2.4 Exercise 4: Utilize command codes for DL/1I

In this exercise, you will add a command code in the SSAList to retrieve a sequence of
segments.

Command codes for DL/I

SSAs can also include one or more command codes, which can change and extend the functions of
DL/l calls. For example, you can use the D command code to retrieve or insert a sequence of
segments in a hierarchic path with one call rather than retrieving or inserting each segment with a
separate call. A call that uses the D command code is called a path call.

Exercise 4 begins on line 122 of the DLIApiAssignment.java sample application. At the
beginning of Exercise 4, the code for this exercise has been commented out.

3.2.4.1 Exercise 4 — Step 1: Uncomment the code for Exercise 4

1. In the Java editor, highlight lines 123 to 125 of the DLIApiAssignment.java sample
application and press ctrl + / to uncomment the code.

Figure 51: Code for Exercise 4 (before uncomment)
¢4 | DLIApiAssignment.java 52

f/ Exercise 4: Utilizing IMS5 Command Codes in yvou

System.out.println("Starting Exercise 4:");
di=playPARTROCTandBACKORDRData (p=

System. out.p: n("Completed Exercise 4\n\n");

Figure 52: Code for Exercise 4 (after uncomment)
| *DLIApiAssignment.java 2

'/ Exercise 4: Utilizing IMS Command Codes in v
System.ocut.println{"5tarting Exercise 4:");
di=zplayPARTROOTandBACEORDEData (peb) ;

System. out.println("Completed Exercise 4%nhn");

2. The function displayPARTROOTandBACKORDER contains the code for the batch retrieval
operation. In line 124, move your mouse over the
displayPARTROOTandBACKORDRData (psb) function invocation and press F3 to open the
function declaration.

3.2.4.2 Exercise 4 — Step 2: Add a command code to the SSAL.ist

1. In line 333 of the code, delete the constant REPLACE_THIS and replace it with the Java
code statement to add the D command code. You can find the answer after the figure
below.

Hint:
Use the SSAList object that has been created (ssaList) to call the addCommandCode (String,
byte) method.

e Set the name of the segment ("PARTROOT") as the 1% input parameter

e Set the command code (SSAList.CC_D) as the 2" input parameter

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
39 of 42

Figure53: Insert the code to add an IMS command code
¢ DLIApiAssignment.java &2

TODO — Add an IMS command code to the 55
/ We want to retrieve data from both PARTR
order to do this in IMS you need to add
to the PARTROCT because the way the S534AL
vou will only get data from the leaf seq

f After adding the command code D the 554
PARTROOT *D(PARTEEY = 02T7818032FP101)
STOKSTATS

BACECORDRE

Uze the addCommandCode method.

REPLACE THIE

-

Verify your Java code statement:
In line 333, your Java code statement should look like this:

ssaList.addCommandCode ("PARTROOT", SSAList.CC D);

Exercise 4 — Step 3: Run the application and verify the output results

1. Press ctrl + s to save your changes to the files.

2. Right click on the Java editor and select Run As > Java Application, as shown in
section 3.2.1.4.

3. In the Console view, verify that the output results look like the screenshots below.

Figure 5417: Exercise 4 result output in the Console view

(2 Problems | @ Javadoc | [, Dedaration | & Conscle &2

<terminated = DLIApiAssignment [Java Application] C:Program Files\IBM\SDP_1%dkibin'javaw.exe (Sep 16, 2009 6:14:29 PM)
Starting Exercise 4:

PARTEEY PFARTDESC WORFCRDER CRDERQTY
027618032P101 CAPACITCR OPR14932 1ﬂ
027618032P101 CAPACITCRE OPR14937 10
027618032P101 CAPACITCE OPR15309 10
027618032P101 CAPACITCR OPR1S309 10
027el18032FP101 CAPLCITOR OPR1&956 20

Completed Exercise 4

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
40 of 42

Resources
Learn

e View the Information Management Software for z/OS Solutions Information Center for the latest
information and educational resources available for Information Management System (IMS), including
the Java API reference for the IMS Universal drivers.

e Visit the Rational software area on developerWorks for technical resources and best practices for
Rational Software Delivery Platform products.

e Explore Rational computer-based, Web-based, and instructor-led online courses. Hone your skills and
learn more about Rational tools with these courses, which range from introductory to advanced. The
courses on this catalog are available for purchase through computer-based training or Web-based
training. Additionally, some "Getting Started" courses are available free of charge.

e Subscribe to the Rational Edge e-zine for articles on the concepts behind effective software
development.

e Check out the Information Management IMS zone on developerWorks®.

e Subscribe to the IBM developerWorks newsletter, a weekly update on the best of developerWorks
tutorials, articles, downloads, community activities, webcasts and events.

e Browse the technology bookstore for books on these and other technical topics.

e Use Java in IMS dependent region: http://www.ibm.com/developerworks/data/library/techarticle/dm-
1011javaimsregions/index.html?ca=drs-

e IMS Universal Drivers programming guide:
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims javaprogrammingref
erence.htm

e Java programming reference:
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingref
erence.htm

e Find code sample for cast-to-DLI approach for JDBC here:
https://www.ibm.com/developerworks/community/blogs/8a337b1c-3c0c-48a5-b7cc-
7f805884dbb9/entry/new example available cast to dl i from the ims universal jdbc driver?lang=e
n

Get products and technologies

e Download trial versions of IBM Rational software.

e Download a trial version of IBM Rational Developer for system z.

Discuss

e Participate in the discussion forum.

e Check out developerWorks blogs and get involved in the developerWorks community.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
41 of 42

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/dzhome.htm
http://www.ibm.com/developerworks/rational
http://www.ibm.com/training/us/catalog/rational
http://www.ibm.com/developerworks/rational/rationaledge/
http://www.ibm.com/developerworks/db2/products/ims/index.html
https://www.ibm.com/developerworks/newsletter/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/data/library/techarticle/dm-1011javaimsregions/index.html?ca=drs-
http://www.ibm.com/developerworks/data/library/techarticle/dm-1011javaimsregions/index.html?ca=drs-
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingreference.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingreference.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingreference.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingreference.htm
https://www.ibm.com/developerworks/community/blogs/8a337b1c-3c0c-48a5-b7cc-7f805884dbb9/entry/new_example_available_cast_to_dl_i_from_the_ims_universal_jdbc_driver?lang=en
https://www.ibm.com/developerworks/community/blogs/8a337b1c-3c0c-48a5-b7cc-7f805884dbb9/entry/new_example_available_cast_to_dl_i_from_the_ims_universal_jdbc_driver?lang=en
https://www.ibm.com/developerworks/community/blogs/8a337b1c-3c0c-48a5-b7cc-7f805884dbb9/entry/new_example_available_cast_to_dl_i_from_the_ims_universal_jdbc_driver?lang=en
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX15&S_CMP=ART
http://www.ibm.com/developerworks/downloads/r/rdz/learn.html?S_TACT=105AGX15&S_CMP=ART
http://www-01.ibm.com/software/data/ims/community/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community

About the authors

Poonam Chitale is a Software Engineer for IMS Open Database solution

Joshua Newell is a Software Engineer for IMS Open Database solution and level 2 support

Trademark notice

IBM, the IBM logo and ibm.com are trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. A current list of IBM trademarks is
available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml.

Develop an IMS application using Java and OpenDB
© Copyright IBM Corporation 2011, 2012. All rights reserved.
42 of 42

