
Setting up and using Rational Team
Concert's ISPF Client for source control

Liam Doherty

IBM Corporation

Wednesday March 12th, 2014

Session 14751

2

Agenda

• What is Rational Team Concert?

• The Eclipse interface

• The RTC repository

• Streams, Components and projects

• zComponent projects

• Setting up Enterprise Extensions System Definitions

• Setting up the Rational Team Concert ISPF Client

• Setting up build engines/agents and build definitions

3

IBM Rational Collaborative Lifecycle
Management (CLM)

Storage

Collaboration

QueryDiscovery

Administration: Users,
projects, process

Best Practice Processes

Presentation:

Mashups

3rd-Party
Jazz

Capabilities

Requirements
Management

Configuration
& Change

Management
Build &
Deploy

Management

Quality
Management

Asset
Management

Architecture
Management

Quality
Professional

ArchitectAnalyst Developer
Product/
Project

Manager

Rational

Quality
Manager

Rational

Requirements
Composer

Rational
Team

Concert

Robust extensible solution for the entire extended development team

4

Query
Storage

Collaboration

Discovery

Administration:
Users, projects,

process

JAZZ SERVICES

Business Partner

Extensions Your Extensions

Rational Developer for z

Rational Software Architect

Rational Systems Developer

Rational Business Developer

Rational Developer for i

ISPF ClientWeb Clients

Visual Studio

Microsoft .NET Clients Rational Desktop Clients

Rational Team Concert

Web 2.0 z/OS

IBM Rational Extensions

Best Practices

Presentation:
Mashups

Rational Team Concert (RTC):
An open, extensible architecture

Rational Team Concert

Supporting a broad range of desktop clients, IDEs and languages

Web Clients

Web 2.0Eclipse Platform

5

Rational Team Concert: An Overview

� Team advisor for defining / refining “rules”
and enabling continuous improvement

� Process enactment and enforcement

� In-context collaboration enables team members
to communicate in context of their work

� Single structure for project related artifacts

� World-class team on-boarding / offboarding
including team membership, sub-teams and

project inheritance

� Role-based operational control for flexible
definition of process and capabilities

Jazz Team Server

� Component based SCM
enables reuse across projects

� Change set based for easy
addition or removal of features

� Server-based sandboxes

� Can also work with SVN, Git,
ClearCase or Synergy

SCM Work Items
� Defects, enhancements

and conversations

� View and share query results

� Support for approvals and
discussions

� Query editor interface

� ClearQuest or Synergy Bridge

� Automated Work item and
change set traceability

� Build definitions for team
and personal builds

� Local or remote build servers

� Multi-level continuous
integration

� Integration with Build Forge

Build

Planning
�Integrated release/iteration planning

�Effort estimation & progress tracking taskboards

�Out of the box process templates: formal or agile

Project Transparency
� Customizable web based dashboards

� Real time metrics and reports

� Project milestone tracking and status

6

What is Rational team Concert?

• So RTC is more than just an Software Configuration
Management system

• Process, Planning and Work items coupled with an integrated

SCM provide a complete solution

• Ability to manage distributed and z/OS source in the same

repository makes for a more integrated SCM solution

7

Rational Team Concert terminology

Collection taken of all component baselines for a stream or repository workspace capturing an
interesting point in time

Snapshot

Non-editable version of a component capturing an interesting point in time

The baseline is performed implicitly when a Snapshot is taken

Can be done manually on a given component

Baseline

Captures the tasks and issues to be addressed by the team members

Associated with change sets created by the developer.
Automatically and dynamically populate plans and reports

Work Item

Contains a collection of consistent changes made to a configuration of a component. Means for flowing

file and folder changes between repository workspaces and streams.
Change Set

Workspace on the hard disk (e.g. local eclipse workspace).
Note: Through the build or CLI you have jazz metadata but no eclipse metadata.

