
Assimilating WebSphere Application
Server into your z/OS WLM

Configuration
David Follis

IBM

March 13, 2014
Session Number 14722

Insert
Custom
Session
QR if
Desired.

2

Trademarks
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user
will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload
processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to
change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

CICS*
DB2*
GDPS*
Geographically Dispersed Parallel Sysplex
HiperSockets
IBM*
IBM eServer
IBM logo*
IMS
On Demand Business logo

Parallel Sysplex*
RACF*
System z9
WebSphere*
z/OS
zSeries*

3

Disclaimer

• The information contained in this documentation is provided for informational purposes only. While
efforts were many to verify the completeness and accuracy of the information contained in this
document, it is provided “as is” without warranty of any kind, express or implied.

• This information is based on IBM’s current product plans and strategy, which are subject to change
without notice. IBM will not be responsible for any damages arising out of the use of, or otherwise
related to, this documentation or any other documentation.

• Nothing contained in this documentation is intended to, nor shall have the effect of , creating any
warranties or representations from IBM (or its suppliers or licensors), or altering the terms and
conditions of the applicable license agreement governing the use of the IBM software.

• Performance is based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can
be given that an individual user will achieve throughput improvements equivalent to the performance
ratios stated here.

• All customer examples cited or described in this presentation are presented as illustrations of the
manner in which some customers have used IBM products and the results they may have achieved.
Actual environmental costs and performance characteristics will vary depending on individual
customer configurations and conditions.

WebSphere Application Server on System Z

4

Session Title Time Room Speaker

14618 Getting Started with WebSphere Liberty Profile on
z/OS

Monday 9:30 Grand Ballroom
Salon C

Loos/Follis

14692 Getting Started with WebSphere Compute Grid Tuesday 9:30 Grand Ballroom
Salon J

Hutchinson/Loos

14693 Using WebSphere Application Server Optimized
Local Adapters (WOLA) to Migrate Your COBOL to
zAAP-able Java

Wednesday 9:30 Grand Ballroom
Salon K

David Follis

14620 WebSphere Liberty Profile on Windows AND z/OS
(among other things) Hands-on Lab

Wednesday 1:30 Platinum Ballroom
Salon 7

14949 Tips Learned Implementing Websphere Application
Server (WAS) on Linux for IBM System z

Wednesday 3:00 Grand Ballroom
Salon G

Eberhard Pasch

14709 Need a Support Assistant? Check Out IBM's! (ISA) Thursday 8:00 Grand Ballroom
Salon A

Mike Stephen

15050 z/OSMF 2.1 Implementation and Configuration Thursday 8:00 Grand Ballroom
Salon G

Greg Daynes

14832 Web Apps using Liberty Profile Technology in CICS Thursday 11:00 Platinum Ballroom
Salon 2

Ian Mitchell

14722 Assimilating WebSphere Application Server into
your z/OS WLM Configuration

Thursday 1:30 Orange County
Salon 1

David Follis

15017 Using IBM WebSphere Application Server and IBM
WebSphere MQ Together [z/OS & Distributed]

Thursday 3:00 Grand Ballroom
Salon A

Ralph Bateman

5

Agenda

● What are we talking about?

● Defining terms

● The basic flow

● How does WLM pick a servant?

● WLM-less queueing

● What about async beans?

● Hints about classification based on XML file

● How monitoring mechanisms work

6

What are we talking about?
Setting the stage and establishing baseline concepts

7

The CR / SR Structure ... One More Time
It's worth starting with a review of the essential heart of this:

JCL

JVM

Controller Region

Native Code

zWLM

Servant Region

Native Code

JVM

App App

JCL

Servant Region

SR: Application Infrastructure
• Maintains app JVM runtime
• May support one or more

applications
• Connectivity to data from SR
• Min/Max controllable by admin

Default: min=1, max=1

zWLM
• Manages starting of SRs
• Manages stopping of SRs
• Requests queued to zWLM, then to SR

START command
(MVS or Admin Console)

