
© 2014 IBM Corporation

20141

IMS 13 100K Transactions Per Second (TPS) Benchmark -
Roadblocks, Limitations, and Solutions

Presenter:

Jack Yuan

With THANKS to
Dave Viguers, Kevin Hite, and IMS performance team

Bruce Naylor and IMS development team

Session 14772

© 2014 IBM Corporation

20142

NOTE:

This presentation is based on the IMS white paper, “IMS 13 fast path:
high volume transaction processing”. See appendix for more information
of the paper.

IMS 100K TPS performance is based on measurements and projections
using IMS benchmarks in a controlled environment. The results that any
user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user's job
stream, the I/O configuration, the storage configuration, the amount of
zIIP capacity available during processing, and the workload processed.
Therefore, results may vary significantly and no assurance can be given
that an individual user will achieve results similar to those stated here.
Results should be used for reference purposes only.

© 2014 IBM Corporation

20143

3

Agenda

Introduction

Summary of the Results

Workload Used and Measurement Environment

Base IMS 13 Reduced TCO Changes Applied

Roadblocks, Limitations and Solutions

Conclusion

Appendix

© 2014 IBM Corporation

20144

Introduction

At the release of IMS 12, the IMS Performance Evaluation Team
announced a new high transaction processing rate of 46,000
transactions per second (TPS) using the IMS Fast Path (FP) Credit
Card benchmark workload, driven by a VTAM terminal network.

During development of IMS 13, the team was tasked with a goal of
100,000 transactions per second (TPS) using IMS Connect and
OTMA as the primary interface to drive the IMS transactions.

© 2014 IBM Corporation

20145

5

Summary

The IMS 13 100K TPS project
achieved a sustained average
transaction rate of over 117,000
transactions per second (TPS) on
a single system.

– running on the most current IBM
hardware (IBM System zEnterprise
EC12TM mainframe processor, IBM
System Storage® DS8870 and
DS8800 DASD) and operating
system software (z/OS 2.1)

– Multiple measurement runs were
made to demonstrate repeatability

– Each measurement run
demonstrated the greater than
117,000 TPS average rate over a
15-minute interval

Using IMS Fast Path (FP) Credit Card
benchmark application

Messages were generated by IBM's
Teleprocessing Network Simulator (TPNS)

 IMS via TCP/IP through five IMS Connect
address spaces with RACF security and
OTMA security=CHECK

Periodic IMS system checkpoints were
taken during the run, and IMS Online Log
Data Set (OLDS) switching and archiving

occurred as needed

© 2014 IBM Corporation

20146

Workload Used - IMS Fast Path (FP) Credit Card benchmark application

Three Fast Path Data Entry Databases (DEDB) used:
– ACCTA: this Account Database (DEDB) is a “customer account” database

containing general information, such as account #, credit limit, used credit,
customer name, address, amount of the debit/credit, store code number and
date of transaction.

– EXCEPTA: this Exception Card Database (DEDB) is an “exception card”
database containing records for lost, stolen, or otherwise invalid cards.

– STOREDBA: this Store Database (DEDB) is a database containing a record for
each point of sale terminal for customers subscribing to the credit card service.

© 2014 IBM Corporation

20147

Workload Used - IMS Fast Path (FP) Credit Card benchmark application…

Four transactions run in IMS Fast Path regions (IFP regions) and
are Fast Path only:

– CCCK transaction performs credit card authorization checking services
– CLCK transaction performs credit limit check
– DEBIT transaction offers the debit and credit services
– LOST transaction provides the lost or stolen card reporting services

All transactions provide on-line update capability with full integrity
and recovery facilities.

Each transaction written in COBOL starts with a 76-byte input
message and replies with an 83-byte output message.

© 2014 IBM Corporation

20148

Measurement Environment: System Configuration

© 2014 IBM Corporation

20149

Base IMS 13 Reduced TCO Changes Applied

Log Latch Contention Reduction
– IMS writes log records for many different tasks and threads in many different

address spaces.
– The logger serialized the process of copying log records into a buffer by getting

an internal latch called the log latch (LOGL) in exclusive mode.
• This meant that only one caller at a time could execute the logger code that located

buffer space, copied the log record data, and scheduled buffers for writes. The other
callers have to wait for the latch.

