’#5 HAREorg Jﬁ#

Ly S By

Running Java on Linux on
System z

Kishor Patil (patil@ca.ibm.com) ; N\

Wednesday, March 12, 2014 paahh
Session 14557 NN .
1:30 PM —2:30 PM \ [ X /AR




Trademarks, Copyrights, Disclaimers

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION

CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS I1S" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’'S CURRENT PRODUCT PLANS AND STRATEGY,

WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY a
DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER
DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE

EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR

LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE

USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2014. All rights reserved.

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without
notice at IBM'’s sole discretion. Information regarding potential future products is intended to outline our
general product direction and it should not be relied on in making a purchasing decision. The information
mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver
any material, code or functionality. Information about potential future products may not be incorporated into
any contract. The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

=
- SHARE
2 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



Content £

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

IBM Java on System z

 History, overview and roadmap
» Under the hood: J9 Virtual Machine and IBM Testarossa JIT

IBM System zEC12 features exploited in IBM Java'7

New features in IBM Java 7 Release 1 [\
Preview: Node.js™ support, Multi-tenancy, Java 8 Lambdas
Garbage collection policies and tuning

IBM Monitoring and Diagnostic Tools for Java

14709: Need a Support Assistant? Check Out IBM's! (ISA) |14955:- IDDE 1.0 Features and Futures
Thursday, March 13, 2014:5:00 AM-9:00 AM Thursday, March 12, 2014: 8:30 AM-10:20 AM

Speaker: Michael Stephen(IBM Corporation)

Speaker: Kenneth Irwin{IBM Corparation)

p~
- SHARE
3 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®oee®



IBM and Java s

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

« Java is critically important to IBM

« Infrastructure for IBM's software portfolio
WebSphere, Lotus, Tivoli, Rational, Information Management

* IBM is investing strategically for Java in Virtual
Machines
* A single JVM supports multiple configurations (ME/SE/EE)
* New technology base (J9/Testarossa) on which to deliver improved
performance, reliability, serviceability
« IBM also invests and supports public innovation in Java
* OpendDK, Eclipse, Apache
(XML, Aries, Derby, Geronimo, Harmony, Tuscany, Hadoop,...)
» Broad participation in relevant open standards (JCP, OSGi)

«® %
[ ]
- SHARE
4 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



.
SHARE
IBM's Approach to Java Technology @ — -
Quality Engineering
Performance .
Security v Listen to and act upon market
Reliability requirements
Serviceability )
v World class service and
support
v Available on more platforms
than any other Java
IBM Java implementation
= v Highly optimized
v Embedded in IBM'’s

middleware portfolio and
available to ISV partners

Production Requirements
IBM Software Group
IBM eServer
ISVs
IBM Clients %
: SHARE

Complete your session evaluations online at www.SHARE.org/Anaheim-Eval °oe




Differences between Oracle and IBM Java 9%

Technology - Connections - Results

« Both use the same reference implementation of Java Class
Libraries (e.g. OpendDK)
« Key differences
« Security: Standards do not impose strong separation of interest
« ORB: OMG CORBA standard rules

« XML: Xerces/Xalan shipped by both vendors since Java 5, although )
different levels may be used

« |IBM J9/Testarossa runtime vs. Oracle HotSpot
« Different tuning and controls for JVM, JIT and GC
« Tooling is distinct (e.g. IBM Health Center)
 IBM runtimes support and exploit IBM System z and System p

p|a’[form S AIX Linux Windows z/0S
PPC-32 X86-32 PPC-32 zArch-31 X86-32 zArch-31
PPC-64 x86-64 PPC-64 zArch-64 X86-64 zArch-64

H 0%
o ®
[ ]
- SHARE
6 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®oqe®



Porting Java applications to z

« Experience shows there are subile differences between the different JVM™s

« Very important key point: the IBM® Java® SDK is not a "special" version

of Java, it is 100% pure Java, as it passes all compatibility tests from
Oracle™

« Differences fall into 2 categories: ‘

« Infrastructure related differences (mostly Java
command line parameter differences, for example:
garbage collection settings)

« Coding related differences (for example: Java class
library implementation differences)

°® oo ®
S : http://www. X
ource: http://www smscs..i(SHARE
L2 Q‘

7 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval



Porting Java applications to z

« Best practice / strong recommendation: try to evaluate the to-be-
ported application with the IBM Java SDK on any other platform
(for example Intel® x86), before going for System z®

« Most of the porting related issues are related to the mentioned subtle differences in the
various JVMs and not System z

* Following this best practice, the problems can be addressed where they belong 1o
(which is either the application or the IBM Java SDK, but not System z)

« Elements / patterns that are known fo cause trouble:
* Heavy usage of platform native libraries / Java Native Interface (JNI)

» Hard-coded path names (happens mostly with Java applications that were developed
on / developed for Microsoft® Windows®) ;

« Using vendor-specific APls (for example Java packages starting with com. sun)

« Additional problem (project management related): running a /arge scale siress test for the
first time as part of the porting

 Issues in the application that are noft related to the actual porting will surface

°® ®°
[ ]
- SHARE
8 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®oqe®



Evolving Java on Z =

Enable integration of Java-based applications with core z/OS backend database environment for high
performance, reliability, availability, security, and lower total cost of ownership

Portable and consumable
« First-class IBM Java SDK for z/OS and z/Linux
* Providing seamless portability across platforms

Pervasive and integrated across the z eco-
system

« Java business logic runs with all z middleware (IMS, CICS,
WAS etc)

 Inter-operability with legacy batch and OLTP assets

Deep System Z exploitation
« SDK extensions enabled z QoS for full integration with z/OS
« zAAP/zIIP specialty engines provide low-cost Java capacity

Performance
* A decade of hardware/software innovation and optimization
* Industry leading performance with IBM J9 Virtual Machine

« Enabling tight data locality for high-performance and
simplified systems

9 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval



System z Java Product Timeline

o

31-bit and 64-bit SDK 6 , V6.0.0 .
1. Supplies Java SE 6 APIs S HA 3
2. 210 Exploitation Technology - Cpgg@™ Results
31-bit and 64-bit SDK 5 3. IBM J9 2.4 VM and JIT Technology 2009 /
1. 1BM J9 2.3 VM and JIT Technology 4. GA 4Q2007
2. z9 Exploitation 5. z/OS and Linux on z 201 4
3. GA 4Q2005

4. z/OS and Linux on z

2007

z/0S 64-bit SDK 1.4.2

1. 1BM J9 2.2 VM and JIT Technology (1st product use)

2. GA 4Q2004 200
3. End of Service September, 2008

f31 -bit and 64-bit z/OS Java SDK 6 \

SDK1.4
1. 31-bit OS and 31-bit and 64-bit Linux on z 2003 V6.0.1

2. GA 4Q2002 -
3. z/OS End of Marketing September, 2008 Supplies Java SE 6 APIs
z196 Exploitation

4. z/OS End of Service September, 2011
New IBM J9 2.6 VM and JIT Technology '
31-bit SDK1.3.1

[ 31-bit SDK1.1.1, then 1.1.4 and 1.1.6 } 2001 SremeEe| JAULS ane| ZUS SEITY
— 1. /0S8 and Linux on z
1999 2. GA 3Q2000 /

1. First OS/390 Java product — GA 1997 z/OS Java products, GA March 2011:
2. Out of service
3. End of Service: September, 2007 31 -bit and 64-bit Java SDK 7.X \
z/OS and Linux on z
Supplies Java SE 7 APIs
OpendDK
z196/zEC12 Exploitation
New IBM J9 2.6/2.7 VM and JIT

ff-":".w!\’.—‘

1998
A

31-bit SDK1.1.8
1. 0S/390 GA 1999
2. Out of service

IBM continues to invest aggressively in Java for

/.0’ ohwn

: _ : Technology
System z, demonstrating a rich history of GA Oct 2011 /
innovation and performance improvements.
Testimonials: http://www-01.ibm.com/software/os/systemz/testimonials/ : SHARE
10 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eee®



IBM Java Runtime Environment .