Native Code

JVM

App App

CR SR

AppServer

CR: WAS “Plumbing” Code
• Native and Java
• No application code
• TCP listeners reside here
• Queues requests to WLM

8

What is "Workload Management" on z/OS?
It is controlled access to system resources coordinated by a
function that keeps watch over all the elements of the system:

CPU Memory I/O Units

Middleware
Functions

z/OS
Functions

Online
Programs

User
Sessions

Batch
Programs

Access to the System Resources zWLM

Keeps track of
what's being
requested

Keeps track of
how much is
being used

Controls access based on
defined goals

There is a tight integration between the System z hardware, the z/OS
operating system with WLM having an exclusive view of it all

9

What About "WLM" on Distributed WAS?
The term "Workload Management" is used, but it's a different thing:

Windows AIX Solaris Linux

Intel Power System z

WASWAS WASWAS WASWAS

Exchanging some system
metrics between WAS servers
(that is, a middleware layer function) WebSphere

Application
Server

Operating
System

Hardware

Some knowledge and control

Some knowledge and control

Operating
System

Hardware

WebSphere
Application
Server

Very strong
integration

Considerable
integration

zWLM

compared
to

Unlike other operating systems, z/OS is designed to only run on System z
hardware ... very tight integration from HW up through OS.

10

Defining Some WLM Terms
Service Classes, Reporting Classes, Enclaves and Goals

11

Key Starting Concepts
To set the stage for the terminology that follows ...

Work
Request

Work
Request

Work
Request

Work
Request

Work
Request

Work
Request

Work
Request

Work
Request

Work
Request

Work
Request

Work
Request

Work
Request

Service
Goal

Service
Goal

Service
Goal

Classify

Work seeking system resources

Work of differing
importance and priority

Work Categories

In order for WLM to manage resources to goals, we must get
the work organized into categories based on your goals

12

The WLM Service Class
The "service class" is at the heart of this ... it's the container into
which categorized work is placed

Work
Request

Work
Request

Work
Request

Service
Level

"A"

Work
Request

Service
Level "B"

Work
Request

Work
Request

Service
Level "C"

Work
Request

Work
Request

Work
Request

Work
Request

Service
Level "D"

WLM Service Classes

Classification
(discussion coming up)

WLM "Goals" defined
to each service class
From this it can work to manage the
system resources to the goals. More
detail upcoming ...

Goal

Goal

Goal

Goal

You may have more than four
service classes ... the definition
of these is up to you

13

Report Class
Classification

The WLM Report Class
The "report class" is a variation on the "service class" ... WLM
uses it to report on activity, but not to manage resources

Report Class
Ex: "Work related to WAS servers in cell ABCell"

Report Class
Ex: "Work related to CICS region XYZ"

Report Class
Ex: "Work related to transaction DEF"

Provides useful detail on things like
CPU usage, zAAP usage and many
other system statistics

Generally speaking -- you'll have a handful of service classes and a lot
more reporting classes ... based on your needs:
Service Classes -- enough to reasonably categorize work priorities
Reporting Classes -- based on the granularity of your reporting needs

14

Classification Rules
The next step is to get work associated with a service class and
a reporting class. This is done with classification rules:

CB

CICS

DB2

DDF

IMS

JES

OMVS

STC
(others)

Classification Types
(in WLM panels)

This is what's used when WAS z/OS creates an
enclave. We'll explore that next and for the rest of this
presentation. CB stands for "Component Broker,"
which is an ancestor of present-day WAS.

Subsystem Type STC - Started Task Classification Rule
Classification:
 Default service class is OPS_DEF
 There is no default report class.

 Qualifier Qualifier Starting Service Report
 # type name position Class Class
 - ---------- -------------- --------- -------- --------
 1 TN DF* OPS_HIGH DFCELL
 1 TN JES2 SYSSTC RJES2
 1 TN TCPIP* SYSSTC RTCPIP

Translation: any started task that begins with "DF" will be assigned to the service class OPS_HIGH and
the reporting class DFCELL OPS_HIGH might have a goal of "Velocity 70%" ... goals are next ...

