
Key Metrics for DB2 for z/OS
Subsystem and Application
Performance Monitoring (Part 1)
Robert Catterall
IBM

March 12, 2014
Session 14610

Insert
Custom
Session
QR if
Desired.

The genesis of this presentation
• Mainframe DB2 people have an abundance of data fields

they can look at for performance monitoring purposes
• In DB2 monitor displays and reports
• In z/OS monitor displays and reports
• In various DB2 -DISPLAY commands
• In CICS (DSNC) DISPLAY STATISTICS command output

• With all of these numbers staring back at you, you could:
• Freeze up (sometimes referred to as “analysis paralysis”)
• Try to analyze everything, all the time (maybe OK if you

have a LOT of free time on your hands)
• Focus too much on “FYI” and “level 2” numbers (the latter

being fields that you should check if a “level 1” number is
not what it should be), and overlook what’s really important

My goal

• Through this presentation, I want to help you to
be more effective and efficient in monitoring
DB2 subsystem and application performance

• How?
• By spotlighting the relatively small set of metrics

that are your most important indicators of good
(or not) performance

Agenda

• Part 1
• DB2 monitor-generated reports versus online

displays
• Application performance: DB2 monitor accounting

reports (and displays)
• Part 2

• Subsystem performance: DB2 monitor statistics
reports (and displays)

• The best bits in DB2 and CICS DISPLAY command
output

• Important DB2-related stuff in z/OS monitor reports
and displays

DB2 monitor-generated reports
versus online displays

Ongoing tuning versus putting out fires

• Many sites use their DB2 for z/OS monitor exclusively
in online mode
• Online monitoring is valuable, especially when you

need to see what’s happening right now in order to
diagnose a performance problem

• For in-depth, ongoing analysis of the performance
“health” of a DB2 for z/OS subsystem and associated
applications, I prefer to use DB2 monitor-generated
reports
• If you’ve only used your DB2 monitor in online mode, look

into the product’s batch reporting capabilities
• In this presentation, I’ll show a lot of information excerpted

from DB2 monitor-generated reports – you should be able
to find most of this information in online displays, as well

Generating reports with your DB2 monitor

• Usually involves executing a batch job that includes
a DD statement pointing to a data set containing
DB2 trace records (usually written to SMF)
• Batch job has a control statement in SYSIN, in which

you specify things such as:
• “From” and “to” dates/times
• Report type (e.g., ACCOUNTING LONG)
• Filtering criteria (e.g., include or exclude a DB2 plan

name)
• Report data organization options (e.g., order by

connection type)

The two most useful DB2 monitor reports
1. Accounting long (aka “accounting detail”), with:

• “From” and “to” times encompassing either a busy 1- or 2-
hour time period, or a 24-hour time period

• Data ordered by (or “grouped by”) connection type
• Gives you a detailed report for each DB2 connection type:

CICS, IMS, DRDA, TSO, call attach, utility, etc.
• If more granularity needed, can get data at correlation-name

level (e.g., CICS tran ID or batch job name), primary auth ID
level, etc.

2. Statistics long (aka “statistics detail”), with:
• Same “from,” “to” times as accounting reports (see above)

• In addition to providing very useful information, these two reports are
pretty inexpensive (records on which the reports are based are
generated by low-overhead DB2 traces)

Application performance: DB2
monitor accounting reports
(and displays)

Understanding your DB2 application workload

• What’s the biggest component of your DB2 workload?
• Seems simple enough, but I’ve found that plenty of DB2

people cannot readily answer this question as it pertains
to their site

• “Biggest” – biggest in terms of aggregate class 2 CPU
time
• Information comes from DB2 accounting trace class 2
• Also known as “in-DB2” CPU time
• Indicates the CPU cost of SQL statement execution

• “Component” – connection type (e.g., CICS, batch,
DRDA, etc.)