For ISPF Client a Sandbox is a collection of data sets with the same HLQ.MLQ

Sandbox

Workspace for 1 user synchronized with a Stream and the "Sandbox"

Situated on the RTC server
Repository

Workspace

Collection of related artifacts (i.e., sourcefiles are logically organized into components) that have the

same lifecycle

Used to control access rights, facilitate sharing and reuse

Theoretical limit: 50000 files

Recommended: 1000 – 2000 files / component

Component

Collection of components used to organize work, coordinate collaboration and integration, and capture

the active configuration of each component. Related to a level in a hierarchy (e.g., promotion levels,

releases, etc)

Stream

8

Rational Team Concert terminology (cont)

Action to push the workspace changes from the workspace to the StreamDeliver

Action that allows to save local changes into the repository workspace, within a Change Set Check-in

Action that allows for synching the repository workspace reference with changes delivered to the stream

by other developers

Load of the accepted changes into the sandbox is automatically performed

Note – you can also accept change sets from a WI

Accept

Action that copies selected files and folders from the repository workspace to the sandbox (eclipse

workspace or MVS data sets)
Load

9

The Eclipse Interface

• Rational Team Concert originally offered as an Eclipse
Client and a Web Client

• Other clients now available such as Visual Studio and ISPF

• Some functions are only offered through the Eclipse
interface

• Enterprise Extensions definitions

• So even through we are going to use the ISPF Client for
source control, some admin functions will need to be carried

out in Eclipse

• Let’s use the Eclipse interface to familiarize ourselves
with some RTC repository terminology…

10

The RTC repository

• The RTC repository consists of:

• Source Code

• Streams

• Components

• Projects

• Repository Workspaces

• Work items

• Plans that consist of related work items

• Builds

• Enterprise Extension definitions

• Reports

11

The RTC Repository in Eclipse

12

Streams, Components and projects

• Source code is stored in Streams

• Think of a stream as a particular point-in-time version of

a project, or part of a project

• E.g. Current Development, v4.0.6 maintenance, etc

• Streams are composed of components

• Components are ways to break down projects or parts of
projects.

• The same component will exist in different streams, just
at different versions

• Components are composed of projects

• These are the physical containers that will hold the code

13

Streams, Components and projects

14

zComponent projects

• zComponent projects are projects that have a z/OS
“nature”, so some specific processing is performed
against them

• Allows for a data set definition to be assigned to a “zfolder”

• This maps the folder to a data set on z/OS

• Allows for a language to be assigned to a “zfile”

• This tells RTC how a particular file is going to be built

• Allows for encoding options to be set such that default

EBCDIC code pages or language specific EBCDIC code
pages (e.g. IBM-939) will be used on z/OS

• Note: Generally everything is stored in UTF-8 in the repository

15

zComponent projects

16

Setting up Enterprise Extensions System
Definitions

• Regardless of whether you are planning on using the
ISPF Client or the Eclipse Client you will need to set
up system definitions

• Data set definitions for each source type

• Once set up a data set definition can be used for many zFolders

• Language definitions for each different type of module

• You can create a single generic language definition that does
nothing, for use for things like JCL, Samples, Interpretive REXX
execs, etc

• Translators define a single step of a build process

• A language definition is made up of one or more translators

17

Setting up Enterprise Extensions System
Definitions

18

Data set definitions

• Data set definitions to store source

• Defines the attributes (DCB) of the data set such that when

the ISPF Client “loads” a member it knows how to create the
data set

• Similarly Build will need to load any data sets required in

build

• Defines the Low Level Qualifier of the data set. The high level

qualifier is specified in the ISPF Client when you load, or is

specified in the build definition

• This allows data set definitions to be generic across versions,
with version specific middle level qualifiers specified by the user,
or by the build

19

Data set definitions

20

Language Definitions and Translators

• Language definitions are required for source to load

• Define a dummy langauge definition if you are not going to

build

• Define Language definitions for source types that are going

to be built

• Translators define the actual build process, for example a
PL/I compile or a link-edit