Started
Tasks

Standard WLM stuff ... we started with STC because it may be the easiest to understand
for those not familiar with WLM processing

15

Goals and Importance -- Defined in Service Class
Goals tell WLM what to strive for in terms of service; Importance
is used to determine relative importance when resources tight

Velocity
How fast work should be
done without being delayed

Number 1 to 99

Started tasks and batch
programs

Response Time
Percentage of work completed within
a specified period of time

Example: 95% within 1 second

Online transactional work

Discretionary WLM services when other priorities
not competing for resources

Work that's okay to push
aside if resources are needed

Goals

Importance

1 = Most important
2
3
4

5 = Least important

Importance indicates how important it is
to you that the service goal be met.

Importance applies only if the service
goal is not being met.

16

The WLM "Enclave"
An "enclave" is a way to identify and manage individual pieces
of work within the many parts of a running z/OS system

WAS z/OS Controller Region

Classification Type = CB

Request

ClassificationWLM

Rules defined under type "CB"

Work

Enclave
Classify and
create enclave

Service Class

STC service class is
used to manage the
CR resource access

Key points from this chart
● An "enclave" is simply a way for WLM to understand priorities at a work unit level
● WAS does this automatically ... if you do no other configuration it'll still do this with default values

The WLM work queue
and servant region
system shown earlier

Rest of presentation
covers details of this

17

The Basic Flow
From work into the server through the response back

18

What Work Gets a WLM Enclave?
There's a lot of work that goes on inside WAS z/OS. How much
of it involves WLM enclaves? "Inbound Requests":

Controller Servants

WLM
Work
Queues

Messaging
Engine

WebSphere
MQ

Optimized
Local
Adapters

HTTP

IIOP

JMX

Asynchronous
Beans

Enclave created,
service class assigned

Enclave created,
service class assigned

Yeah, a unique case
from the others

Traditional GET application or
Message Driven Bean (MDB)

From external address
space such as CICS or
batch

Standard to JSP or
Servlet, or SOAP

for web services, or
even the SIP

protocol

Call from another
server in the cell, or
from outside the cell

Management flows,
from within this CR

or from Node Agent

wlm_classification_file = /mydir/myclass.xml
Environment Variable:

19

Assigning a Service Class to the Enclave
This is for the work request ... earlier we saw how the CR was
classified using the STC type. Now we look at the CB type ...

Subsystem Type CB - WebSphere z/OS CN and TC Classifications
Classification:
 Default service class is CBDEFLT
 Default report class is RWASDEF

 Qualifier Qualifier Starting Service Report
 # type name position Class Class
 - ---------- -------------- --------- -------- -------
 1 CN DFDMGR* CBCLASS DFDMGR

 1 CN DFSR01* CBCLASS DFSR01
 2 TC DFTRAN1 DFTRAN1 DFSR01T
 2 TC DFTRAN2 DFTRAN2 DFSR01T

 1 TC DFTRAN3 DFTRAN3 DFTRAN3

2

1

3

4

5

Enclaves created in WAS CR are classified by rules in CB subsystem type:
1. CN of DFDMGR* matches the Deployment Manager. Work there goes to CBCLASS.
2. Work in DFSR01* cluster without a transaction classification gets CBCLASS as well.
3. Work in DFSR01* cluster with TC of DFTRAN1 or DFTRAN2 get service classes as shown
4. Work that matches the TC of DFTRAN3 regardless of WAS CN gets service class DFTRAN3
5. Anything that doesn't match any specific rules gets the default service class of CBDEFLT

20

Enclave Propagation
We get to why all this enclave classification stuff is done -- so
that WLM can manage the threads inside the servant regions

WAS z/OS Controller Region

Classification Type = CB

ClassificationWLM

Rules defined under type "CB"

Work

Enclave
Classify and
create
enclave

Service Class

Servant
Region(s) DB2

Controller Servant(s)WLM

WLM

IIOP

JDBC T2
WLM work
queue

1

2

Same
LPAR

1. If you don't want the enclave propagated into these target servers you may turn it off with the
protocol_iiop_local_propagate_wlm_enclave = false environment variable

2. What about CICS? CICS does its own classification so propegation from WAS to CICS not
possible. But enclave propagation to DB2 over a JDBC T2 driver very possible, and the benefit is
a single reporting "container" for resources consumed associated with the enclave.