– For workloads with high logging volumes, this single threading of the logging
process caused high rates of contention for the log latch.

• Latch contention increases both CPU consumption and elapsed time.

– In IMS 13, the logger code was enhanced to permit multiple callers to log data
in parallel. The log latch is still obtained, but in shared mode (multiple share
mode callers are allowed to own the latch simultaneously, as opposed to
exclusive mode, which permits only a single owner at a time).

© 2014 IBM Corporation

201410

Base IMS 13 Reduced TCO Changes Applied…

z/OS Storage call elimination in IMS Connect and OTMA
– The IMS Connect and OTMA XCF input exits copy the message data from

XCF buffers to storage that they obtain, and then send the copied message
into the IMS Connect or IMS address space to be processed.

– These XCF exits issued several z/OS STORAGE OBTAIN calls which obtain
exclusive serialization to protect its processing in the form of the address
space local lock.

• Because XCF input exits can execute in parallel within an address space, this use of
the local lock can become a contention bottleneck at high message rates. This in
turn can limit the throughput capacity of the system.

– In IMS 13, the STORAGE OBTAIN calls for fixed-sized storage areas in the
IMS Connect and OTMA input exits were replaced with z/OS CPOOL and IMS
DFSBCB storage service calls that do not routinely require local lock
serialization.

© 2014 IBM Corporation

201411

Base IMS 13 Reduced TCO Changes Applied…

OTMA Control Block (YTIB) Hashing
– IMS OTMA internally represents the source of a submitted IMS transaction by

a control block called an OTMA Transaction Instance Block, or “YTIB”. Prior to
IMS 13, YTIBs related to a given OTMA TPIPE were chained on a single linked
list anchored off of the TPIPE control block. At various points in the processing
of an OTMA transaction, the transaction’s YTIB needed to be located, which
required a serial search of this linked list.

– When the number of YTIBs on the TPIPE chain became large, the time
required to search for a given YTIB increased.

• For example, there could be thousands of YTIBs or transaction messages anchored
off of an IMS Connect port TPIPE.

– In IMS 13, the chaining of the OTMA YTIB control blocks was changed from a
single linked list to a hash table. This improves search time for a given YTIB
by reducing the length of the chain that must be scanned.

© 2014 IBM Corporation

201412

Roadblocks, Limitations and Solutions

© 2014 IBM Corporation

201413

XCF Message Rate Limitations

Observation:
– Initial IMS Connect/OTMA runs showed an upper limit 25,000 transaction per

second, which was far fewer than with SNA.

Analysis:
– OTMA table trace and IMS Connect recorder trace indicated that there was a

delay occurring in the transfer of the XCF message.

© 2014 IBM Corporation

201414

XCF Message Rate Limitations…

Solution:
– XCF development was able to determine that code within XCF was limiting the

number of message transfers per second to a given member of the XCF group.
This was initially done to avoid having some XCF member dominate all the
resources within a system, but with the ever-increasing processing capability of
the System z hardware, a change was integrated into z/OS 2.1 to allow more
messages to flow.

• It used to be 16 messages per SRB per schedule before waiting for 10ms to begin
again. It is now 64 messages.

Results:
– The effect of this change was to immediately increase our throughput by more

than 100%, which then exposed additional challenges to be diagnosed and
ultimately resolved.

© 2014 IBM Corporation

201415

OTMA Limitations

Observation:
– With larger numbers of TCP/IP clients active, we noticed a much higher than

expected contention rate for two IMS internal latches: the LUBT latch (used for
OTMA control block chain serialization) and the CBTS latch (used for IMS
DFSBCB storage manager serialization).

Analysis:
– It was discovered that OTMA attempted to minimize the creation and deletion

of ITASKs by maintaining two separate chains of YTIBs: a ”free chain” and an
”available chain”. The process of maintaining these two chains was not as
effective as desired with larger numbers of clients.