Technology - Connections - Results

« |IBM Java Runtimes since Java 5 are built with IBM J9 Virtual Machine
and IBM Testarossa JIT Compiler technology
Independent clean-room JVM runtime & JIT compiler
« Combines best-of breed from embedded, development and server
environments... from a cell-phone to a mainframe!
Lightweight flexible/scalable technology
World class garbage collection — gencon, balanced GC policies
Startup & Footprint - Shared classes, Ahead-of-time (AOT) compilation
64-bit performance - Compressed references & Large Pages
Deep System z exploitation — zEC12/2196/210/z9/2990 exploitation
Cost-effective for z - zZAAP Ready!

« Millions of instances of J9/TR compiler

[ ]
- SHARE
11 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®ece®




IBM Testarossa JIT Compiler — Introduction

Java Application byte i/
= Compile byte-code down to native assembly to remove the d\
overhead of interpretaton ——-- RE
ava itterpreter’ g e
= Significantly more efficient use of computational resource fava VI Gnterpreten 5|2
— ~10-100x faster than interpretation I
l—l’ [=]
= Discovers and exploits the program's runtime environment to JIT Cumpﬂer'[
generate optimal assembly e

= Compilation cost is included in application runtime, hence uses
runtime profiling to direct compilation decisions
— Choose what to compile
— How much effort to invest in compilation

JIT Compilation Strategy: = Goals:
— Focus compilation CPU time where it matters
Interpreter/AOT — Stager investment over time to amortize cost
Methods start as interpreted
— — Interpreter does first level profiling

warm After N invocations, methods get compiled at * warm’ Ievel [\ 7
Sampling thread used to identify hot methods |

Methods may get recompiled at * hot or ‘ scorching’ Ievels

= Transition to ‘ scorching’ goes through a temporary Qroflllng step \
— Global optimizations are directed using profiling data ~
— Hot paths through methods are identified for register allocation, branch
straightening, etc
— Values/types are profiled
— hot paths are specialized/versioned
— Virtual calls are profiled, hot targets are in-lined - SHARE

12 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®




Y
Shared Classes & Ahead-Of-Time (AOT) Compilation  .uas:

System Memory

» Shared Classes

— Store classes into a cache that can be shared by multiple JVMs .15 |
— Read-only portions of the class \éotemial
— Memory footprint reduction /t?luplication!
— Startup time improvements (class initialization) '

— Cache memory page protection (read-only caches)

— Class compression (64-bit class compression)

— Persistent cache (between reboots)

Class Memory Segments

= AOT Compilation

— Compiled code generated “ahead-of-time” to be used by a subsequent.execution .~
Performance of AOT code is poor A A
e (Cannot be specialized due multi-instance use and dynamic class loading

e Dynamic class loading imposes overhead of assumption management
Rely on recompilation to make code that matters better

— Persisted into the same shared cache
— Startup time improvements
— CPU utilization reduction

- SHARE

13 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval *eoe®



Java Road Map /[1/

SHARE
Support for dynamic languages Language improvements
Improve ease of use for SWING Closures for simplified fork/join

New Language features: -« Performance Improvements New IO APIs (NIO2)

Autoboxing Client WebServices Support Java persistence AP

E .
Ggf]rgﬁégted types JMX 2.x and WS connection for JMX
Metadata agents

Language Changes

feod

~alz

4V IBM Java7R1
‘|« Improvements in
: * Performance
* RAS
* Monitoring
« zEC12™ Exploitation
+ zEDC for zip acceleration
« SMC-R integration
« Transactional Execution

IBM Java Runtimes

* Runtime instrumentation

IBM Java 5.0 (J9 R23) IBM Java 6.0 (J9 R24) IBM Java 6.0.1/Java7.0 . gggfgg:ss Aocslerator
* Improved performance « Improvements in (J9 R26) :

» Generational Garbage Collector « Performance « Improvements in -

. ﬁhari‘; (\3}_3339"3 I\iupﬁ_ort « Serviceability tooling « Performance IBM Java7.0SR3

. New s irtua jlgl' meh I « Class Sharing * GC Technology * Improvements in

_+ New Testarossa JIT technology . L parser improvements - 2196™ Exploitation - Performance

» First Failure Data Capture + z10™ Exploitation » O0O0 Pipeline + zEGC12™ Exploitation
* Full Speed Debug + DFP exploitation for BigDecimal » 70+ New Instructions « Transactional Execution
* Hot Code Replace + Large Pages » JZOS/Security Enhancements » Flash 1Meg pageable LPs
« Common runtime technology * New ISA features * 2G large pages

« ME, SE, EE * Hints/traps

14 complete your session evaluations online at www.SHARE.org/Anaheim-Eval E3 T;C) *eee®




zEC12 — More Hardware for Java

Continued aggressive investment in Java on Z

Significant set of new hardware features
tailored and co-designhed with Java

Hardware Transaction Memory (HTM) *
Better concurrency for multi-threaded applications
eg. ~2X improvement to juc.ConcurrentLinkedQueue

Run-time Instrumentation (Rl)*
Innovation new h/w facility designed for managed runtimes
Enables new expanse of JRE optimizations

2GB page frames **

Improved performance targeting 64-bit heaps

Pageable 1M large pages with Flash Express**

Better versatility of managing memory

RDMA over Converged Ethernet

Shared-Memory-Communication**
[ workloads measured with zEC12 and Java7SR3

Up-to 60% improvement in throughput amongst Java } ,

Enterprise Data C i lerator **
zEnterpriseé Data Lompression accelerator * Not supported under zVM, native LPAR needs

gzip accelerator SLES11 SP3/RHEL6.3
** Linux Ip is already pagable, but no flash support
** currenlt only supported on zOS

New software hints/directives/traps

Branch preload |mpro.ves.b.ranch prediction Engineered Together—IBM Java and zEC12 Boost Workload Performance
Reduce overhead of ImpIICIt bounds/null checks http://www.ibmsystemsmag.com/mainframe/trends/whatsnew/java_compiler/
15 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval Teee®



s )
Hardware Transactional Memory (HTM) e

» Allow lockless interlocked execution of a block of code called a “transaction”
- Transaction: segment of code that appears to execute “atomically” to other CPUs

Other processors in the system will see either-all-or-none of the storage updates by the transaction \\
- \‘\,
 How it works —
- TBEGIN instruction starts speculative execution of transaction 2
- Storage conflict detected by hardware and causes roll-back of storage and registers Z_ sgf/
Transaction can be re-tried; or “
A fall-back code path that performs locking can be used to guarantee forward progress aQ s
- Changes made by transaction become visible to other CPUs after TEND instruction {Z“«
CPU 0: Trans. A CPU 1: Trans. B / AN
Storage conflict: ' \
/TBEGIN \ Trans. A will abort

Trans. B will commit
changesto X and Y

Crona > L

\_ TEND -
CPU 0 can only see (Xx=Y=0) or (X=Y=1),
cannot see (X=1,Y=0) or (x=0,Y=1)

16 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval




HTM Example:

Java on zEC12

Transactional Lock Elision (TLE)

e:lide o} [ih-lahyd][Z] Sho
verb (used with abject), e-lid- ed e-lid-ing.

1. to omit (a vowel, consonant, or syllable) in pronunciation.

2. to suppress; omit; ignore; pass over.
3. Laow. to annul or quash.

Transaction Lock Elision on HashTable.get()
Java Prototype

/I/.\W

Throughput (ops/sec)

Threads

(Controlled measurement environment, results may vary)

Threads must serialize despite only

—

/i
SHARE

Technology - Connections - Results

Lock elision allows readers to
execute in parallel, and safely back-

reading... j in- writer .
eading... just in-case a writer updates out should a writer update hash
the hash
oo oo oo o ooy r___________|
| read_hash (key) { | | read_hash (key) I
I Wait_for_lock(); I | TRANSACTION_BEGIN |
I
| read (hash, key); I read hash.lock; |
| | | . I
I Release_ lock(); I I BRNE serialize_on_hash_ locKk
[ } I | read (hash, key); J
|
| | | TRANSACTION_END
e R e i e R R e == =T = = = =
Thri: read_hash() ! Thr1:read_hash() ... Thr3:read_hash()
—_— ]
|
|
5 T

Thr2: read_hash() E

Thr3:read_hash()

17 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

e®e®
°

: SHARE

L)
®ge0




18

Transactional Execution: Concurrent Linked Queue

~2x improved scalability of juc.ConcurrentLinkedQueue

Unbound Thread-Safe LinkedQueue
First-in-first-out (FIFO)

Insert elements into tail (en-queue)
Poll elements from head (de-queue)

No explicit locking required
Example usage: a multi-threaded work queue

Tasks are inserted into a concurrent linked queue as multiple worker threads

poll work from it concurrently

Throughput

Concurrent Linked-Queue Benchmark w/ Java Prototype

s

/*_/_'

///"

2 4 6 8 10 12 14 16 18 AN 2 A X 24 3 32 34 36 33 40

# of Thre ads

B New TX-base

Traditional CAS-base
implementation

implementation

De-queue

head

A

node

A

tail

En-queue

SHAR

nections - Results

first
node

last
node

L)
O..‘

(Controlled measurement environment, results may vary) ; = FlfAM K

—



Java on zEC12 3 . = —
Runtime Instrumentation -

Technology - Connections - Results
.
. -
-to-
-
» Event traces, e.g. taken branch trace
, €.9.