21

How Does WLM Pick a Servant?
Hint: it's not random J

22

A More Precise Picture of the CR / SR Structure
Typically we draw only one WLM work queue between the CR
and the SR. But in truth there are multiple:

Servant Region

Servant Region

WLM

WLM

WLM

WLM

Service
Class

A

Service
Class n

Queues for work that must go
to a specific servant -- "affinity"

Queues for each service class being
handled by this application server ...
but work without specific SR affinity

WLM Work Queues

Two questions come to mind:

1. If affinity, what creates the affinity?

2. If no affinity, then which servant gets the work?

Each appserver
has its own set of
such work queues

23

Affinity to a Specific Client:
Here's a brief overview of the flow creating affinity, then what
happens for requests after that:

1. Works comes into CR and is classified
as described earlier

2. No affinity yet exists, so WLM places
work on the work queue for that
service class

3. WLM indicates which servant should
take the work.

We cover this in detail next.

4. Application creates an affinity, such as
creating an HTTPSession object

5. Response goes back with affinity key,
which the CR keeps track of

Controller WLM

Servant

Servant

1
2

3

5
4

Controller WLM

Servant

Servant

1

5
3

2
1. Works comes into CR and is classified

as described earlier. Affinity exists, so
CR alerts WLM to that affinity

2. WLM now puts the work on the
specific work queue for that servant

3. The servant takes the work off its
queue

4. Response goes back with affinity key;
CR knows to maintain affinity

Initial Request

Follow-on Requests

Service Class
Work Queues

Servant-Specific
Work Queues

24

Key Concept: Servants "Bound" to Service Class
Once a servant region has done work for a particular service class,
WLM "binds" that servant to service class queue:

Servant
Region

WLMWLM

WLM

WLM

Service Class
CBCLASS

Service
Class
Queues

Server
Affinity
Queues

CBCLASS

Controller

Servant
Region

Servant
Region

Thread
s:

Thread
s:

Thread
s:

WLM

(others)

1

2
3

4

1. Works comes into CR and is classified as described
earlier.

2. A WLM work queue for that service class is created

3. A servant is chosen (next chart) ... enclave
dispatched to a worker thread in that servant

4. WLM now sees that servant as "bound" (or
"associated") with that servant class.

Work for that service class will now
go to that servant. Other service
classes sent to other servants The key is how work gets allocated

in the first place ... that's next

25

Choosing a Servant -- One Service Class
Imagine a multi-servant application server (ex: MIN=3, MAX=3) where
all the work coming is gets assigned to the same WLM service class

Servant
Region

WLMWLM

WLM

WLM

First Available
● Enclave dispatched to first available thread
● That servant "bound" to service class (prev. chart)
● Work continues to that servant until threads

occupied, then spills over to next servant
● If no threads immediately available, WLM places on

service class work queue

Round Robin
● wlm_stateful_session_placement_on = 1
● WLM assumes every dispatch will create an affinity
● Seeks to balance affinities across servants bound

to that service class.

Service Class
CBCLASS

Service
Class
Queues

Server
Affinity
Queues

CBCLASS

Servant
Region

Servant
Region

Thread
s:

Thread
s:

Thread
s:

see text to
left

Controller Example Affinity Counts
First Available | Round Robin

22 8

0 8

0 8

26

Choosing a Servant -- Multiple Service Classes
Now imagine a multi-servant application server where the work
gets assigned to multiple WLM service classes:

Servant
Region

WLMWLM

WLM

WLM

Service Class
CBCLASS

Service
Class
Queues

Server
Affinity
Queues

CBCLASS

Servant
Region

Servant
Region

Thread
s:

Thread
s:

Thread
s:

Controller

WLM

HITRAN

Service Class
HITRAN

● Classification as discussed before
● Initial servant selection as discussed

previous chart ... either "first available" or
"round robin"

● Servants "bound" to service classes as
discussed earlier

● Make sure number of servants equal or
greater than service classes serviced

● It's important to understand how work is being classified -- you can "waste" a servant if a classification
takes place you weren't anticipating (usually default service class is the problem)

39

4

3

Example
Affinity Counts

27

How Threads are Managed in a Servant
It depends ...