YTIB Free Chain YTIB Available Chain

YTIB

YTIB
YTIB

YTIB

YTIB
YTIB

Up to 100 freed YTIBs Up to 200 available YTIBs

LUBT latch

CBTS latch
LUBT latch

CBTS latch

YTIB

YTIB Active Chain in TPIPE

YTIB
YTIB

YTIB
YTIB

© 2014 IBM Corporation

201416

OTMA Limitations…

Solution:
– The YTIB free chain was eliminated and the number of YTIBs kept on the

available chain was increased to minimize the number of times an ITASK was
terminated prematurely.

Results:
– Even with thousands of OTMA clients, the number of ITASK terminations and

creations along with the associated overhead of freeing and getting DFSBCB
control storage was reduced or eliminated. This in turn reduced the CBTS latch
contentions. In addition, the removal of the OTMA YTIB free chain significantly
reduced the LUBT latch contentions, resulting in increased throughput and
reduced overhead.

YTIB Available Chain

YTIB

YTIB
YTIB

Up to 300 available YTIBs

LUBT latch

CBTS latch

YTIB

YTIB Active Chain in TPIPE

YTIB
YTIB

YTIB
YTIB

© 2014 IBM Corporation

201417

OTMA CM1 Output Buffer Clearing

Observation:
– A scaling test showed that an OTMA output module was at the top of the list

for high use modules and the MVCL instruction accounted for 81% of that
module.

Analysis:
– The OTMA output module allocates a big buffer, clears the buffer with MVCL,

and moves the output message to the buffer for XCF send.

Solution:
– In IMS 13, this unneeded buffer clear was removed for sync levels NONE and

CONFIRM of OTMA CM1 output messages.

© 2014 IBM Corporation

201418

IMS Latch Manager Changes: Contention Management
and Wait Queue POSTing

Problem:
– When we changed the IMS logger component to log records in parallel without

needing an exclusive latch, we expected performance to improve. Instead,
when the log latch elimination code was initially integrated into IMS, we found
an unexpected reduction in transaction rate.

Analysis:
– We investigated the problem and discovered very high CPU use within certain

sections in the IMS latch manager modules. These sections were the code
that posted waiters off of the latch wait queue when a previously-unavailable
latch became available.

© 2014 IBM Corporation

201419

IMS Latch Manager Changes: Contention Management
and Wait Queue POSTing…

Solution:
– Investigation into this issue led us to identify several areas that could be

improved in the IMS latch manager wait queue management algorithms for
shared latches. These changes involved priority promotion for callers who had
already waited once to get a latch, and “latch fairness” algorithm changes to
equalize the granting of the latch between shared and exclusive waiters.

Results:
– The effect of all of these changes increased transaction rate.

© 2014 IBM Corporation

201420

New LREC Latch for Serializing Log Record Creation

Problem:
– Even with the latch manager wait queue management changes, we were still

seeing a large number of log latch contentions.

Analysis:
– The changes made to the IMS logger ensured that log writes could now

execute in parallel. The observed latch contentions were caused, not by
logger activity, but by callers outside of the logger that were getting the log
latch (LOGL) in exclusive mode to serialize the building of a set of related log
records.

© 2014 IBM Corporation

201421

New LREC Latch for Serializing Log Record Creation…

Solution:
– We decided we could reduce overall contention by splitting the LOGL latch into

two latches. We created a new latch – the LREC latch. Fast Path syncpoint
was changed to obtain this new latch instead of the LOGL latch when building
and logging its log records.

Results:
– With this change, LOGL latch contentions in the Fast Path workload dropped

from many thousands per second down to low double digits per second. LREC
latch contentions were of course higher than that, but were still lower than the
LOGL latch contentions previously. The contention for both latches taken
together was lower than the contention seen for the single LOGL latch.

© 2014 IBM Corporation

201422

IMS Fast Path Syncpoint Processing

Problem:
– We hit a point around 70K where we could not get the transaction rate to

increase.

Analysis:
– For OTMA, the write of the syncpoint record under the IFP is followed by an

IMS logger function called a “check write” (CHKW). A CHKW call waits for the
logger to write the targeted log record to either the OLDS or the WADS logger
data set. This wait holds up the dependent region until the syncpoint log
record is written. After the CHKW returns, the IFP issues the OTMA send-
deallocate back to the inputting client, and only then is free to execute the next
transaction. Thus, for OTMA, the capacity of each IFP is reduced because of
this extra waiting and processing, which is absent for SNA.

