

14628: IBM Mobile Platform
development hands on lab
Lab Exercise

IBM Mobile Platform - Development hands on lab

Lab 1

© Copyright IBM Corporation, 2013

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

IBM Software

Contents Page 3

Contents
LAB 1 	 GETTING STARTED WITH IBM WORKLIGHT ... 4 	

1.1	 START THE WORKLIGHT STUDIO ... 5	
1.2	 CREATE THE CICSMOBILE PROJECT AND APPLICATION ... 6	
1.3	 PREVIEW COMMON RESOURCES IN MOBILE BROWSER SIMULATOR ... 12	
1.4	 EXPLORING WORKLIGHT ENVIRONMENTS ... 13	
1.5	 ENHANCING THE EGUI APPLICATION WITH CONTENT ... 18	
1.6	 RETRIEVING DATA WITH A WORKLIGHT ADAPTER .. 30	
1.7 TEST IN MOBILE BROWSER SIMULATOR ... 39	
1.8	 SUMMARY ... 42	

IBM Software

Page 4 Getting Started with IBM Worklight

Lab 1 Getting Started with IBM Worklight
In this lab you will develop a basic mobile app using the IBM Worklight Studio development environment.
You will use cross platform techniques such as HTML5, CSS3, JavaScript and the Dojo Mobile
framework. The app you will develop and use throughout this lab is called ECAT and its purpose is to
show you how you can quickly develop a mobile front end to interface and existing 3270 CICS
application running on enterprise systems. The application that you are going to connect to is EGUI
(CICS Catalog Manager Demo application).

Below are some screenshots from the fully developed application:

In this lab you will build a fully functional version of these three views in the rich page editor.

Upon completion of this exercise you should have gained basic understanding of

o How to create a Worklight project and a Worklight application in Worklight Studio

o How to build and deploy a Worklight application to the test server in the Worklight Studio

o How to preview and test an application from the Worklight Studio

o How to create Worklight Environments for platforms such as Android, iPhone, etc.

o How to use the Rich Page Editor to add UI elements to an application

o How to create and implement a Worklight Adapter (HTTP)

o How to run an application as a Web app

You should possess basic knowledge of HTML, CSS and JavaScript. Familiarity with the Eclipse platform
is a plus, but not required.

IBM Software

Contents Page 5

1.1 Start the Worklight Studio

This lab assumes that you have obtained and started the corresponding VMWare image. In the image
you will launch Eclipse with the Worklight Studio tooling and then create a project for the ECAT app.

You will launch the Worklight Studio then create a new

__1. Start Worklight Studio

__a. On the Desktop, double-click the Worklight Studio icon (shown below).

__b. On the Workspace Launcher dialog accept the default workspace path
C:\IBM\Worklight\workspaces and click OK.

__c. If you receive an Eclipse Welcome Screen, dismiss it by closing the Welcome tab.

IBM Software

Page 6 Getting Started with IBM Worklight

1.2 Create the CICSMobile project and application

The application that you are building is actually EGUI (the CICS Catalog Manager sample application),
the eCAT name was something that was inherited from some other work.

__1. Create CICSMobile project

__a. Select File > New > Worklight Project.

c) Enter CICSMobile as the project name, keep the default Project Templates selection for
Hybrid Application and click Next.

IBM Software

Contents Page 7

d) The Hybrid Application panel will surface noting that you have not specified an
Application name. Enter EGUI for the Application name then click on the Configure
JavaScript Libraries… button.

e) In the JavaScript Libraries window, select the Add Dojo toolkit box then click Finish.

IBM Software

Page 8 Getting Started with IBM Worklight

f) Now click the Finish button in the Hybrid Application window.

The application template will be populated and the index.html file will open by default.
We can leave it at its defaults for now, while we investigate the parts of a Worklight
project and application.

g) In the Project Explorer pane, expand the CICSMobile project. Review the folder structure
that has been created.