« ‘“costly” events of interest, e.g. cache miss information
* GR value profiling

» Enables better “self-tuning” opportunities

Just-in-time Compiler

Immediate representation generator

Optimizer

4L

Code generator

xaxax
-
-
-
.
-
-

Profiler

Runtime

IA13

1 (setup) 6 (analyze)

—— -
CcPU \-

9 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

.
ms—
N
e

- % . . .
- ﬁ%ﬂﬁ
-
.
- .




Java on zEC12 Ed . :% r“/
Linux on System z and IBM Java 7 on -
zEC12: SHARE

Linux on System z Multi-Threaded 64 bit Java Workload 16-Way
~60% Hardware (zEC12) and Software (SDK 7 SR3) Improvement

160

— —

N B

o o
L

—— 7zEC12 SDK 7 SR3
‘/;// Aggressive +
LP Code Cache

—=— zEC12 SDK 7 SR1 ’

—
o
o

—e— 2196 SDK 7 SR1

Normalized Throughput
(0]
o

g
\

)]
o
L

0 | N
1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

Aggregate 60% improvement from zEC12 and IBM Java 7 (Controlled measurement environment, results may vary)

° zEC12 offers a ~45% improvement over z196 running the Java Multi-Threaded Benchmark N SHARE

° IBM Java7 offers an additional ~10% improvement (SR3 and -Xaggressive) 5 .
20 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval °ee0




m JJ <
Java on zEC12 - -
=

Linux on System z and Java7SR3 on zEC12: .a=:
64-Bit Java Multi-threaded Benchmark on 16-Way

Linux on System z - Multi-Threaded 64 bit Java Workload 16-Way
~12x Improvement in Hardware and Software

160

—a—zEC12 SDK 7 SR3
140 A X Aggressive +

x “‘_‘\.__H\‘ LP Code Cache

—e—2zEC12 SDK 7 SR1

—

N

o
|

100 —e— 7196 SDK 7 SR1

80 A//-/ I e SR g

2196 SDK 6 SR9

60 -

—=—7z10 SDK 6 SR4

Normalized Throughput

—e—27z9 SDK 5 SR4
NO (CR or Heap LP)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Threads

~12x aggregate hardware and software improvement comparing IBM Java5 on z9 to IBM Java7 on zEC12
LP=Large Pages for Java heap CR= Java compressed references

IBM Java7SR3 using -Xaggressive + 1Meg large pages (Controlled measurement environment, results may vary) S S HARIE
21 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eqe®




Java on zEC12 B3 . = r“/
WAS On ZLinUX - S:A)RE

Technology - Connections - Results

Aggregate HW, SDK and WAS Improvement: WAS 6.1 (Java 5) on z9 to WAS 8.5 (Java 7) on zEC12

History of WAS on zLinux Hardware/Software Performance
4.5
. = Hardware Improvement +35q.a%1
— Software Improvement +26% __—

35
5]
g +22% — 30
& 3.0 ,
5 !
=] 2.4

Py ———_

I".-_,:_, 25 L fo
o 0 2.0
= 2 +67°
= 0 1.7
2
5 15
fr ]
< 1.0

1.0

0.5

JIR23 JOR23 JIR24 JoRz4 JIR17
0.0 4 : : : . :
Version 6.1 on 29 Version 6.1 on 210 Version 7.0 on =10 Version 7.0 on 2196 Version 8.5 on 2196 Version 8.5 on EC12

~4x aggregate hardware and software improvement comparing WAS 6.1 with IBM Java5 on 29 to WAS 8.5 with IBM Java7 on zEC12

20 (Controlled measurement environment, results may vary)




IBM SDK, Java Technology Edition,Version 7

Release 1 s ]
http://www.ibm.com/developerworks/java/jdk/linux/download.html suare

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

+ New IBM Java runtime (J9R27) with Java 7 class library 3 ,'|2")'/Z
« Expand zEC12/zBC12 exploitation el

« More TX, instruction scheduler, traps, branch preload
« Runtime instrumentation exploitation
« zEDC exploitation through java/util/zip
* Integration of SMC-R
« Improved native data binding - Data Access Accelerator
* Integrated with JZOS native record binding framework
« Improved general performance/throughput
+ Up-to 19% improvement to throughput (ODM)
» Up-to 2.4x savings in CPU-time for record parsing batch applicatic
* Improved WLM capabilities
« Improved SAF and cryptography support

« Additional reliability, availability, and serviceability (RAS)
enhancements

 Enhanced monitoring and diagnostics

‘SHARE

23 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval



Java-based Store, Inventory and Point-of-Sale /ﬁ

SHARE

App and IBM Java 7R1

Java Store, Inventory and Point-Of-Sale Application zEC12 16-way

Normalized
Maximum Operations per second

IBM Java 7 IBM Java 7R1

. 10% improvement to Java-based Inventory and Point-of-Sale application with IBM Java 7R1
compared to IBM Java 7

‘SHARE

24 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®e4e® inAnaheim

(Controlled measurement environment, results may vary)




IBM Operational Decision Manager 5

IBM Operational Decision Management zEC12 16-way

1.4
1.3
1.2
1.4
1
0.9
0.8
0.7
0.6
0.5 3
0.4
0.3
0.2
RIE [ —
0

Throughput
(Normalized to IBM Java 7 SR4)

IBM Java 7 IBM Java 7R1

. 19% improvement to ODM with IBM Java7R1 compared to IBM Java7 SR4
« 19% improvement to ODM with IBM Java7 SR4 compared to IBM Java 7 SR1
« 22% improvement to ODM with zEC12 compared to z196

) ® o
® °

[ ]

°
- SHARE
[ ]

L4 @

25 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval 0g0"

(Controlled measurement environment, results may vary)



Store your Data - zEnterprise Data Compression and IBM Java 7R1 _

&
Every day over 2000 petabytes of data are created _—
Between 2005 to 2020, the digital universe will grow by 300x, going from 130 to 40,000 exa-bytes™ SHARE
80% of world's data was created in last two years alone.