Answering the “biggest component” question

• Accounting long report, with data ordered by connection type
• For each connection type, perform a simple calculation

(referring to sample report output on following slide):
• (average class 2 CPU time) X (number of occurrences)
• “Number of occurrences” = number of trace records

• Usually one per transaction for online, one per job for batch
• DB2 can “roll up” accounting records for DRDA transactions

(ACCUMACC – default is 10 – and ACCUMUID in ZPARM)
• Reports from different monitors can look a little different

• Samples in this presentation are from IBM’s Tivoli OMEGAMON
XE for DB2 Performance Expert on z/OS

• Fields in reports can usually be found in online monitor displays
• Note: I’m leaving out some report lines and columns because putting

all on a slide would require a too-small font size

Sample report output (2-hour time period)

CONNTYPE: DRDA
AVERAGE DB2 (CL.2) HIGHLIGHTS
----------- ---------- ------------------------
CP CPU TIME 0.003614 #OCCURRENCES : 3087344
SE CPU TIME 0.003348

(avg CL 2 CPU) X (# of occurrences) = 0.006962 X 3,087,344
 = 21,494 seconds

In a DB2 data sharing environment, do this for each member of the group to
get TOTAL DRDA SQL cost, TOTAL CICS-DB2 SQL cost, etc.

Don’t forget this! (SE = “specialty engine,” which usually means zIIP)

The DRDA part of the overall DB2 workload
• Often, DRDA-related activity is the fastest-growing

component of an organization’s DB2 for z/OS workload
• At some sites, DRDA-related activity is the largest

component of the DB2 for z/OS workload – bigger than
CICS-DB2, bigger than batch-DB2
• Again, “largest” refers to total class 2 CPU time

• I have found that people – even mainframe DB2
people – are often unaware of this
• Not uncommon for senior IT managers to think of the

mainframe as just the server where the “legacy”
applications run

• In fact, the mainframe DB2 platform is evolving to
become a “super-sized” (and super-available, super-
secure) data server for modern, multi-tier applications

Another important workload characteristic
• Is the DB2 workload CPU-constrained?
• A good place to check: “not accounted for” time in the

DB2 monitor Accounting Long report
• What it is: in-DB2 (class 2) elapsed time that is not CPU

time, not suspension time (latter being class 3, or “waiting
for” time)

• Basically DB2 saying, “this was time, related to SQL
statement execution, that I can’t account for”

• It’s usually associated with DB2 wait-for-dispatch time
• In other words, DB2 (vs. application) tasks are not being

readily dispatched
• DB2 address spaces usually have a high priority, so if

not-accounted-for time is relatively high for a transactional
workload, you may have hit a processing capacity wall

DB2 not-accounted-for time (1)

• I get concerned if not-accounted-for time is greater
than 10% for a high-priority transactional workload
such as CICS-DB2 (or, often, DRDA)
• Not so concerned if this time exceeds 10% for batch

DB2 workload – that’s not uncommon

CONNTYPE: CICS
CLASS 2 TIME DISTRIBUTION

CPU |===============> 30%
SECPU |
NOTACC |==> 5%
SUSP |================================> 65%

DB2 not-accounted-for time (2)

• If your monitor report
does not have the “bar
chart” elapsed time
breakdown shown on
the preceding slide, it
will likely have a “not
accounted for” field in
the “class 2” time
column (in red at left)

• If “not accounted for”
time is not provided,
calculate it yourself:

• A – (B + C + D)

CONNTYPE: CICS

AVERAGE DB2 (CL.2)
------------ ----------
ELAPSED TIME 0.085225 A

CP CPU TIME 0.025313 B

SE CPU TIME 0.000000 C

SUSPEND TIME 0.055708 D

NOT ACCOUNT. 0.004204

What if not-accounted-for time is high?
• Add capacity (maybe just an LPAR configuration change)
• If that’s not feasible…

• May see what you can do to reduce CPU consumption of
the DB2 workload (I’ll cover this later)

• Ensure that dispatching priorities are optimized for
throughput in a CPU-constrained environment
• IRLM should be in SYSSTC service class (very high priority)
• DB2 MSTR, DBM1, DIST, and stored procedure address

spaces should be assigned to a high-importance service class
(my opinion: somewhat higher priority than CICS AORs)
• If system is really busy, you may need to go with PRIORITY(LOW)

for CICS-DB2 transaction TCBs (this is relative to priority of CICS
AOR main task – default is PRIORITY(HIGH))

• Map DRDA transactions to service classes (in WLM policy) so
they won’t run as “discretionary” work

DB2ENTRY
resource

How is your DB2 I/O performance?