Java Resources
Worklight Server, JRE Sytem and WAS libraries
JavaScript Resources
Contains the project’s JavaScript classes content
adapters:
Contains the project’s adapters (used for backend connectivity)
apps:
Contains the project’s applications
bin: (seen after building content)
Location for build artifacts (wlapp files) that are deployed to a

Worklight server
www
Contains the Dojo Toolkit JavaScript source
server
Contains configuration files and extension locations for the

embedded Worklight test server

IBM Software

Contents Page 9

__f. In the Project Explorer, expand the apps folder then the apps > EGUI folder and the
apps > EGUI > common folder that were created by the new application wizard.

__g. Open the application-descriptor.xml file, if not already opened. Switch to the Source
tab. The following section specifies the application name, description and author’s name
to be displayed in the Worklight Console.

common: the default ‘environment’ that gets created for
an application.

css: main.css – the main application CSS file

images: Default images for the common environment.

js: main.js – the main JavaScript file for the app,
messages.js – JSON object holding all app messages,
auth.js – authentication mechanism.

index.html: The main application html file. Application
can have multiple html files

legal: All legal related documents.

application-descriptor.xml: Application’s meta data
(environments, security config, etc...)

build-dojo*: Artifacts related to custom dojo profile
builds (advanced)

IBM Software

Page 10 Getting Started with IBM Worklight

__h. Environment specific information will be inserted automatically as new ‘environments’ are
added to the project. You can observe this change as environments are added during
later portions of the lab.

__2. Add logic to connect to, and handle a connection failure with the Worklight server

__a. Expand the common then js folder, and double-click to open the initOptions.js file.

This file contains the parameters needed to connect to the Worklight server. These will be
invoked automatically once the Worklight framework initialization completes on the client side.
Here we will change the parameters to

a) Enable the mobile application to connect with the Worklight server by setting
connectionOnStartup : true,

b) Instructions if unable to connect to the server by uncommenting the onConnectionFailure
property and add the following implementation to the call back function(){…}

WL.Logger.debug('Unable to connect, running offline!');

wlCommonInit();

If desired, you can Copy and Paste code from above or Snippet#1.txt from the accompanying lab
snippets.

Below is a screenshot of what the result will look like after your changes.

IBM Software

Contents Page 11

__b. Save the initOptions.js file

__2. Perform a build of the work that you have completed so far.

__a. Right-click the EGUI application and select Run As > Run on Worklight Development
Server.

This step will build and publish your application to an embedded test server within
eclipse, where we can preview and test as part of the development life-cycle.

__b. Verify that the build process and that the deployment to Worklight server was successful
by examining the log output in the Console view.

If the console is not displayed, open it with Window > Show view > Other > Console.

Use Window > Use the console icon () to switch between the various consoles if
necessary, until you find the Worklight Console.

IBM Software

Page 12 Getting Started with IBM Worklight

1.3 Preview common resources in Mobile Browser Simulator

__1. Right-click on either the common folder (to run the common resource web app) or the
index.html file within the common folder and select Run as > Preview (use the first preview
option in the menu)

__2. A new external browser window will open with the Mobile Browser Simulator rendering our
EGUI application.

For this lab, we have configured eclipse to use an external web browser (Chrome), which opens
the Mobile Browser Simulator in a browser window outside of eclipse. Using an external browser
gives freedom to choose your rendering browser, access to advanced debugging features like
Web Inspector in Chrome or Firebug with Firefox, and access to internet settings, cache and
history that are not available when running with the internal browser setting in eclipse (see
Window > Preferences > General > Web Browser for this setting).

As this application has no device characteristics yet, a simple, un-styled mobile browser view is
rendered, with no device configuration options.

Congratulations! You are previewing your first hello world-like application developed using Worklight.

IBM Software

Contents Page 13

1.4 Exploring Worklight Environments

An environment is a mobile, desktop, or web platform capable of displaying web-based
applications, such as the Apple iPhone, Android phones, Windows 7, and BlackBerry. In this
section you will create environments to provide support for iPhone, Android and Mobile Web.

__1. Creating the Worklight Environments for the ECAT application

__a. In the Project Explorer select the EGUI application (in the /apps/EGUI folder). In the right
click menu select New > Worklight Environment.