With IBM Java 7R1 : Up-to 12x improvement in CPU time
Up-to 3x improvement in elapsed time
Compression ratio of ~4x

What is it?

v' ZEDC Express is an 10 adapter
that does high performance
industry standard compression

CPU Time for Software versus zEDC Hardware Compression

160,000

140,000

120,000

v' Used by z/OS Operating System
components, IBM Middleware
and ISV products

100,000

m Software Default
@ Software Level 1
m zEDC Hardware

80,000

60,000

CPU Time Milliseconds

40,000 -

v' Applications can use zEDC 20,000 -

via industry standard APIs : o — I e

F1 F2 F3

(leb and Java) Compressed Data File

‘/ EaCh ZEDC EXpreSS Sharable Size of Compressed Data - Software versus zEDC Hardware
across 15 LPARs, up to 8 500

4,000
devices per CEC. 3,500

3,000

@ Input Buffer

v' Raw throughput up to 1 GB/s per
ZEDC Express Hardware Adapter

2,500

m Software Default
2,000 @ Software Lewvel 1
m zEDC Hardware

Data Size in Bytes

1,500

1,000
F2

F1 F3

(Controlled measurement environment, results may vary)

Compressed Data File

al ' pC: The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East




Move your Data - Shared Memory Communications (SMC-R): r1/

Exploit RDMA over Converged Ethernet (RoCE) with qualities of service support for

dynamic failover to redundant hardware

10.00%
5.00%
0.00%

-5.00%

-20.00%

Percent Change

-30.00%
-35.00%

-45.00%

SMC-R vs TCP/IP (0SA)
WAS Liberty<->DB2 Workload

-10.00% -
-15.00% -

-25.00% |

/iw
SHARE

chnology - Connections - Results

-40.00% |

System z SMC-R enabled platform
3.11% i o
,—l Middleware/Application Middleware/Application
. Sockets
Latency CPU Gonsumption per tran /\ S°°ke?/\ /\ oCE /\X
- C-R 1 R
O SMC-R vs TCP/IP (OSA) (40 Client
Connections) In{ Ee Inter
] Data Flows using RDMA
| over RoCE
< E : RoCE (CEE)
connection establishment over
-40.00% Dynamic negotiation for SMC -R

(Controlled measurement environment, results may vary)

. Transparent exploitation for TCP sockets based applications
. Compatible with existing TCP/IP based load balancing solutions
« Up-to 40% reduction in end-to-end transaction latency

. Slight increase in CPU is due to very small message size in this workload (~100 bytes). Workloads with larget |
payloads are expected to show a CPU savings 3

27 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

: SHARE

®
O...



Java7R1: Data Access Accelerator /.F“/

SHARE

Technology - Connections - Results

« A Java library for bare-bones data
conversion and arithmetic
- Operates directly on byte arrays
- Avoids expensive Java object instantiation
~  Orchestrated with JIT for deep platform opts
- Library is platform- and JVM-neutral

« Current approach

byte[] addPacked(byte a[], byte b[]) {
BigDecimal a_bd convertPackedToBd (a) ;
BigDecimal b_bd convertPackedToRBd (b) ;
a_bd.add (b_bd) ;
return (convertBDtoPacked(a_bd));

}
« Proposed Solution

byte[] addPacked(byte a[], byte b[]) {
DAA.addPacked(a, b);
return a;

28 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

Marshalling and Unmarshalling
+ Transforms byte arrays < Java variables
« Supports both big-endian and little-endian byte arrays

Packed Decimal (PD) Operations
vy g *, /, %

 Logical:>, <, >=, <=, ==, |=

* Arithmetic:
+ Validation: verifies if a PD operand is well-formed
+ Others: optimized shifts, moves on PD operand

Decimal Type Conversions
« Decimal < Primitive

- Convert Packed Decimal (PD), External Decimal (ED)
and
Unicode Decimal (UD) < primitive types (int, long)

» Decimal « Decimal
- Convert between decimal types (PD, ED, UD)
+ Decimal <+ Java
- Convert decimal types <« BigDecimal/BigInteger objects

Detailed API Specification: https://ibm.biz’BdRvwC

®
® '.

‘SHARE

L)
O..‘



DAA - JZ0OS Medicare Record Benchmark and IBM Java 7R1 r1’

JZOS Medicare Record Parsing Benchmark SHARE

1.2

0.8

= IBM Java 7 SR4

0.6
m IBM Java 7R1

0.4 1

0.2 1

CPU-time to Parse 5M Records
(Normalized to 31-bit IBM Java 7 SR4 w/o DAA)

31-bit 64-bit

e 31-bit IBM Java 7R1 with DAA versus IBM Java 7 CPU Time improved by by 2.4x
* 64-bit IBM Java 7R1 with DAA versus IBM Java 7 CPU Time improved by by 1.9x

http://www.ibm.com/developerworks/java/zos/javadoc/jzos/index.html?com/ibm/jzos/sample/fields/MedicareRecord.html

®
® '.

‘SHARE

29 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®ece®

(Controlled measurement environment, results may vary)




IBM SDK for Node.js™ e

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

« Stand-alone JavaScript® runtime and server-side

JavaScript solution for IBM platforms.

* Node.js™ (nttp:/nodejs.org) platform built on Google’s V8 JavaScript
engine (http:/code.google.com/p/v8/)

Available: Binaries for Linux on IBM POWER Systems, and
Linux/Windows/Mac OS X on Intel

 https://www.ibm.com/developerworks/web/nodesdk/
Support for other IBM platforms is being developed**.

Open source projects with active development in GitHub**

V8 on System z: https.//github.com/andrewlow/v8z
« V8 on System p: https.//qgithub.com/andrewlow/v8ppc

4

- Node.js™: https.//github.com/andrewlow/node “"“En]
«  Development builds: http://v8ppc.osuosl.org:8080/ CONSTRUCTION,

Now includes early AlX builds

Provide feedback via IBM developerWorks community
* https.//www.ibm.com/developerworks/community/qgroups/community/node

SHARE

30 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®oee®

**Timelines and deliveries are subject to change.




Cloud with IBM Java 5 AR E

* Multi-tenancy support will allow multiple
applications to run in a single shared JVM
for high-density deployments

. Win: Footprint reduction enabled by sharing runtime and
JVM artifacts while enforcing resource consumption
quotas

. Platform Coverage: 64-bit, balanced GC policy only

. Ergonomics: Single new command-line flag

(-Xmt = multi-tenancy)
« Hypervisor, Virtual Guest, and Extended-OS JMX Beans

« Allows applications to detect and identify the installed hypervisor and query
attributes of LPAR

« Provides richer access to operating system performance statistics

N\ /A

Timelines and deliveries are subject to change. ‘: SHARE
31 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval *eoe®



Cloud with IBM Java ZnAnS

 Runtime adjustable heap size (-Xsoftmx)
- JMX beans allow for dynamically adjusting heap size

- Allows users to take advantage of hot-add of memory in
virtualized environments

— Available in Java 7 SR3

« JIT support for “deep idle” state
- Enabled with -Xtune:virtualized (Java 7 SR4)

- Reduces CPU cycles used by the JIT during idle periods
Important for dense virtualized System z environments
Early results with WAS Liberty show ~2x to ~6x reduction

°® ®°
[ ]
- SHARE
32 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



—

Economies of Scale for Java in the Cloud rs

SHARE

Technology - Connections - Results

1+ GB / tenant 1+ GB / tenant 100’s MB / tenant 10’s MB / tenant 10’s KB / tenant

Tenant API

Application | Application Application | Application Application | Application Application | Application Application

Middleware Middleware Middleware Middleware Middleware Middleware Middleware (e.g. WAS) Middleware (e.g. WAS)
-Xshareclasses -Xshareclasses
OS Images OS Images OS Images OS Images 0S Image 0S Image OS Image

Share-nothing Shared hardware Shared OS Shared Process Share-everything
(maximum isolation) (maximum sharing)

‘Mission critical’

v
apps
. ) 4

W\ /0 AN AN L/

O ‘free’ apps il
. »
DenSIty ':SHARE

33 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval e ee® inAnaheim




Java 7R1 Tech Preview: -
Multi-tenancy: IBM's approach to 'Virtualized JVMs' =5

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

* A standard 'java' invocation creates a dedicated (non-shared) JVM in each process

| java \ | java \ ‘ |ava \

« |IBM's Multitenant JVM puts a lightweight 'proxy' JVM in each 'java' invocation. The 'proxy’
knows how to communicate with the shared JVM daemon called javad.

java java java « ‘'javad' is launched and
1 1 1 :
shuts down automatically

No changes required to

the application

» 'jJavad' process is where
aggressive sharing of
runtime artifacts
happens

W\ /A RN AN/

~_ : SHARE

34 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ‘o0




Java8: Language Innovation — Lambdas =
and Parallelism =

New syntax to allow concise code snippets and expression
» Useful for sending code to java.lang.concurrent
* On the path to enabling more parallelisms

Collections.sort (people, new Comparator<Person>() ({
public int compare (Person x, Person y) {
return x.getLastName () .compareTeoc (y.getLastName()) ;
}
1)

people.sort (comparing (Person: :getLastName) ) ;

More Information on Java 8 Lambdas:

http://www.dzone.com/links/presentation_languagelibraryvm_coevolution_in_jav.html o000
- SHARE
35 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval *eoe®