21

Language Definitions and Translators

22

Translator comparison to JCL using data set definitions

SYSUT1 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

SYSUT2 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

SYSUT5 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

SYSUT6 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

SYSUT7 DD UNIT=SYSALLDA,SPACE=(CYL,(1,1))

//COBOL.SYSLIN DD DSN=&&OBJ,SPACE=(TRK,(3,3)),

// UNIT=SYSDA, DISP=(NEW,PASS)

// DCB=(RECFM=FB,LRECL=256,BLKSIZE=2560)

COBOL.SYSIN DD DISP=SHR,

// DSN=F057699.TEST.RTC.COBOL(EPSCMORT)

COBOL.SYSLIB DD DISP=SHR,

DSN=F057699.TEST.RTC.COPY

XXSTEPLIB DD DISP=SHR,

…

..JCL - DISP=SHR,DSN=COBOL.V4R2.SIGYCOMP

…JCL- DISP=SHR,DSN=RDZ.V8R0M3.SFEKLOAD

…JCL- DISP=SHR,DSN=CICSTS.V4R1.CICS.SDFHLOAD

…JCL- DISP=SHR,DSN=DB2.DB40.SDSNLOAD

XX PARM=('EXIT(ADEXIT(ELAXMGUX))',

XX 'ADATA',

XX 'LIB',

XX 'TEST(NONE,SYM,SEP)',

XX 'LIST',

XX 'FLAG(I,I)'&CICS&DB2&COMP)

COBOL EXEC PGM=IGYCRCTL,REGION=2048K,

JCL Line

Temporary file

Temporary file (object deck)

<INPUT> represents the

source file associated with

the language definition

being built

Copybooks

COBOL.SIGYCOMP

WDZ.SFEKLOAD

CICS.SDFHLOAD

DB2.SDSNLOAD

No DSD

COBOL Compiler

Corresponding data
set definition name

23

Setting up the RTC ISPF Client

• The Rational Team Concert ISPF Client is installed as part

of the Build System Toolkit FMID (HRBT406)

• Consists of normal ISPF components, panels, messages,

load modules

• Also has a Java daemon that handles communication to
the RTC server

• A number of system programmer and RACF administrator
activities need to be performed before the ISPF Client will

work

• Running the SMP/E install will lay down the PDSEs and

HFS components required

24

Installed components

25

Setting up the RTC ISPF Client

• Follow the configuration instructions in the online infocenter

• For z/OS we have provided a checklist to make this easier
https://jazz.net/help-

dev/clm/index.jsp?re=1&topic=/com.ibm.jazz.install.doc/topics/t_
checklist_zos.html&scope=null

• In addition there is a printable PDF copy as we know how
z/OS folk like the old fashoned ways:
http://www-01.ibm.com/support/docview.wss?uid=swg27041016

• In RTC v5.0 we hope to provide a config utility to ease the
pain of the installation tasks

• More of that later

26

Setting up the RTC ISPF Client

• As a checklist however the following tasks need to be performed

• Run the BLZCPBTK job to create directories, copy config files

and tailor them

• In particular the ispfdmn.conf

• Tailor and run RACF job BLZRACFT

• Pay particular attention to the activation of the APPL and PTKTDATA

classes

• Create the ISPF daemon started tasks, by default:

• BLZISPFD to start the daemon

• BLZISPFS to cleanly stop the daemon

• The ispfdmn.conf should already be configured sufficiently, but
you may want to change some of the default configuration

27

Setting up the RTC ISPF Client

• Additional system programmer tasks

• Set one of the following
• MAXASSIZE to 2GB in the BPXPRMxx member

• ASSIZEMAX to 2GB in the OMVS segment for the ISPF Daemon
started task userid

• Make sure hlq.SBLZAUTH, which contains the BLZPASTK

module, is in the linklist and APF authorised

• Add BLZPASTK to the AUTHPGM list in IKJTSOxx, e.g.