__b. In the Worklight Environment dialog, select iPhone, Android phones and tablets, and
Mobile web app, (as seen below) then click Finish.

IBM Software

Page 14 Getting Started with IBM Worklight

__c. Observe the Console window, notice that the messages about the environments that you
have just chosen.

__d. In the Project Explorer, observe that there are now additional folders created under the
EGUI application folder.

IBM Software

Contents Page 15

__2. Quick review of the native folder for specific environments

__a. android native folder

The new environment’s resources will
have the following relationship with the
common resources:

• images - override the common
images in case both share the same
name

• css – extend and/or override the
common CSS files

• js - extends the common application
instance JS object  (The environment
class extends the common app class)

• HTML - override the common HTML
code in case both share the same
name

• native: contains environment specific

generated application code

The native folder under android
contains automatically
generated android application
code that is imported into the
eclipse workspace as an
Android Project during the Build
and Deploy step (later).

 It is not recommended to edit files
under the assets folder, as
each time the application is built
they are regenerated.

IBM Software

Page 16 Getting Started with IBM Worklight

__b. iPhone folders

__3. Build and deploy all environments

__a. Right-click the EGUI application and select Run As > Run on Worklight Development
Server.

__b. Check the Console log to make sure that the build and deploy is successful.

The native folder under iphone
contains automatically generated
iphone app code

The package folder under iphone
contains a packaged (zipped)
application

It is not recommended to edit files
under native/www folder, as each time
the application is built they are
regenerated

IBM Software

Contents Page 17

__c. Observe that the Native Android project has been created and imported into Eclipse
workspace.

This is an example of IBM Worklight’s tight integration with the device SDKs. Because the
Android SDK is Eclipse-enabled, Worklight is able to immediately generate an Android
Project in the Eclipse workspace (same for BlackBerry). For other platforms, Worklight
will launch the respective non-Eclipse tooling and provide a project in that tool’s format for
completion (eg. Xcode).

We will add some more interesting content in the next section before previewing the environment-specific
variations of the application.

IBM Software

Page 18 Getting Started with IBM Worklight

1.5 Enhancing the EGUI application with content

1.5.1 Adding the views

In this part of the Lab, we are going to continue developing our EGUI application with the Rich Page
Editor.

__1. Review the content you will build - three EGUI application views

__a. The Main View, Browse List View, and the Item Details View of the ECAT application that
will be built in this lab are shown below:

The Main view consists of a dojox.mobile.ScrollableView, with a Header, and a feature button
(Browse Catalog).

The Browse List view is also built on a dojox.mobile.ScrollableView, and contains a Header, a
navigation button to return to the Main view, and a scrollable listing of the items in the catalog.
When one of the items in the list are selected, you are directed to the Item Details View.

When an item is selected via the Browse List View or the Inquire Items View, you are directed
to the Item Details View. This view is also a dojox.mobile.ScrollableView, with the item details
listed. This view also has six dojox.mobile.TextBox(s) and an ‘Order Items’ Button. When the
items quantity is selected and the ‘Order Items’ button is tapped, that item and its quantity is
ordered.

__2. Prepare Eclipse for Rich Page Editor development by opening the appropriate eclipse Views.

Ensure that you have both the Palette and Mobile Navigation tabs visible for use with the Rich
Page Editor. We will use Mobile Navigation to manipulate and navigate between the
ScrollableViews in index.html, and the Palette will allow us to drag visual elements onto the page.

IBM Software

Contents Page 19

(You can place the tabs in whichever way seems most efficient to you)

“Pages” in a mobile application are built on views. For this application we are using
dojox.mobile.ScrollableViews, which are dojo view widgets that manage a view pane. Ensure
that the index.html file is the active file in the editor pane, and that the design or split editor tab is
visible.

IBM Software

Page 20 Getting Started with IBM Worklight

 NOTE: Sometime it may be necessary to close and re-open the index.html file if the Design
pane does not behave as expected.

__3. Open the file index.html into the editor if it’s not already opened.

__4. Update the default ScrollableView in the index.html page. This view was added by default by the
template tools when you select the Dojo toolkit in the beginning of the first section.