Enclave Threads
● Work dispatched to servant from CR with an associated WLM enclave
● WLM manages the thread to the service class of the enclave
● Recall that servants are bound to a service class and generally serve only

enclaves of that service class, but exception cases do exist

Non-Enclave Threads
● These are threads doing things like GC and other work
● These are managed according to the service class to which the servant

region is bound, unless....ManageNonEnclaveWork=No

Servant Region

Special case -- "single servant mode"

Unchecked --
therefore "single
servant mode"

Checked -- multi-
servant even though
MIN=1, MAX=1

Single Servant Mode
● WLM will mix different service classes into

servant and manage each thread according to
its service class

Multi-Servant, MIN/MAX=1
● WLM will bind a servant to first service class

that comes in; other service classes will sit on
the queue and eventually time out

28

Reporting CPU Usage
Where CPU is reported depends on whether or not it's an
enclave thread, and if it was an asynch bean

Controller Servant

CPU for non-enclave
threads used by CR is
attributed to the CR region

CPU for enclaves attributed to the Controller -- it created the enclave. This true
despite fact the enclave is dispatched and run on a servant thread

And ... if enclave propagated into DB2 over T2, then that CPU
also attributed to the controller region where the enclave

created.

created
here

dispatched
here

For asynch
beans ... it
depends J
More on asynch
beans in a bit

CPU for non-enclave
threads used by SR is
attributed to the SR region

CPU here counted here

29

WLM-less Queueing
WAS takes over some of the work from WLM

30

Overview of WLM-less Queueing
It's based on the server_use_wlm_to_queue_work variable:

urun_rproperty_custpropertie
s

If variable = 1
(default)

If variable = 0

● Uses WLM work queues

● WLM controls dispatching to
the servant region

● What we've discussed up to
this point is how it works

● Generally preferred for
stateless workloads

● Well suited for:
 Stateless +
 multi-servant +
 multiple service class goals

● WAS uses its own queues

● WAS controls dispatching to the
servant region

● Three routing options:
Discussed next page

● Generally preferred for stateful
workloads

● Well suited for:
 Stateful +
 multi-servant +
 All requests have same service goal

InfoCenter for this and other custom properties, search:

31

Hot Thread, Round Robin and Hot Robin
These are the three routing options when that variable is set
to have WAS control the routing.

server_work_distribution_algorithm = 0 | 1 | 2

Yet another customer property:

Servant
Region

Servant
Region

Servant
Region

Thread
s:

Thread
s:

Thread
s:

WAS

Work
queue
available to
all servants
for this
appserver

Servants arranged in a sequence
for selection purposes 0 Hot Thread

● First available thread in the servant sequence list
● If no threads, then onto the global queue and next

idle thread (any servant) takes it

1 Round Robin
● Try to dispatch to next servant in the list
● If no idle thread, then place on dedicated queue

2 Hot Robin (7.0.0.7 and above)
● Try to dispatch to next servant in the primary round-

robin list
● If no thread, then go to next servant in the secondary

round-robin list
● If still no threads, then place on global queue
● First available thread takes it

WAS

WAS

WAS

Work queues
dedicated to the
specific servant

32

What About Asynch Beans?
They march to a different drummer ...

33

High-Level Overview of Asynch Beans
Here's a schematic diagram of how the CR / SR structure looks
when asynchronous beans are introduced:

Servant
Servant
Thread
Pool:

W
M
AP
Is

Work Manager
Thread Pool:

1

2

4

Work comes
into the
server

1. Classified work is dispatched to the servant per the methods already
discussed. The servant thread joins the created enclave.

2. At some point the application requests of the work manager that an
asynch bean be started

3. At some point the asynch bean is started. It receives a thread out of
the thread pool maintained by the work manager

4. The original work completes and returns -- the asynch bean may or
may not yet be launched; if launched it may or may not be
complete.