• AUTHPGM NAMES(IEBCOPY,BLZPASTK)

• Start the ISPF daemon

28

Using the RTC ISPF Client

RTC Repository

Liams ISPF

Workspace

DEV Stream

Create

RWS

Load

Check-in

Deliver

Accept

Accept

29

Using the RTC ISPF Client

30

RTC Configuration Utility

• Will be offered as a technical preview in RTC v5.0

• Provide a workflow based configuration, tailored to which
components of RTC you are installing on z/OS

• Provide an Installation Verification Process (IVP)

New in
RTC 5.0

31

Setting up Builds in RTC

• In order to build our programs we need to configure a

number of things

• Build Agent configuration

• Start Build Agent on z/OS

• Build Engine to point to the Build Agent in the RTC
Repository

• Build Definition

• Including a Build workspace

32

Setting up Builds in RTC

• As a checklist however the following tasks need to be performed,
you may have done these already as part of the ISPF Client set-up

• Run the BLZCPBTK job to create directories, copy config files
and tailor them
• In particular the startbfa.sh

• and bfagent.conf

• Tailor and run RACF job BLZRACFT

• Create a password file using job BLZBPASS

• The startbfa.sh and bfagent.conf will be partially configured, but
you will need to change some of the default configuration:
• port number in the bfagent.conf
• Build userid and location of the password file in startbfa.sh

• Create and start the Build Forge Agent started task, by default:
• BLZBFA

• Alternatively start the agent directly from the HFS

33

Setting up Builds in RTC

• Gotcha...

• If the userid that started the agent on z/OS is not UID=0
then…

• In bfagent.conf you will need to modify the magic_login
directive

• Navigate to the bfagent directory where the product is
installed: (/usr/lpp/jazz/v4.0.6/buildagent) and issue command:

bfagent –P <password>

• Cut/paste the returned password into the magic_login
directive

• Remember to enter the correct userid, which must be the TSO
userid that you specify on the build engine screen:

magic_login lxd1:8d7d38d8430b164572f36c5b2e91ba8df1cbbf9f363258c6

34

Setting up Builds in RTC

• Create a build engine through the Eclipse interface

• Specify the machine where the agent is running

• Specify the port it is running on

• Specify a TSO userid/password on that machine

35

Setting up Builds in RTC

• Create a build definition through the Eclipse interface

• Specify the build agent to use

• Contains the build characteristics

• Repository workspace that flows to team stream containing

the source code

• Repository workspace must be readable by the build user

• What do I want to build? Whole repository workspace or

subset of programs

• Language definitions to be built

• Sandbox location (PDS HLQ)

36

Setting up Builds in RTC

37

Using the builds in RTC

38

RTC z/OS builds : How it all hangs together

Build
Definition

1,N

Build
Workspace

PDS HLQ

Stream
(flow)

Build Engine

1,N

1,1

1,1

1,1
Language
definition

File Extension

Data Set
definition

1,N 0,N

0,N

Tasks run on the host, such

as compilation. A build can

handle several different tasks
in the order shown.

Allow you to

automatically

associate a
behavior with a

type of file in the

RTC repository

Corresponds to a STEP

in the process to run on
the host

Contributes to the step

to execute.

Corresponds to

programs / files / PDS

lines used by EXEC,
DD, SYSIN,… as in JCL

0,N

Translator

Component

zProject

zOSSRC

zFolder

zFile1

zFile2

0,N

1,1

ATTENTION
The name of the
directory on USS

must be unique

to each build

definition.

USS Load
Directory

1,1

39

Less common stuff stored in RTC

• SDF-II objects

• http://www.ibm.com/developerworks/rational/library/screen-

definition-ii-rational-team-concert/index.html

• ISPF DTL

• http://www.ibm.com/developerworks/rational/library/configure

-rational-team-concert-build-dtl-components

• Other usefull stuff…

• https://www.ibm.com/developerworks/community/blogs/Liam
Doherty/?lang=en

40

Additional Resources

• Jazz.net

• https://jazz.net/library/

• Articles, videos, tips, documentation, and more

• https://jazz.net/library/#type=video&project=rational-team-concert

• Videos on various RTC features. Just search for keywords