__5. Update the Id of the view to mainView by directly changing the html source or using the
properties window.

__6. Add a header to the mainView by inserting a dojox.mobile.Heading widget into the
ScrollableView mainView.

__7. Update the heading label in the html source to EGUI.

data-dojo-props="label:'EGUI', fixed:'top'"

__8. Add a dojox.mobile.RoundRecList widget below the heading to

__9. Remove the Hello Worklight default text from the view content.

IBM Software

Contents Page 21

__10. Next we’ll add a second dojox.mobile.ScrollableView to our application by dragging another
ScrollableView widget from the Dojo Mobile Widgets section of the Pallet into the <body> of our
index.html page, below the mainView ScrollableView as follows.

NOTE: To do this, we need to be scroll down to be bottom of the device screen in the design
portion of the split panes.

__11. After dragging and dropping, the ‘Create a new Dojo Mobile Scrollable View” dialog will surface.

__a. Enter browseList as the Id.

__b. Select the Include heading checkbox to include a heading.

__c. Enter Browse Catalog as the Heading label.

__d. Enter Back as the Back button label to add a Back button label.

__e. Select mainView from the Back button target drop-down box.

__f. Click Finish to generate the ScrollableView code for our Browse List view.

IBM Software

Page 22 Getting Started with IBM Worklight

__12. Lastly we’ll add a third dojox.mobile.ScrollableView to our application by dragging another
ScrollableView widget from the Dojo Mobile Widgets section of the Pallet into the <body> of our
index.html page, below the BrowseList ScrollableView. To do this, select the browseList view in
the Mobile Navigation view then add the widget towards the bottom of the device screen.

 After dragging and dropping, the ‘Create a new Dojo Mobile Scrollable View” dialog will surface.

__a. Enter itemDetails as the Id.

__b. Select the Include heading checkbox to include a heading.

__c. Enter Item Details as the Heading label.

__d. Enter Back as the Back button label to add a Back button label.

__e. Click Finish to generate the ScrollableView code for our Item Details view.

IBM Software

Contents Page 23

__13. Open the Mobile Navigation tab and notice how you can alternate the contents of the design tab
in the Rich Page Editor by selecting which is the active Mobile View – the view with the open eye
icon is currently displayed in the design tab. Click the closed eyelid to make that Mobile View
become the visible view in the editor.

If you double click to select the the mainView in the Mobile Navigation tab, it is rendered in the
design tab. This goes for any of the three views we created.

Congratulations, we have now designed our application’s three views. We now want to create the
content of those views.

1.5.2 Adding the structure to the views

__1. On the mainView view, we want to add a dojox.mobile.RoundRectList, which will house a
dojox.Mobile.ListItem, (Browse List). When this list item is tapped, we are taken to the
BrowseList view.

__a. From the Mobile Navigation Tab above, we want to make sure that the mainView
(default) is selected.

__b. Drag and drop a dojox.mobile.RoundRectList from the Dojo Mobile Widgets section of
the Pallet into the ‘mainView ScrollableView below Heading (as seen below).

IBM Software

Page 24 Getting Started with IBM Worklight

You now see that a dojox.mobile.RoundRectList has been added with a dojox.mobile.ListItem
already created. We now want to customize the dojox.mobile.ListItem to correspond to the
Browse List view.

__2. Add propterties to the ListItem widget to make it interactive

__a. Add an ‘moveTo:browseList’ property to the dojox.mobile.ListItem element, which will
take us to the next view.

__b. Add an on-click property to the dojox.mobile.ListItem element, which will display the
list of items to browse.

This is the code after the change:

data-dojo-props="label:'Browse List',moveTo:'browseList'"
onclick="inquireCatalog"></div>

You have now designed the mainView view, added a list item that is now linked to the browseList
view. We will now design the browseList view.