• Average service time for synchronous I/Os = A / B
• Times are getting to be really low (in this case, 1.06 ms)

• Due to advances in I/O hardware and software: faster
channels, parallel access volumes (reduces UCB-level
queuing), lots of disk controller cache

• A time > 5 ms represents opportunity for improvement
• A time > 10 ms could indicate a performance problem

CONNTYPE: DB2CALL
 A B
CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT
------------------- ------------ --------
SYNCHRON. I/O 6.520800 6133.32

Sample report output

How CPU-efficient are your DB2 applications?

• Usually, you’re aiming to reduce A (referring to
sample report below), which is in-DB2 CPU time
(CPU cost of SQL statement execution)
• Note: sometimes, reducing A can be accomplished by

increasing B (again, “SE” is short for “specialty engine,”
which usually is a zIIP engine – more on this to come)

AVERAGE DB2 (CL.2)
----------- ----------
CP CPU TIME 28.311773 A

SE CPU TIME 0.000000 B

Sample accounting report output

Average CPU time – per what and for what?
• Depends on aggregation level of information in accounting

report (specified by you)
• Could be average:

• Per transaction/job for connection type (e.g., DRDA, call attach)
• Per transaction for a CICS AOR (an example of a connection ID)
• For a given batch job or CICS tran (these are correlation names)
• Per transaction or job for a given DB2 authorization ID

• Larger scope can be appropriate when evaluating a tuning
action of the “rising tide lifts all boats” variety (e.g., page-
fixed buffer pool)
⇒DB2 subsystem ID
• (largest scope)

AVERAGE DB2 (CL.2)
----------- ----------
CP CPU TIME 28.311773

SE CPU TIME 0.000000

If DRDA accounting records rolled up, number of
commits is good indicator of number of transactions

Information at the program (package) level

• May be LOTS of packages in the report – where do you start?
• Your monitor may provide a “sideways bar chart” in an

accounting long report that could help you to zero in on
packages that consume a lot of CPU time

• Very useful if a batch job or
transaction involves execution
of multiple programs

• Requires data from DB2
accounting trace classes 7
and 8

M123456B TIMES
----------- ------------
CP CPU TIME 13:35.566002

SE CPU TIME 0.000000

Sample report output

PROGRAM NAME CLASS 7 CP CPU TIME CONSUMERS
D789123Y |=> 3%
M123092G |=======> 15%
I273459Z |> 1%

Package name

Application efficiency: thread reuse

• Sample shows a thread reuse rate of 99% - very good
• Boost CICS-DB2 thread reuse via protected entry threads

for high-use trans (PROTECTNUM in DB2ENTRY)
• Non-protected thread usually deallocated after tran done
• Protected thread will stick around for 45 seconds (default)

after transaction completes
• Can be reused by another transaction associated with same

DB2ENTRY if plan name doesn’t change

NORMAL TERM. AVERAGE
------------- --------
NEW USER 0.79
DEALLOCATION 0.01
RESIGNON 0.20

(data in this report sample is for a CICS-DB2 workload)

Thread reused, auth ID
changed

Thread not reused
Thread reused, no auth
ID change

Maximizing benefit of thread reuse
• Bind packages executed via reused threads with

RELEASE(DEALLOCATE)
• Table space locks, EDM pool elements retained until thread

deallocation, vs. being released at commit (e.g., end of tran)
• If package is executed repeatedly via the same thread, these

resources won’t have to be repeatedly reacquired – that
improves CPU efficiency

• Can reduce CPU consumption by several percentage points
• Considerations:

• Not good option for programs that get exclusive table space
locks

• If using DB2 V8 or DB2 9, keep an eye on EDM pool space
• RELEASE(DEALLOCATE) increases non-stealable space

• Can impact scheduling of utilities, DDL, bind operations

DB2 10: a new thread reuse option
• High performance DBATs (database access threads –

used for client-server work that comes through DB2 DDF)
• High performance DBAT is instantiated when a DBAT used

to execute a package bound with RELEASE(DEALLOCATE)
• Prior releases of DB2 treated packages bound with

RELEASE(DEALLOCATE) as though they were bound with
RELEASE(COMMIT) when executed via DBAT

• High performance DBAT doesn’t go back into pool – remains
dedicated to the connection through which it was instantiated
• Terminated after 200 units of work to free up resources