3

What about this?
How is it classified?
What enclave does it join?

34

Asynch Beans -- Three Scenarios
Much depends on how the work manager is called:

Servant
Thread Pool: WM

APIs

Work Manager
Thread Pool:

Servant

If WorkWithExecutionContext specified on startWork API, then ...
● If the “z/OS WLM Service Class” service is enabled on both extracting and execution WorkManagers...

● The work manager calls a WLM API and gets the classification attributes for the original work request
● A new enclave is created with the same classification attributes as the original request

● If not, well, its complicated

If execution context not set on startWork API, then ...
● The work manager registers with WLM as a "user of the original work request enclave"
● That allows for the original work request to complete but the enclave to stay in existence
● The asynchronous bean operates under the classification attributes of the original work request enclave

If asynch bean scheduled from non-enclave threads, then ...
● There is no original enclave to work with
● A new enclave is created with classification based on "Default transaction class" defined under Resources

Asynchronous Beans Work managers in the Admin Console
● If no Default transaction class defined, then ASYNCBN is used

If isDaemon=true passed in on
startWork API, then ...

● Asynchronous bean considered a very long
running process ... potentially forever

● A new thread is created rather than pulling from
the work manager thread pool

● A new enclave is created with classification
based on "Daemon transaction class" defined
under Resources Asynchronous Beans
Work managers in the Admin Console

● If no Daemon transaction class defined, then
ASYNCDMN is used

35

Using the Classification XML File
InfoCenter, search on rrun_wlm_tclass_sample for a sample

36

How it Works
The file supplies a set of criteria to match requests to transaction
class names, which then match with rules in the CB subsystem type

Scope to cell or node
server scope for classification
deprecated

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Classification SYSTEM "Classification.dtd"
>
<Classification schema_version="1.0">
 :
 <InboundClassification type="iiop" ... >
 (classification information)
 </InboundClassification>
 <InboundClassification type="http" ... >
 (classification information)
 </InboundClassification>
 <InboundClassification type="sip" ... >
 (classification information)
 </InboundClassification>
 <InboundClassification type="mdb" ... >
 (classification information)
 </InboundClassification>
 <InboundClassification type="sib" ... >
 (classification information)
 </InboundClassification>
 :
</Classification>

Transaction
Name based
on request
match

Rules in CB
subsystem
type

Service Class
Reporting Class

From that we get goals and importance
based on specific transactions based on
criteria in the classification XML file

37

Some Hints
The file supplies a set of criteria to match requests to transaction
class names, which then match with rules in the CB subsystem type

IIOP
If you classify at the method level, use the mangled method name. You can find that in the generated stub
or tie.

HTTP
URI is commonly used, and wildcarding is allowed. Match on host and port also possible.

SIP
There's nothing in a SIP request to match on, so the classification is somewhat binary ... "if SIP, then
transaction name is ..."

MDB
For "Plan A" MDBs (persistent durable queues received from MQ via the controller's message listener port)
you can classifiy under the MDB type.

For "Plan B" MDBs (listener in the servant) the classification falls under "internal"

SIB
Type "jmsra" applies to MDBs which that use the default message provider

Type "destinationmediation" applies to mediations defined on the SIBus

Internal Work
There's work that WAS itself needs to do. This is where it's classified (along with MDB Plan B)

Optimized Local Adapters
Handled in a special way. Go to the InfoCenter and search on tdat_olawlm

How to Account for Internal Work
There will be internal work classified. How can you account for it without it simply
falling under the CN default Service Class?