__3. On the browseList view, we want to add a dojox.mobile.EdgeToEdgeList, which will house all
of the items in the catalog that we want to list. When one of these list items are tapped, we are
taken to the corresponding item’s itemDetails view

__a. From the Mobile Navigation Tab, we want to make sure that the BrowseList view is
selected.

IBM Software

Contents Page 25

__b. Drag and drop a dojox.mobile.EdgeToEdgeList from the Dojo Mobile Widgets section
of the Pallet into the ‘BrowseList’ ScrollableView below Heading (as seen below).

__c. We will now make a slight change to the dojox.mobile.EdgeToEdgeList in the source
view. Delete the dojox.mobile.ListItem completely, from </div> to <div> as shown in
the red rectangle below.

__d. Also copy and paste the following line to add an ID property to the
dojox.mobile.EdgeToEdgeList element. The source code should look like this:

<div data-dojo-type="dojox.mobile.EdgeToEdgeList" id="catalogList">

 Both of these changes are reflected below.

The first image is the before:

This image is the after:

__e. Make sure to save your changes to the index.html.

 This change allows the dojox.mobile.EdgeToEdgeList to be populated with a number of list items
dynamically, which we will get to in later steps.

__4. You have now designed the BrowseList view, added a dojox.mobile.EdgeToEdgeList which will
be linked to the itemDetails view. We will now design the itemDetails view.

IBM Software

Page 26 Getting Started with IBM Worklight

The ItemDetails view will consist of six textboxes and a button (Order Item). The six textboxes
have some description text, and are where the data for each catalog item will go once it is
retrieved from the VSAM dataset on our back-end enterprise system

__a. From the Mobile Navigation Tab, we want to make sure that the ItemDetails view is
selected.

__b. Copy and paste of the code from the Snippet#2.txt file found in the lab snippets folder

You will want to make sure that the code snippet (Snippet#2.txt) is copied in its entirety,
and pasted directly after the heading for the ItemDetails view as shown below (the red
rectangle surrounds the heading):

Set your cursor directly after the </div> tag and hit the Enter key. This will start a new line in
the editor. Line your curser up with the preceding <div tag as shown below.

Once you have a blank line, paste (right-click > paste) the following code at the beginning of the
line.

 <label for="desc" style="font-weight: bold"> Description:</label>
<input data-dojo-type="dojox.mobile.TextBox" id="desc" class="itemText">

 <label for="dept" style="font-weight: bold"> Department:</label>
<input data-dojo-type="dojox.mobile.TextBox" class="itemText2"
id="dept">

 <label for="cost" style="font-weight: bold"> Cost:</label> <input
data-dojo-type="dojox.mobile.TextBox" class="itemText3" id="cost">
</br>
 <label for="stock" style="font-weight: bold"> Stock Qty:</label>
<input data-dojo-type="dojox.mobile.TextBox" class="itemText4"
id="stock">

 <label for="order" style="font-weight: bold"> On Order: </label>
<input data-dojo-type="dojox.mobile.TextBox" class="itemText5"
id="order">

 <label for="itemRef" style="font-weight: bold"> Item Ref
#:</label> <input data-dojo-type="dojox.mobile.TextBox" class="itemText6"
id="itemRef">

 <button data-dojo-type="dojox.mobile.Button" id="OrderItemButton"
style="font-weight: bold" onclick="placeOrder(itemRef.value)">Order
Item</button>

IBM Software

Contents Page 27

Make sure to save the index.html file before proceeding.

__5. Add CSS to main.css to provide a “branded” look for the EGUI application, overriding defaults
and giving a more consistent experience across different devices.

__a. In the Project Explorer view, find and open (double-click)
apps/EGUI/common/css/main.css in the editor, delete the entire contents and copy
and paste the following CSS text. You can also copy and paste code from EGUIcss.txt
from the accompanying Lab Snippets folder on the desktop for cut & paste. Be sure to
save the changes to the main.css.