= SHARE
IBM J9 Garbage Collector Family @~ o
Policy Recommended usage Notes
optThroughput optimized for throughput default in Java 5 and Java 6
optAveragePause | optimized to reduce pause times
_jgencon . _optimized for transactional workloads | defaultin Java6.0.1Java7 __ _| _
subPools optimized for large MP systems deprecated in Java 6.0.1/Java 7
balanced optimized for large heaps added in Java 6.0.1/Java 7
« Why have many policies? Why not just “the best?”
— Cannot always dynamically determine what trade-offs the
user/application are willing to make
— Pause time vs. Throughput
Trade off frequency and length of pauses vs. throughput
— Footprint vs. Frequency
Trade off smaller footprint vs. frequency of GC pauses/events
: SHARE

36 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eqe®



ﬁ/

64-bit Java Performance : Compressed References =

SHARE
o » 32-bit address space
- Sabit Object (24 bytes__ 100_%) — Theoretically: 4GB of addressable virtual memory
“teta | ‘o — Realistically: less than 4GB due to link libs, execs, stack placement etc
+ Java heap needs to be contigucus
+ Native application code, JO9/TR runtimes and data, OS modules
— Customers reaching limits (OOM Exceptions)

. B4-bit Object (48 bytes — 50%)

object field ohject field

* Move to 64-bit pointers is not free
— Objects on average ~60% bigger

. 64-bit Compressed References (24 bytes — 100%) + ~B0% increase in Java heap footprint (smaller heap cccupancy ratio)
object | object — Increased Cache/TLB pressure
fou | e + Addressability increased, hardware remained constant (throughput effects)
Use 32-hit values (offsets) to represent object fields
With scaling, between 4 GB and 32 GB can be addressed " ConcertEd InveStment In Javae JRE
— Large Pages Technology
— Compressed References Technology
N/

» Option to enable compression in 64-bit Java 6 SR4, WAS 7 (Service Pack 3) '

* use —Xcompressedrefs option
» Java objects are 8-byte aligned

* Low 3 bits of object address = 000
» Address range restriction

« Java heap allocated in 23! — 23° range (2GB — 32GB virtual)

« High 29 bits of object address = 000 ... 000

» 32 out 64 bits are 0!
» Store 32-bit shifted offset in objects

«  Shift values of 0 through 3 are used

+ Maximum allowable heap is ~32GB, Actual allowed heap depends on shift value and virtual memory fragmentation
» Reference whitepaper: http://tiny.cc/mi4fgw ..°"-

- SHARE
37 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



IBM J9 Garbage Collector: -Xgcpolicy:optthruput ™ e

« Default policy in Java 5 and Java 6

» Used where raw throughput is more important than short
GC pauses

» Application stopped whenever garbage is collected

Thread 1 [
B Application
I ™ B ™ B ™ B ™ N ™ I
Thread 2 B GC
Thread 3 [
Thread n [

Time

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

‘SHARE

38 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval



IBM J9 Garbage Collector: w2ARD

 Trades high throughput for shorter GC pauses by
performing some of the garbage collection concurrently

» Application paused for shorter periods

Thread 1 [ —————
B Application
Thread 2 [ ———— B GC

Thread 3 SIS == concurrent Tracing
Thread n [ ———

»
|

Time

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

°® “%
[ ]
- SHARE
39 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval *eoe®



IBM J9 Garbage Collector: -Xgcpolicy:gencon ™ e

 Best of both worlds
—  Good throughput + small pause times
—  Shown most value with customers

 Two types of collection
— Generational nursery (local) collection
— Partially concurrent nursery & tenured (global) collection

 Why a generational + concurrent solution?

— Obijects die young in most workloads
Generational GC allows a better ROI (less effort, better reward)
Performance is close to or better than standard configuration

~ Reduce large pause times
Partially concurrent with application thread (“application thread is taxed”)
Mitigates cost of object movement and cache misses

°® “%

[ ]
- SHARE
40 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



IBM J9 Garbage Collector: -Xgcpolicy:gencon ™ e

» Default policy in Java 6.0.1 and Java 7

» Applications with many short-lived objects benefit from
shorter pause times while still producing good throughput

Thread 1 [N NSRSy O NN g Application
Thread 2 [N TN O TN [N T O N mmm Global GC

Thread 3 [NNCT I [N R [ U N [ vy O I N | [ scavenge GC
1 Concurrent Tracing
Thread n [N TR TR O TR R ey O O

v

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

°® “%
[ ]
- SHARE
41 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



IBM J9 Garbage Collector: -Xgcpolicy:gencon = &

« Heap is split into two areas
— Objects created in nursery (small but frequently collected)

— Objects that survive a number of collections are promoted
to tenured space (less frequently collected)

°® “%
[ ]
- SHARE
42 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



.
SHARE
IBM J9 Garbage Collector: -Xgcpolicy:gencon =
« Nursery is further split into two spaces
- allocate and survivor
— Division dynamically adjusted according to survival rate
ﬂursery
Allocate Space Survivor Space _
“SHARE
43 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ‘o0



IBM J9 Garbage Collector: -Xgcpolicy:gencon ™ e

« A scavenge copies objects from allocate space to survivor space
— Less heap fragmentation
— Better data locality
— Faster future allocations

 |f an object survives X number of scavenges, it is promoted to tenured
space

Nursery

N
4 A

°® “%
[ ]
- SHARE
44 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®




IBM J9 2.6 Enhancement: -Xacpolicv:balanced = ARE

« Improved application responsiveness

- Reduced maximum pause times to achieve more consistent
behavior

- Incremental result-based heap collection targets best ROl areas
of the heap

- Native memory-aware approach reduces non-object heap
consumption

Newly Allocated Fragmented Newly Allocated

\ \ \

HeapZDDDDD O O oo CIDC(CJ:DDDD:CJ):] =) ) :

| L 0
Y

Heap areas selected for GC
“Collection Set”

°® “%
[ ]
- SHARE
45 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®




IBM J9 2.6 Enhancement: -Xacpolicv:balanced = ARE

* Next-generation technology expands platform exploitation
possibilities
- Virtualization: group heap data by frequency of access, direct OS
paging decisions
- Dynamic re-organization of data structures to improve memory
hierarchy utilization

Newly Allocated Fragmented Newly Allocated
= e ——
HeapZDr:l:ll:lD OO oo ooyoooooold 000 :
et i o s e

Heap areas selected for GC
“Collection Set”

‘SHARE

46 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval




IBM J9 2.6 Enhancement: -Xacpolicv:balanced = ARE

« Recommended deployment scenarios
- Large (>4GB) heaps
- Frequent global garbage collections
- Excessive time spent in global compaction
- Relatively frequent allocation of large (>1MB) arrays

* Input welcome: Help set directions by telling us your needs

Newly Allocated Fragmented Newly Allocated
= —— .
HeapZDDCJCJD OO oo ooyoooooold 000 :
—_—

Heap areas selected for GC
“Collection Set”

[ ]
O ®e
[ ]
- SHARE
®
®
0...

47 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval




IBM J9 Garbage Collector: Tuning =~ et

« Typical approach
- Pick a policy based on desired application behavior
- Monitor GC behavior; overhead should be no more than
10%
~ Tune heap sizes (-Xms, -Xmx)
- Tune helper threads (-Xgcthreads)
- Many other knobs exist

 Best practices

- Avoid finalizers

~ Don't use System.gc()
{ SHARE
48 complete your session evaluations online at www.SHARE.org/Anaheim-Eval *eee®



IBM J9 Garbage Collector: Tuning =~ et

« Typical approach
- Pick a policy based on desired application behavior
- Monitor GC behavior; overhead should be no more than
10%
~ Tune heap sizes (-Xms, -Xmx) )
- Tune helper threads (-Xgcthreads)
- Many other knobs exist

 Best practices
- Avoid finalizers
~ Don't use System.gc()

49 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

"Oeo"’