• Best used for simple, high-volume DRDA transactions
• May want to bind IBM Data Server Driver or DB2 Connect

packages with RELEASE(DEALLOCATE) into a collection other
than NULLID, for selective use of high-performance DBATs

• Monitoring: DB2 monitor Statistics Long report

Application efficiency: GETPAGES
• For my money, the number one determinant of CPU

time for a DB2-accessing job or transaction

• Ways to reduce GETPAGE activity:
• Change query access paths

• Often involves adding indexes or modifying existing indexes
• Might rewrite query to get a better-performing access path

• Re-cluster data
• ALTER INDEX CLUSTER / NOT CLUSTER
• Table-controlled partitioning: can have different clustering,

partitioning keys
• Archive/purge “cold” data, so “warm” data not so spread

out in table

TOTAL BPOOL ACTIVITY AVERAGE
-------------------- --------
GETPAGES 359.66

Application efficiency: dynamic SQL cache
• Can be particularly important for client-server transactions

(DRDA workload) – often involve execution of dynamic SQL
• Recall that when programs issue JDBC or ODBC calls, these

are executed as dynamic SQL statements on the DB2 server
• CPU cost of full PREPARE of a statement can be several

times the cost of statement execution
• One way to boost statement cache hits: enlarge the

dynamic statement cache (above 2 GB “bar” since DB2 V8)
• Also: use parameter markers (vs. literal values) in dynamic

SQL statements (cache “hit” requires byte-for-byte match)

DYNAMIC SQL STMT AVERAGE
-------------------- --------
NOT FOUND IN CACHE A 0.26
FOUND IN CACHE B 1.05

What you want:
maximize B / (A + B)

DB2 10 and dynamic statement caching
• CONCENTRATE STATEMENTS WITH LITERALS attribute

of PREPARE statement (can also be enabled on DB2 client
side via keyword in data source or connection property)
• If match for dynamic statement with literals not found in cache,

literals replaced with & and cache is searched to find match
for new statement
• If not found, new statement is prepared and placed in the cache

• Not quite as CPU-efficient as traditional dynamic statement
caching and parameterized SQL, but less costly than full
prepares of dynamic statements containing literals
• Note: may WANT optimization using literals for range

predicates DYNAMIC SQL STMT AVERAGE
-------------------- --------
CSWL – MATCHES FOUND 0.24

Application efficiency: shifting work to zIIPs
• zIIP offload reduces cost of computing
• Options for increasing zIIP utilization:

• For DRDA workload, if using traditional DB2 stored
procedures, switch to native SQL procedures

• If it’s a batch workload, consider binding some packages
with DEGREE(ANY) to enable query parallelization
• Can limit degree of parallelization via PARAMDEG in ZPARM

• Migrate to DB2 10 (if not there already) – prefetch
processing is zIIP-eligible, and so is XML schema
validation processing

AVERAGE DB2 (CL.2)
----------- ----------
CP CPU TIME 28.311773 A

SE CPU TIME 0.000000 B
 Aim: reduce A by increasing B

Robert Catterall
rfcatter@us.ibm.com

You can scan this QR code and evaluate the session right
now!

	Key Metrics for DB2 for z/OS Subsystem and Application Performance Monitoring (Part 1)
	The genesis of this presentation
	My goal
	Agenda
	Slide 5
	Ongoing tuning versus putting out fires
	Generating reports with your DB2 monitor
	The two most useful DB2 monitor reports
	Slide 9
	Understanding your DB2 application workload
	Answering the “biggest component” question
	Sample report output (2-hour time period)
	The DRDA part of the overall DB2 workload
	Another important workload characteristic
	DB2 not-accounted-for time (1)
	DB2 not-accounted-for time (2)
	What if not-accounted-for time is high?
	How is your DB2 I/O performance?
	How CPU-efficient are your DB2 applications?
	Average CPU time – per what and for what?
	Information at the program (package) level
	Application efficiency: thread reuse
	Maximizing benefit of thread reuse
	DB2 10: a new thread reuse option
	Application efficiency: GETPAGES
	Application efficiency: dynamic SQL cache
	DB2 10 and dynamic statement caching
	Application efficiency: shifting work to zIIPs
	Slide 29