/* Reset CSS */
a, abbr, address, article, aside, audio, b, blockquote, body, canvas, caption,
cite, code, dd, del, details, dfn, dialog, div, dl, dt, em, fieldset,
figcaption, figure, footer, form, h1, h2, h3, h4, h5, h6, header, hgroup,
html, i, iframe, img, ins, kbd, label, legend, li, mark, menu, nav, object,
ol, p, pre, q, samp, section, small, span, strong, sub, summary, sup, table,
tbody, td, tfoot, th, thead, time, tr, ul, var, video {
 margin: 0;
 padding: 0;
}
/* Worklight container div */
#content {
 height: 460px;
 margin: 0 auto;
 width: 320px;
}
.itemText {

IBM Software

Page 28 Getting Started with IBM Worklight

 margin-top: 5px;
 margin-left: 19px;
}
.itemText2 {
 margin-top: 20px;
 margin-left: 18px;
}
.itemText3 {
 margin-top: 25px;
 margin-left: 72px;
}
.itemText4 {
 margin-top: 30px;
 margin-left: 31px;
}
.itemText5 {
 margin-top: 35px;
 margin-left: 34px;
}
.itemText6 {
 margin-top: 40px;
 margin-left: 31px;
}
.spacer {
 margin-top: 100px;
}
.mblView {
 background: -webkit-gradient(linear, left top, left bottom,
from(#096093), to(#ffffff)) !important;
}
.mblHeading{
 background:-webkit-gradient(linear, left top, left bottom,
from(#379AC4), to(#096193)) !important;
}
/* workaround for white on white in simpleDialogs */
#WLdialog {
color:black;
}

 By adding in the CSS Styles provided, we are able to make the application running on all devices
look the same. The EGUI/common/css folder contains a stylesheet (main.css) that overrides the
CSS for individual platforms (Android, iOS, ect.) so changes we made here will reflect in all
device types.

1.5.3 Adding functionality to the views

In this section we will add and update content to main.js JavaScript file in order to provide the
logic for the mobile application to function.

__1. Open the /apps/EGUI/common/main.js file. You will see that there are some functions already
defined: wlCommonInit() and dojoInit()

IBM Software

Contents Page 29

__2. Rather than manually adding the implementation, you can simply override the content with the
main.js file included the lab resources. This can be done in several ways:

__a. This can be done by deleting all of the content of the current main.js file then pasting the
content from the EGUI_main.js file that is part of the supplied lab resources.

__b. This can be done by deleting the main.js file in the common/js folder then copying the
EGUI_main.js file into the common/js directory and renaming to main.js

__3. You can review the comments to get a better understanding of what each function provides for
the mobile application.

IBM Software

Page 30 Getting Started with IBM Worklight

1.6 Retrieving Data with a Worklight Adapter

In this portion of the lab, you will build two Worklight HTTP adapters and integrate them into the ECAT
application.

A Worklight adapter is hosted on the Worklight server, and interacts with remote data sources, retrieving
data or performing actions. The Worklight client runtime provides a simple, common JavaScript interface
to invoke the adapter and exchange data from a mobile application.

In this lab you will be connecting the mobile front-end application that you have built with back-end
services and data from the original version of this application, running in CICS Transaction Server on
z/OS. This 3270 CICS application has been web-service enabled so that we can use modern application
interfaces, such as Web and Mobile, to re-use the business logic and access data from our legacy
application. These web-services can be communicated with by sending SOAP messages through HTTP
‘post’ requests. In this next section, you will build the Worklight Adapter that contain the messaging
structure for sending and receiving information to/from the System z.

__1. Create a new Worklight Adapter.

__a. In the Project Explorer view, right-click on EGUI project > New > Worklight Adapter.

__b. In the New Worklight Adapter dialog, select the Adapter type HTTP Adapter and enter
CatalogWrapperAdapter as the name then click the Finish button.

IBM Software

Contents Page 31

__c. The BrowseListAdapter Adapter will be created with the following contents

__2. Edit the CatalogWrapperAdapter xml file

The CatalogWrapperAdapter.xml file should be open in the editor, with tabs for Design and
Source. The default adapter is created as a sample to retrieve RSS feed data from cnn.com and
offers methods for both raw and field-filtered data. We will over-write the default values and
methods to connect to our CICS application running on a backend zOS server.