© 2014 IBM Corporation

201423

IMS Fast Path Syncpoint Processing…

© 2014 IBM Corporation

201424

IMS Fast Path Syncpoint Processing…
Solution:

– The logger write of the final syncpoint record for OTMA under the IFP is now
issued with a parameter that tells the logger to send a notification to Fast Path
code in the control region when the log record has been physically written to
disk. The dependent region is then able to immediately process the next
transaction, without waiting for the log write to complete. A new ITASK that
processes the logger notification. The ITASK runs under a new Fast Path TCB
– TCB type FP2 – to minimize any interference with the existing XFP Fast Path
TCB processing.

Results:
– Removing the CHKW call from the dependent region improved IFP transaction

capacity by about 30%, and allowed us to get past the 70K TPS limit that we
had previously been hitting.

© 2014 IBM Corporation

201425

Periodic Slowdowns due to AWE Pool Shortages

Problem:
– As we finally achieved transaction rates over 100,000 per second, we started

noticing severe fluctuations in the transaction rate. Graphs of the transaction
rate showed that there were two modes: The system would run at well above
100K TPS for minutes at a time, but then it would suddenly drop to around 60K
TPS, and would often remain at this level also for several minutes.

© 2014 IBM Corporation

201426

Periodic Slowdowns due to AWE Pool Shortages…

Analysis:

IMS internal statistics showed that during the "good" periods, one DFSBCB AWE
control block was gotten per transaction processed. During the "bad" periods, one
AWE was gotten for every five transactions processed.

In this workload, the main requester of AWEs is the OTMA XCF input exit. One
AWE is requested for each input message, so the 1:1 ratio between AWEs gotten
and transactions is the expected value.

The 1:5 ratio during the "bad" periods means that 4 out of 5 messages failed to get
a DFSBCB AWE, and instead used z/OS STORAGE to obtain the AWE control
block:

– DFSBCB AWEs are obtained from a queue of free AWEs (very fast).
– When the queue is empty, additional AWEs are normally obtained (AWE expansion) -- however...
– The OTMA input exit is running in an environment (SRB mode) where AWE expansion cannot be

done.
– When no free AWEs are available:

• The OTMA input exit uses z/OS STORAGE instead (expensive, gets local lock - high local lock usage leads to
contention and slowdowns).

• This situation persists until some other (non-SRB) process in IMS requests an AWE and triggers AWE pool
expansion.

• The logger uses AWEs too, but keeps them in its own pool and only gets new ones when its pool is empty.
– Few AWE users besides OTMA exit and logger lead to long periods where AWE expansion is not

done and STORAGE is used for AWEs.

© 2014 IBM Corporation

201427

Periodic Slowdowns due to AWE Pool Shortages…

Solution:

The OTMA input exit where we get the AWE (SRB mode) cannot
expand the AWE pool. However, the code that frees the AWE
(Task mode) can. When the freeing code receives an AWE that
was gotten by z/OS STORAGE, it now:

– Issues a DFSBCB get for an AWE.
– Issues a DFSBCB release for that same AWE
– This drives AWE expansion, and provides more AWEs for future DFSBCB get calls in

the OTMA input exit, thus eliminating future z/OS STORAGE calls.

The IMS logger was also changed to release more AWEs back to
DFSBCB, rather than holding on to them:

– Better storage utilization (these AWEs can be used by processes other than logger).
– Logger will request AWEs more often, and can also aid in driving AWE expansion when

required.

© 2014 IBM Corporation

201428

Periodic Slowdowns due to AWE Pool Shortages…

Results:
– With these changes in place, the severe transaction rate fluctuations were

eliminated.

© 2014 IBM Corporation

201429

IMS Storage Pool Manager - Storage Pool Tuning

Problem:
– While looking into our measurement results, we consistently noticed high CPU

activity related to the IMS Storage Pool Manager. The IMS Storage Pool
Manager is responsible for managing OTMA related storage pools such as
DYNP, EMHB, LUMC, LUMP, etc

Pool Name Storage
Type

Pool Description

DYNP Private Used for dynamic storage (working storage) for IMS modules –
particularly LU 6.2 and OTMA processing modules.