<Classification schema_version="1.0">

 <InboundClassification type="http" schema_version="1.0"

 default_transaction_class="Z9DEFLT" >

 <http_classification_info

 uri="/SuperSnoopWeb/*" transaction_class="Z9TRANA"

 description="Snoop" />

 <http_classification_info

 uri="/MyIVT/*" transaction_class="Z9TRANB"

 description="MyIVT" />

 </InboundClassification>

 <InboundClassification type="internal" schema_version="1.0"

 default_transaction_class="Z9INT" >

 </InboundClassification>

</Classification>

AE_SPREADMIN …

 --------Qualifier-------- --Class--
Action Type Name Start Service
 DEFAULTS: CBCLASS
 ____ 1 CN Z9* ___ Z9CLASSB
 ____ 2 TC Z9DEFLT ___ Z9CLASSB
 ____ 2 TC Z9TRANA ___ Z9CLASSA
 ____ 2 TC Z9TRANB ___ Z9CLASSB
 ____ 2 TC Z9INT ___ Z9CLASSB

"http" is one of several
inbound work types:
http internal
iiop mdb
sip ola

Account for internal work
as shown. Then map to a
TC you know will be used
by one of your other rules.

You can assign
separate reporting
classes to isolate out
the internal work and
get numbers on each
service class

Do same for the default TC and the CN
default and you then have all cases covered.

wlm_ae_spreadmin and Re-Balancing of Service Classes
This is the next level of nuance in this ... one final control that determines the behavior
you see in this. Assume for example MIN=4 and two Service Classes seen:

Loose ends …

Servant
Region

Servant
Region

Servant
Region

Servant
Region

A

B

A

B

wlm_ae_spreadmin = 1
Default, prior to V8 fixed at this value

Control
Region

zWLM

With value = 1 WLM will attempt to balance service
classes across the minimum servants

Servants that hosted SC=A may get rebalanced to
start hosting SC=B

Can start new servant for SC if max not met

If #SC > max servants then nowhere to go

40

How's My Work Being Classified?
Some hints and tips on determining classification results

41

Some Available Tools

● WLMQUE
A TSO-based tool that displays each application environment and information about the servant
regions associated with it. Download the tool and documentation at:

ibm.com/servers/eserver/zeries/zos/wlm/tools/wlmque.html

● RMF
● IBM's tool to report on activity on z/OS. There are others....

● SMF 120.9
● The WebSphere SMF record contains an abundance of information about what requests

are run

● This includes the data used with the XML file to classify the request

● Also which servant region the request was dispatched in and whether it was dispatched
with affinity

● SMF 120.9 browser with plugin
● There is a sample plugin provided with the Java browser that can generate a sample

classification XML file based on the work you are running

42

More Information on WAS SMF

IBM Techdocs:

WP101342 – Overview of SMF 120-9

WP101726 – Writing your own SMF Browser Plugins

WP102312 – A 'reference' to the plugins I've written

WP102311 – Using those plugins to 'analyze' some data

43

What about Liberty?

44

What is the WAS for z/OS Liberty profile?

jndi-1.0 jdbc-4.0

sessionDatabase-1.0

monitor-1.0transaction-1.1

ssl-1.0

localConnector-1.0 restConnector-1.0

appSecurity-1.0

zosSecurity-1.0zosWlm-1.0 zosTransaction-1.0

 The WAS for z/OS Liberty profile is Liberty with optional,
independently enabled extensions that exploit z/OS
facilities
 Only enable exploitation of z/OS features you need

 Only configure the z/OS functions you use

 Focus of v8.5 is basic integration and exploitation

Common Feature Sets

z/OS Feature Sets

45

Feature – z/OS Workload Manager

 Adds support to classify HTTP requests with z/OS WLM

 Classification associates response time goals and importance to work run in
WebSphere

 z/OS workload manager will manage the resources available on the system in a
way that ensures the most important work runs while attempting to meet
response time goals

 RMF reports provide information about completed transactions, response times,
etc by service class

46

Feature – z/OS Workload Manager
 The impact of enabling zWLM is under 5%

-4.6%

• z196, 4-way LPAR running z/OS 1.13
• 64bit IBM Java 6.0.1 with compressed references, 1M large pages, 2GB heap
• IBM DB2 for z/OS v10, T2 JDBC with keepDynamic

	Title of Presentation (Type Size=32, can accommodate up to a maximum of 3 lines)
	Slide 2
	Slide 3
	WebSphere Application Server on System Z
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