__a. Select the Design tab of the CatalogWrapperAdapter.xml editor (on the bottom left),
expand the Connectivity node and select the Connection Policy to edit the HTTP
connection details.

CatalogWrapperAdapter.xml – Adapter
configuration containing connection info,
security info and registered methods for
the adapter

CatalogWrapperAdapter -impl.js –
JavaScript implementation file for the
adapter methods

filtered.xsl – XSL stylesheet for use in
filtering/processing returned data

IBM Software

Page 32 Getting Started with IBM Worklight

__b. Change the Domain to zserveros.demos.ibm.com

__c. Change the Port to 8082

__d. Set the Cookie policy to blank

__e. Select Procedure “getStoriesFiltered” > click the Remove button

__f. Select Procedure “getStories” and change the name to inquireCatalog

__g. Save the file.

This step replaces the two procedure entries for getStories and getStoriesFiltered with a new
procedure called inquireCatalog (shown in the Source view below).

IBM Software

Contents Page 33

__3. Add the implementation for the inquireCatalog procedure to the CatalogWrapperAdapter-impl.js
file.

By default, adapters are implemented in JavaScript. In this step, open the
CatalogWrapperAdapter -impl.js file, remove the code for the default procedures provided by the
template and paste the code for our inquireCatalog procedure.

__a. Expand CICSMobile project > expand adapters folder > expand
CatalogWrapperAdapter folder > double-click to open the CatalogWrapperAdapter -
impl.js file into the editor.

__b. Remove the code and comments for the 3 functions getStories, getStoriesFiltered, and
getPath. You can simply delete the entire contents of the BrowseListAdapter-impl.js
file.

__c. Paste the following JavaScript into CatalogWrapperAdapter -impl.js from the
Snippet#3.txt file in the lab resources.

function inquireCatalog(obj) {

IBM Software

Page 34 Getting Started with IBM Worklight

 var request = "<soapenv:Envelope
xmlns:soapenv='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:exam='http://www.exampleApp.inquireCatalogRequest.com'>" +
 "<soapenv:Header/>" +
 "<soapenv:Body>" +
 "<exam:inquireCatalogRequest>" +

"<exam:startItemRef>"+obj.itemRef+"</exam:startItemRef>" +

"<exam:itemCount>"+obj.itemCount+"</exam:itemCount>" +
 "</exam:inquireCatalogRequest>" +
 "</soapenv:Body>" +
 "</soapenv:Envelope>";

 var input = {
 method : 'post',
 returnedContentType : 'xml',
 path : 'exampleApp/inquireCatalogWrapper',
 body: {
 content: request.toString(),
 contentType: 'text/xml; charset=utf-8'
 }
 };

 return WL.Server.invokeHttp(input);

}

__d. The resulting implementation should look something similar to this:

IBM Software

Contents Page 35

As a summary, our adapter configuration file (CatalogWrapperAdapter.xml) contains the
protocol (http), host (zserveros.demos.ibm.com) and port (8082) information which defines the
target System z server address and port that the original 3270 CICS application has been web-
service enabled for communication on. Our procedure defines the remainder of the service URL
(/exampleApp/inquireCatalogWrapper), the HTTP method (post) and the content type to
expect (xml). There are two parameters we are passing into the adapter, as required by the
back-end service that we are invoking. These parameters include ‘itemRef’ which tells what item
number we are starting to retrieve data from in the catalog, and ‘itemCount’ which tells how
many items in the catalog that we want data for.

__4. Deploy the CatalogWrapperAdapter Worklight Adapter.

__a. Save all files.

__b. Select the CatalogWrapperAdapter folder in the Project Explorer, right-click and select
Run As > Deploy Worklight Adapter.

IBM Software

Page 36 Getting Started with IBM Worklight

__c. Watch the console for the message that the adapter has been successfully deployed.

__5. Add a second procedure to the CatalogWrapperAdapter Worklight Adapter.

__a. In the Design view of the CatalogWrapperAdapterxml select the adapter name then click
on the Add button. A dialog will open, select Procedure then click OK.