IBM J9 Garbage Collector: Tuning

« IBM Garbage Collection and Memory Visualizer (GCMV

memory footprint and GC be

havior

] =
] 2 s}
Used heap (after collection)
1369 |
= = (—
L] 3
collection time Compact imes ~ Used heay] 1141 rapariion o e Spent n pa used 6T BTG
N
— gc # hours ms A Allocation failure count 275
= = 0 o0 18.07 014 Fiake of garbage colleciion 240,624 047 MEfhours
Summary
is file is very large. Scrolling performancd 1 o0 18.66 Mean inkerval between collections {hours) oo
el . . Compact fimes
<?xml version=" & .
2 001 00
“E’ 686 Used heap (afier Compacttimes
- . a
<verbosegc version="20051020_AA"> 3 001 0.0 g collection) Taans [ | aimar] Toal
1% free 5 3l A = 459 fime (ms) | ime (ms) | ime (ms) | ime (ms)
+1+ deferred 0 4 002 419 404 0o 1348 25
rotal z 5 0.02 0.0
6 0.02 0.0 232 )
<sys id="1" timestamp="Thu Nov 10 05:05 7 0.02 0.0 Compact i
<time exclusiveaccessms="0845" /> 0.0
<tenured freebytes="1571779360" totalby 8:.0.02 00 0.0 0.09 018 027 036 4348
<soa freebytes="1493136160" totalbytes 9 002 0.0 time thours)
<loa freebytes="78643200" totalbytes=" i85 o
<fenured> optthruput3 vgc  Report Data |Line plet | Structured datz k)
<ge type="global" id="1" totalid="1" interv. 11 002 0.0 £
<compaction movecount="5391" moveb 50000 o0 1163 H T
<classesunloaded count="0" timetakenmm =
<refs_cleared soft="5" weak="15" phant¢| OPthruput3.vgc Report Data| Line plot| Structured data 5
<finalization objectsqueued="5" /> 533 |
<timesms mark="35.020" sweep="6.739" compact="18.067" total="59 ¢ 0.0
<tenured freebytes="1572533296" totalbytes="1572864000" percen
<soa freebytes="1493890096" totalbytes="1494220800" percent="9 0.0 009 018 027 0.36 045 055

<loa freebytes="78643200" totalbytes="78643200" percent="100" />
<ftenured>
</ge>
<tenured freebytes="1572533296" totalbytes="1572864000" percent="9%
(I I D]
optthruput3.vgc | Report| Data| Line plot| Structured data

time (hours)

Used heap (after collection)

| Mean

‘ Minimum ‘ Maximuml Towal ‘

= e P |
optthruput3 vgec |Report | Data Line plot| Structured data

50 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

[4]

Uses -verbose:gc output to provide detailed view of Java

(R4
L]
L]
°S
®

®
®e

_

SHARE

Technology - Connections - Results

Uses ps -p $PID -o pid,vsz,rss output to plot native footprint

HARE

.0




IBM J9 Garbage Collector: Tuning =~ et

* GC tuning documentation
- http://www.ibm.com/developerworks/views/java/libraryview.jsp?search by=java+technology+ibm+style
- http://www-01.ibm.com/support/docview.wss?uid=swg27013824 &aid=1
- http://proceedings.share.org/client files/SHARE in San Jose/S1448K1161816.pdf
- http://www.redbooks.ibm.com/redpapers/pdfs/redp3950.pdf

« Memory leaks are possible even with GC

- Detect large objects/object cycles with IBM Memory Analyzer D
: SHARE
51 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



What is IBM Support Assistant?

 ISA Workbench | F!rjdllnfu_rmatlun i

— A free application that simplifies
and automates software support

~ Helps customers analyze and
resolve questions and problems
with IBM software products

~ Includes rich features and
serviceability tools for quick
resolution to problems
« Meant for diagnostics and
problem determination

~ Not a production monitoring tool

14709: Need a Support Assistant? Check Out IBM's! (ISA)
Thursday, March 13, 2014: 8:00 AM-3:00 AM

Speaker. Michael Stephen(lBM Corporation)

52 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

- SHARE




IBM Monitoring and Diagnostic Tools for Java:
Health Center

@ Method profile 53
Filter methods: Clear
Samples Self (%) Self Tree (%) Tree Method
H 9 709 641 [N 642 [N DatsStore.createl argeObjects()
e What prob|em am | solvi ng* o - A e
84 759 1 645 NN RetrieveDatarun)
ES 344 1 344 java.lang Thread.sleep(long, in)
H H ? %6 235 | el DataStare.retrieveData()
- What is my JVM doing? Is s T
9 081 579 1 DataAnalysis.run()
. ? 6 054 054 java.lang String lastindexOf(int)
everyth I ng OK . 3 027 036 java.net.SocketOutputStream.socketWrite(byte[], int, in
3 027 027 com.sunjmxremote internal ServerCommunicatordn
. . . . 2 018 048 com.ibmjava.diagnestics.healthcenter.agent.dataprovi
Wh m II tl n r nnln 2 018 018 javao ByteArrayinputStream.read(bytel], int, int)
- y IS y app Ca O U g 2 018 0.8 b diagnesti t.dat
2 018 0.8 java.utilProperties.Joad(java.io.Reader)
I I ’? 2 018 018 sun.reflectUTF8 utfBLength(ava.lang String)
S OW y H 2 018 018 sun.io.CharToByteUTF8.convert(char[], int, int, byte[], i
1 0.09 0.09 java.lang.Long.parseLonq(java.lang.String, int) -
. . . '? o i
- Why IS It not Scallng H @ Invocation paths % | &5 Called methods ) Timeline S

Methods that call DataStore.createLargeQObjects()

/iw

SHARE

Technology - Connections - Results

b

D) DataStore.createlargeObjects
D DataStore.retrieveData (80.2%)

& " IBM Monitoring and Diagnestic Tools for Java™ - Health Center

m@é}

Edit Data Monitored VM Yiew Help
M2 HeedTda

£ Analysis and ..

Am | using the right JVM options?
Health Center Overview

(@ RetrieveData.run (100%)
(D DataStorestoreData (19.8%)

@ StoreData.run (816%)

@ Datanalysis.run (18.4%)

File

® i ke
[ J

o

@ The mean occupancy
is116% which is high. You
may improve application
performance by increasing

—Used heap (after collection)
~=Heap size

=]

2| = 0|85 Heap and pause... £3 | B Object allocations| = Samples by req.

) Samples by obje

your heap size.

© The recommended

Lightweight monitoring tool with very low
overhead

command line is -Xmsd 23m
@ Heap usage seems to
be growing over time. It
increased by 13%in the last
third of the log compared to
the middle of the
log.However, the number of
Collections decreased by

150

Understands how your application behaves and -
offers recommendations for potential problems

19%. This indicates that the
rate at which your
application is producing
garbage seems to be
slowing down. This may

@ Ti
mean that your application I

[ Summary £2 | o[ Call hierarchy

elapsed time (minutes)

=0

will reach a steady-state at
which the heap usage will

Features: GC visualization, method
profiling/tracing, thread monitoring, class loading
history, lock analysis, file I/O and native memory

usage tracking
Suitable for all applications running on IBM JVMs

53 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

°
°

°S
®

®
O...

no longer be increasing. System (forced) garbage collection count 2

Concurrent collection count 16
Largest memory request 128KB
Mesn garbage collection pause 77 ms L
GC Mode Default (optavgpause) |
Number of collections triggered by allocation failure 3815
Mezn interval between callections 2363 ms
Proportion of time spent unpaused (%) 99.7% L
Proportion of fime spent in Garbage Collection pauses (%) 033%

~ ||| Number of collections 2 -

41M of 54M im
e® e

HARE




N

SHARE

Technology - Connections - Results

IBM Monitoring and Diagnostic Tools for Java:
Health Center

{. 1BM Monitoring and Diagnostic Tools for Java™ - Health Center - R — [E=REE)
! Edit Dats Monitored VM View Help
40 BeeldamBPink
Track available System [ Analysis and Recom... &2 | = O || [ Native memory usage 52 = O || m M native memory &% =04
@ The area of the VM a
IIT Code Cache

{excluding Java Heap) using the
most native memory is JIT Code
Cache with 256 ME 500 250