EMHB Common Expedited Message Handler (EMH) Buffers. Used to contain input and
output user message data for Fast Path EMH transactions

LUMC Common Used for dynamic storage (working storage) for IMS modules that
execute in different address spaces (e.g. control region, DLI region,
dependent region) or which execute in cross-memory mode.

LUMP Private Used for LU 6.2 and OTMA buffer storage, and also for working
storage for some modules.

© 2014 IBM Corporation

201430

IMS Storage Pool Manager - Storage Pool Tuning…

Analysis:
– To further examine the fixed storage pool usage, we referred to the IMSPA

Fixed Pool Usage Statistics report. As an example using the DYNP pool, there
is not enough space in the primary extent for the buffer high water mark to
avoid secondary extents. When this happens, the IMS storage manager
obtains secondary blocks to provide the space for additional buffers. It takes
longer for the storage manager to search secondary blocks for storage than it
does for it to find space (when it is available) in the primary block.

© 2014 IBM Corporation

201431

IMS Storage Pool Manager - Storage Pool Tuning…

© 2014 IBM Corporation

201432

IMS Storage Pool Manager - Storage Pool Tuning…

 Solution:
– Our focus for tuning was to reduce CPU versus saving storage space. With

that in mind, each fixed storage pool was defined with enough space in the
primary extent for the buffer high water mark to avoid secondary extents
entirely.

– To tune the DYNP pool, we defined a new buffer size (4,304-bytes) to satisfy
the average size requested and enough primary buffers to encompass the
high water mark plus a little headroom to allow us to scale up (primary 1,100,
secondary 50). We also set the initial allocation to “yes” to have IMS obtain
the primary extent at IMS startup.
• IMS Storage pool manager (DFSSPMxx)

– FPL=DYNP,(2048,16,8,Y),(4292,1100,50,Y),(8192,4,2,Y)

– FPL=LUMC,(3064,100,40,Y),(4096,200,50,Y)

– FPL=LUMP,(1024,600,100,Y),(4096,150,30,Y),(65536,30,4,Y)

– FPL=EMHB,(1024,8375,1000,Y)

© 2014 IBM Corporation

201433

IMS Storage Pool Manager - Storage Pool Tuning…

Results: After tuning each of the fixed storage pools, we observed less CPU activity

with the IMS Storage Pool Manger and an overall CPU improvement of about 5%.

© 2014 IBM Corporation

201434

DASD Tuning
Problem:

– As we approached rates of 100K transactions per second, we began noticing
increasingly higher average response times for DASD volumes containing
performance critical database data sets and IMS online logging data sets
(OLDS).

Analysis:
– The RMF Device Activity Report provides information about DASD volume and

LCU activity. In analyzing this data we noticed that both the average initial
command response time (CMR) delay (.413 ms) and the average I/O pending
times (.636 ms) were unusually high for this workload.

 DEVICE AVG AVG AVG AVG AVG AVG AVG AVG

VOLUME ACTIVITY RESP IOSQ CMR DB INT PEND DISC CONN

SERIAL RATE TIME TIME DLY DLY DLY TIME TIME TIME

S60$01 219.617 1.18 .000 .413 .002 .000 .636 .002 .545

S60$02 214.992 1.18 .000 .414 .001 .000 .635 .004 .545

S60$03 220.567 1.18 .000 .414 .001 .000 .635 .005 .543

© 2014 IBM Corporation

201435

DASD Tuning…

Solution:
– Originally eight - 8Gb FICON® channel paths were configured from our zEC12

to the DS8800 storage system. The team decided to double that to a total of 16
- 8Gb FICON® channel paths to help reduce delays in waiting for the channel
subsystem to accept and process requests.

Results:
– After reconfiguring to use a total of 16-channels paths we saw improvements of

~28% in overall average response time.

© 2014 IBM Corporation

201436

Conclusion

The IMS 13 100K project achieved a sustained average transaction rate
of over 117,000 transactions per second on a single system, running on
the most current IBM hardware (IBM System zEnterprise EC12TM
mainframe processor, IBM System Storage® DS8870 and DS8800 DASD
) and operating system software (z/OS 2.1).