__b. Enter placeOrder as the name of the procedure.

__c. Save the CatalogWrapperAdapter.xml file.

IBM Software

Contents Page 37

__6. Add the implementation for the placeOrder procedure to the CatalogWrapperAdapter -impl.js file
by copy and pastimg the following JavaScript from Snippet#4.txt into CatalogWrapperAdapter-
impl.js

function placeOrder(obj) {

 var request = "<soapenv:Envelope
xmlns:soapenv='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:exam='http://www.exampleApp.placeOrderRequest.com'>" +
 "<soapenv:Header/>" +
 "<soapenv:Body>" +
 "<exam:placeOrderRequest>" +
 "<exam:orderRequest>" +
 "<exam:userId>"+obj.userId+"</exam:userId>"
+

"<exam:chargeDepartment>"+obj.dept+"</exam:chargeDepartment>" +

"<exam:itemReference>"+obj.itemRef+"</exam:itemReference>" +

"<exam:quantityRequired>"+obj.quantity+"</exam:quantityRequired>" +
 "</exam:orderRequest>" +
 "</exam:placeOrderRequest>" +
 "</soapenv:Body>" +
 "</soapenv:Envelope>";

 var input = {
 method : 'post',
 returnedContentType : 'xml',
 path : 'exampleApp/PlaceOrderWrapper',
 body: {
 content: request.toString(),
 contentType: 'text/xml; charset=utf-8'
 }
 };

 return WL.Server.invokeHttp(input);
}

__7. The resulting implementation should look something like this:

IBM Software

Page 38 Getting Started with IBM Worklight

In summary, we added a second procedure call to the existing adapter because we are going back to the
same CICS region. Our procedure defines the remainder of the service URL
(/exampleApp/placeOrderWrapper), the HTTP method (post) and the content type to expect (xml).
There are four parameters we are passing into the adapter, as required by the back-end service that we
are invoking. These parameters include ‘itemRef’ which tells what item number we are placing an order
for, ‘quantity’ which tells how many of the item we want from the catalog, ‘userId’ which is the I.D. of the
user placing the order, and ‘dept’ which is the code for the department that will be charged for the order.

__8. Deploy the updated CatalogWrapperAdapter.

__a. Save all files.

__b. Select the CatalogWrapperAdapter folder in the Project Explorer, right-click and select
Run As > Deploy Worklight Adapter.

__c. Watch the console for the message that the adapter has been successfully deployed.
This is similar to the result the first time the adapter was deployed.

IBM Software

Contents Page 39

Congratulations you have successfully used the Worklight Studio to build a Worklight application
with multiple mobile device environments, navigation between views, and are set to retrieve data
from a back-end service with a Worklight adapter.

1.7 Test in Mobile Browser Simulator

The final step is to test the EGUI application using the Mobile Browser Simulator. A new external
browser window will open with the simulator rendering our EGUI application.

_1. Right click on either the common folder (to run the common resource web app) or the index.html file
within the common folder and select Run as > Preview (as shown below)

_2. A new external browser window will open with the Mobile Browser Simulator in which the EGUI
application should be displayed. (This may take a few seconds to a few minutes while the application is
built and deployed completely).

IBM Software

Page 40 Getting Started with IBM Worklight

_3. Navigate the views to validate that the adapter is working and data is being retrieved. After you
place a successful order, you can check the item stock quantity to validate that it was indeed decreased
by 1 (default setting for this lab).

IBM Software

Contents Page 41

Lab 1

IBM Software

Page 42 Getting Started with IBM Worklight

1.8 Summary

In this lab you have learned how to use Worklight Studio to create a cross platform mobile application
using HTML5, CSS, JavaScript, the Dojo Mobile framework. You have learned how to target specific
devices such as iPhone and Android phones and seen some very basic customizations that can be
applied for making the application look consistent across platforms. You have also seen how to use the
Mobile Browser Simulator within both the Worklight Studio and the Worklight Console to test the
application in preview mode.

You should now be familiar now with the Worklight Studio environment and the common development
tasks associated with building a mobile application extending the capabilities of existing enterprise
applications running on System z.

Congratulations!