@ The current memory usage

memory and native
memory used by the JVM

does not indicate any memory leaks, 400 200
= &
£ 200 = 150
H &
= 100
l 100 50
File Edit Data Monitored VM View Help |
~ e = 0 0
@ % H o & m G 4
0w Eleed = D b dfp e 0:30 1:00 1:30 200 230 300 330 0:30 1:00 1:30 200 2:30 300 3:30
T Current threads % 7 O || Jz Number of threads 52 =08 elapsed time (minutes) elapsed time (minutes)
[20 | Thread name filter: Apply | | Clear Number of threads [ Native memory table | 22 JVM native memory breakdown table &3 =
B
= 400 -
. T = Category Allocated Decp  Allocated Sha...  Bytes Deep Bytes Shallow 2
. L 4 JRE 8957 00 1053 MB 00 MB |
& || | Signal Dispatcher RUMNASLE 300 Unknown 00 0.0 0.0 MB 0.0 MB |
= Concurrent Mark Helper RUNMNABLE :t_:, 4 T 995 993 289 ME 315 MB =
GC Slave RUNNABLE 2 200 T CodeCache 10 10 256 MB 256 ME
GC Slave RUNNABLE E JIT Data Cache 10 10 20MB 20 MB |
GC Slave RUNNABLE - = a VM 7628 981 762 ME 241 MB =
€ Slave RUNNABLE e NI 204 204 0.093 MB 0.093 MB
GC Slave RUNNABLE > Threads 184 120 124 MB 0.52 M8
GC Slave FnmARE * 030 100 130 200 230 300 - ;m M (;: ;;: g;.:l\TBE 224; mg -
GC Slave RUNNABLE = it (o : Loy anaag
elapsed time (minutes) 38M of 5411 @
Finalizer thread RUMMABLE ©
RMITCP Accept-1972 RUNNABLE \ -
= ]
Health Center trace subscriber RUNNABLE lilbid ek zs |
LT=0:P=239373:0=0:port=64831 RUNNABLE e ‘
AttachARlioos et ||| com.ibm.CORBAiop KeepAlive@itiisora
Thread-2 RUNNABLE E
RT=0:P=239373:0=0:TCPTransport..  RUNNABLE
g Keep track of
main TIMED_WAITING
JIT-SamplerThread TIMED_WAITING 0
pe — running threads and
JMX server connection timeout 38 TIMED_WAITING i 1 '
Thread-4 WAITING Contended moniter . .
stop JMX Server on shutdown WAITING com.ibm.CORBA.iiop.KeepAlive@FFff3978 m O n Ito r CO nte ntl O n
WT=b WAITING Contended moniter owner
WT=8 WAITING | Frhread-a
Connected to CALAMITY:1972. 11 MB received. 40M of 43M L] e®e
® ®
°
- SHARE
®
. . . . ° °
54 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®ee0



ﬁ/

IBM Monitoring and Diagnostic Tools for Java: ;iA RE

Tuning recommendation

BThe garbage collector seems to be compacting excessively. On average 45% of each pause was spent
compacting the heap. Compaction occurred an 40% of collections. Possible causes of excessive compaction
include the heap size being too small or the application allocating objects that are larger than any contiguaus

 What problem am | solving?

®The garbage collector is performing systern (forced) GCs. 5 out of 145 collections (3 448%) were triggered by |/
Systemn.gel) calls. The use of System ge() is generally not recommended since they can cause long pauses and

. . do not allow the garbage collection algorithms to optimise themselves. Consider inspecting your code for
- How is the garbage collector behaving? oecneos o st
Can I do bette r? ?The mkn‘aandoccupamcy inthe nurseryis 7%. This is low, so the gencon policy is probably an optimal policy for
this workioa

i The mean occupancy in the tenured area is 14%. This is low, so you have some room ta shrink the heap if

- How much time is GC taking?

Summary
H h f d J V M Allocation failure count 140
- OW m UC ree memory OeS my Concurrent collection count 0

Forced collection count &

h ave ? GC Mode gencon
Global collections - Mean garbage collection pause {ms) 185
Global collections - Mean interval between collections (minutes)| 0.13
Global collections - Number of collections 5
Global collections - Total amount ten

+ GCMV Overview
- AnaIyZeS Java Verbose GC IOgS and Winar collections - Nurmber of collect
provides insight into application behavior

- Visualize a wide range of GC data and
Java heap statistics over time S

- Provides the means to detect memory \

0.05 1

leaks and to optimize garbage collection S e v

— Uses heuristics to make recommendations
and guide user in tuning GC performance
- SHARE
55 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®oee®



IBM Monitoring and Diagnostic Tools for Java:
Memory Analyzer

{27 Inspector - IBM Support Assistant Workbench
Eile Administration Update Views Window Help

Support Assistant

Y What problem am I Solving? :"“""’""""- ' C)IBGILHI'\ioniw;ngandDiagncsticchls... X I 5 ’
- Why did | run out of Java memory? % LR A

i Overview 23]

~ What's in my Java heap? How can | |amii” """ | - oeeis

(8 arg.eclipse.osgiintemal basead...

explore it and get new insights? | | 0T
« Memory Analyzer Overview Bt
- Examines memory dumps and i ‘ r = B
identifies Java memory leaks ‘
- Analyzes footprint and provides
insight into wasted space s

Features: visual objects by size/class/classloader, dominator tree analysis, path to GC roots
analysis, object query language (OQL)

- Works with IBM system dumps, IBM portable heap dumps as well as Oracle
HPROF binary heap dumps

IBM Extensions for Memory Analyzer offer additional, product-specific capabilities

" SHARE

®
0...

56 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval



—

IBM Monitoring and Diagnostic Tools for Java: s"; A‘“
Memory Analyzer

Technology - Connections - Results

£ heapdump_20101021.105257.336102.0005.phd - IBM Support Assistant Workbench N aV i g ate th e d O m i n ato r tree 3

File Administration Update Views Window Help

Support Assistant z and find WhiCh ObjeCtS keep
@ IBM Monitoring and Diagnostic Tools... x WhiCh Other Objects alive

2 heapdump.20101021.105257.336102.0005.phd & | |
il B Q| E red |l
i Overview| Tz dominator_tree EX}
Class Name Shallow Heap | RetainedH.. « | Percentage | =
[) com.ibmws.util. ThreadPoolsWorker & 0x7000000013z23b8 216 120.641.184 7.62% =
[ com ibm.ws util ThreadPoolSWorker @ 0x700000033225c20 216 111.329.192 704% § hoapdump 20101021.105257.336102.0005.phd - 1EM Support Assistant Workbench
[) com.ibmws.util. ThreadPaols\Worker @ x700000033225340 216 104.854.808 563% AQmINETALon T Update SN iews S Window R, Help
1 com.ibm.ws.util. ThreadPool$Worker @ 0x70000004850c210 216 104,234,032 6.59%
[ com.ibm.ws.util. ThreadPool$Worker @ 0x70000000ab7d3d0 216 100,354,744 6.34%
[ com.ibmws.util. ThreadPoolSWorker @ 0x70000003321cd30 216 97,690,808 B8.17% IBM Monitoring and Diagnestic Tools...
1 com ibmws util ThreadPoolsWarker @ 0x70000003321ce58 216 75.118,760 4 75% = =
[) com.ibmws util ThreadPaalsWorker @ 0x700000033225ab0 216 74,382,552 173% L nspector 2| 5 = B 2 heapdump20101021.105257.336102.0005.phd 2 | =
2 L) com ibmwps.caf porflet StandardPortlet @ 0x70000004f317428 80 10,606,056 067% @ (x700000006 74418 iom Rl WO B ved | ol
B com.ibmwps.cafframe.LegacyEditorsFrame @ (0x70000004f31bdc | o Sync.hrnnlzedl'u‘.!ap _
L] com ibmwebsphere personalization ui.details views item Folder 280 10,601,928 0.67% B com.ibm e utl . M‘ . OQL & 1
[l java.utilLinkedHashMap @ 0x7000000473236c0 9 2112 0.00% icalizsu;ma"m{;;”'”""" SRR :;:S‘:df:if“f:f‘:;]:";‘é““'H“h“ap =
[ java ut!I.LmkedHashMap @ 0x70000004f323720 96 424 0 DU?{Q [8l com.ibmws.classloa 2NT) clasacs(m)  gecKame () ‘= "3ava.ucil HashMapn
0 java.util.HashMap @ 0x70000004f323780 80 320 0.00% 101112 (shallow size)
[ java.lang.String @ 0x70000002d665d18 43 144 0.00% 10115.808 (retained size) Class Name | Shallow Heap | R
[1 com ibmwps caf util Listenerlist @ 0x70000004{323698 40 40 0.00% o o GC root T <Regex> <Numeric>
Z Total: 6 entries - = com.ibm.iem.util SynchronizedMap @ 0x700000006744cf8 -
[ java util LinkedHashSet @ 0x7000000431bdal 32 424 0.00% W <class> class com.ibm.icm.util SynchronizedMap @ 0x11eb7bf30 48
[ java.util HashMap @ 0x70000004f31b210 80 232 0.00% = @ javalang Object [ java.util HashMap$Values & 0x7000000065ed2c0 32
| imua il HashMan (5) 0y 700000047 T ha Bl 0 232 pone; 1S 2 @ java ulil Abstractl iy java util HashMap$Entry[512] @ 0x7000000065ed2e0 4120
= @ java.utilHashl [} javalanginteger @ 0x70000000674ce30 32
© com.ibm.| L4 javalang.integer @ 0x70000000674ce50 32
Z Total- 5 entries.
(4 com.ibm ws.webcontainer.util URIT 0ServietWrapperCache @ (x7000000026: 88