IMS team identified and reduced or eliminated many performance
bottlenecks in both IMS and z/OS software. These changes improve
scalability, reduce contention, and provide enhanced efficiencies in core
IMS and z/OS processing.

– Some of these changes are specific to IMS Fast Path EMH processing; others (such as
XCF, OTMA, latching, and logging improvements) apply to many other IMS
environments.

© 2014 IBM Corporation

201437

37

Thank You!

Your Feedback is Important to Us

© 2014 IBM Corporation

201438

Appendix

© 2014 IBM Corporation

201439

Appendix A: Further Reading

IMS 12 performance summary
– http://public.dhe.ibm.com/software/data/sw-

library/ims/IMS_Version_12_Performance_Summary.pdf

IMS 13 Fast Path: High Volume Transaction process
– http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?

subtype=WH&infotype=SA&appname=SWGE_IM_IM_USEN&htmlfid=IML14384USEN&
attachment=IML14384USEN.PDF

IMS 13 Performance Summary
– http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?

subtype=WH&infotype=SA&appname=SWGE_IM_IM_USEN&htmlfid=IML14383USEN&
attachment=IML14383USEN.PDF

IMS Performance and Tuning Guide
– http://www.redbooks.ibm.com/redbooks/pdfs/sg247324.pdf

http://public.dhe.ibm.com/software/data/sw-library/ims/IMS_Version_12_Performance_Summary.pdf
http://public.dhe.ibm.com/software/data/sw-library/ims/IMS_Version_12_Performance_Summary.pdf
http://public.dhe.ibm.com/software/data/sw-library/ims/IMS_Version_12_Performance_Summary.pdf
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=SWGE_IM_IM_USEN&htmlfid=IML14384USEN&attachment=IML14384USEN.PDF
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=SWGE_IM_IM_USEN&htmlfid=IML14384USEN&attachment=IML14384USEN.PDF
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=SWGE_IM_IM_USEN&htmlfid=IML14384USEN&attachment=IML14384USEN.PDF
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=SWGE_IM_IM_USEN&htmlfid=IML14383USEN&attachment=IML14383USEN.PDF
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=SWGE_IM_IM_USEN&htmlfid=IML14383USEN&attachment=IML14383USEN.PDF
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=SWGE_IM_IM_USEN&htmlfid=IML14383USEN&attachment=IML14383USEN.PDF
http://www.redbooks.ibm.com/redbooks/pdfs/sg247324.pdf

	IMS 13 100K Transactions Per Second (TPS) Benchmark - Roadblocks, Limitations, and Solutions
	NOTE:
	Agenda
	Introduction
	Summary
	Workload Used - IMS Fast Path (FP) Credit Card benchmark application
	Workload Used - IMS Fast Path (FP) Credit Card benchmark application…
	Slide 7
	Base IMS 13 Reduced TCO Changes Applied
	Base IMS 13 Reduced TCO Changes Applied…
	Slide 11
	Roadblocks, Limitations and Solutions
	XCF Message Rate Limitations
	XCF Message Rate Limitations…
	OTMA Limitations
	OTMA Limitations…
	OTMA CM1 Output Buffer Clearing
	IMS Latch Manager Changes: Contention Management and Wait Queue POSTing
	IMS Latch Manager Changes: Contention Management and Wait Queue POSTing…
	New LREC Latch for Serializing Log Record Creation
	New LREC Latch for Serializing Log Record Creation…
	IMS Fast Path Syncpoint Processing
	IMS Fast Path Syncpoint Processing…
	Slide 24
	Periodic Slowdowns due to AWE Pool Shortages
	Periodic Slowdowns due to AWE Pool Shortages…
	Slide 27
	Slide 28
	IMS Storage Pool Manager - Storage Pool Tuning
	IMS Storage Pool Manager - Storage Pool Tuning…
	Slide 31
	Slide 32
	Slide 33
	DASD Tuning
	DASD Tuning…
	Conclusion
	Slide 36
	Appendix
	Appendix A: Further Reading