% Total: 2 entries

Build custom queries with
OAQL to search for specific

4| | 3
object instances
o.. ®e
[ ]
- SHARE
57 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



IBM Monitoring and Diagnostic Tools for Java

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

 All tools can be downloaded/installed as plugins for IBM Support

Assistant Workbench

—  http://www.ibm.com/software/support/isa/workbench.html

—  http://www.ibm.com/developerworks/java/idk/tools/

* Newest addition: Interactive Diagnostic Data Explorer (IDDE)
- Postmortem analysis of system core dumps or javacore files

— Useful for debugging JVM issues

A

14955: IDDE 1.0 Features and Futures
Thursday, March 13, 2014: 9:30 AM-10:30 AM

Speaker: Kenneth Irwin(IBM Corporation)

58 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

‘SHARE



Questions? s

SHARE

Technology - Connections - Results

* ¥

59 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval *eoe®




SSSSS

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Complete your session evaluations online at www.SHARE.org/Anaheim-Eval




Important references n

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

IBM Java on Linux for System z
 http://www.ibm.com/developerworks/java/jdk/linux/download. html

« IBM z/OS Java web site |
 http://www.ibm.com/systems/z/os/zos/tools/|ava/

* IBM Java documentation
 http://www.ibm.com/developerworks/java/jdk/docs.html

« IBM Java Diagnostic and Monitoring Tools

 http://www.ibm.com/developerworks/java/jdk/tools/index. html

« White paper on 64-bit compressed references and large pages features n IIM 64—b1t
Java SDK on System z [\ | /

» https://ibm.biz/ BARMRD \/ ~
« JZOS Batch Launcher and Toolkit Installation and User's Guide (SA38- -0696- OO)
 http://publibz.boulder.ibm.com/epubs/pdf/ajvc0110.pdf

SHARE

61 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



= )

Technology - Connections - Results

Liberty feature set as of V8.5.5

zosWim
zosSecurity zos[ransaction collectiveController clusterMember
mongodb jaxb jaxws
ND
.. wsSecurity wmgJmsClient JjmsMdb wasJmsSecurity
Liberty Core concurrent wasJmsClient wasJmsServer o
collectiveMember |dapRegistry webCache
WAS V8.5.5

7 4 \
/ \

Liberty Profile* g ! managedBeans Rl

osgi.jpa localConnector beanvalidation

blueprint restConnector

json appSecurity

monitor sessionDatabase

serviet ' jndi jdbc

Application LR

Manager - SHARE

62 Complete your session evaluations online at www.SHARE.org/Anaheir§2Eval ®eoe®

Feature Manager HTTP Transport



Java on zEC12 153 . S,

z/OS IBM Java 7:16-Way Performance B s ]

64-bit Java Multi-threaded Benchmark on 16-Way i e
z/0S 1.13 Multi-Threaded 64 bit Java Workload
~60% Hardware (zEC12) and Software (SDK 7 SR3) Improvement
160
140 —— zEC12 SDK 7 SR3
- Aggressive +
g_ 120 | LP Code Cache
N -
o
3 100 -
£ —+—7zEC12 SDK 7 SR g
= 80 A—a,
S ﬁ\‘—‘-ﬁﬁ
8
= 60 1
£
o 40 —+— 7196 SDK 7 SR1
=
20
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Threads

Aggregate 60% improvement from zEC12 and IBM Java7  (Controlled measurement environment, results may vary)
° zEC12 offers a ~45% improvement over z196 running the Java Multi-Threaded Benchmark

° IBM Java 7 offers an additional ~13% improvement (sr3 + -Xaggressive + Flash Express pageable 1Meg large pages) I ST e
63 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval L




Java on zEC12

%.«i—%
—_—

z/OS IBM Java 7: 16-Way Performance
Aggregate HW and SDK Improvement z9 IBM Java 5 to zEC12 IBM Java 7

ﬁ/

SHARE

Technology - Connections - Results

60

40

z/OS Multi-Threaded 64 bit Java Workload 16-Way

~12x Improvement in Hardware and Software

Normalized Throughput
[00]
o

20

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

—e—zEC12 SDK 7 SR3
Aggressive +
LP Code Cache
—a—zEC12 SDK 7 SR1

——2196 SDK 7 SR1

—a—2196 SDK 6 SR8

z10 SDK 6 SR4

—=—2710 SDK 6 GM

NO (CR or Heap LP)

—e—2z9 Java 5 SR5
NO (CR or Heap LP)

~12x aggregate hardware and software improvement comparing IBM Java5 on z9 to IBM Java 7 on zEC12

LP=Large Pages for Java heap CR= Java compressed references
Java7SR3 using -Xaggressive + Flash Express pageable 1Meg large pages

64 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

®
@@Qs

Controlled t envi t, result i
(Controlled measurement environment, results may vary{ SHARE



Java on zEC12 B . é )
z/OS IBM Java 7: CPU-Intensive Benchmark rs

SHARE

Technology - Connections - Results

Common 64 Bit Java CPU Intensive Benchmarks

40% Total Hardware and Software Composite Improvement

zEC12 4-way versus z196 4-Way using Java 7 SR1
Java SDK 7 SR3 with -Xaggressive + Pageable Large Page Code Cache vs Java SDK 7 SR1

‘-zEC12 vs 196 @SDK 7 SR3 vs SDK7 SR1 |

70.0%

60.0% —

50.0% ]

40.0%

—

30.0%

20.0%

10.0% i i

0.0% : : : : : : : : : .
O S £ A\ L A© S R\ O @

c:’@:é\}q ((ch}
P

Percent Improved

Benchmark

zEC12 and IBM Java 7 offer a ~40% composite improvement over 2196 running the CPU Intensive benchmark
o  zEC12 offers a ~33% improvement over 2196 running the CPU-Intensive Benchmarks

) IBM Java 7 offers an additional ~5% improvement (SR3 + -Xaggressive + Flash Express pageable 1Meg large pages) Y
65 complete your session evaluations online at www.SHARE.org/Anaheim-Eval (Controlled measurement environment, results may Vagy) ®




Java on zEC12

IBM Operational Decision Manager with IBM Java 7 and ;EC12 /ﬁ/

SHARE
IBM Operational Decision Manager
Java7SR1 on z196 vs Java7SR4 on zEC12
160%
[«}]
N
c 120cy° N
o]
= 100% -
20 i
S S 809 B Java7SR4
35 ° m Java7SR1
£ 8
|— ho] 60cyo N
[
N
[v] %
g 40%
[e]
2 20%
0%
z196 zEC12

(Controlled measurement environment, results may vary)
Aggregate 45% improvement from zEC12 and IBM Java7
° ZzEC12 offers a ~22% improvement over z196 running the ODM Benchmark
° IBM Java?7 offers an additional ~19% improvement (SR4 + -Xaggressive + Flash Express pageable 1Meg large pages)

66 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®ece®



Java on zEC12
4 $

WAS on z/OS — Servlets and JSPs with the Liberty Profile* ¥

B

SHARE
Technology - Connections - Results

** See backup charts for list of Liberty Profile capabilities
++ Java7SR3 using -Xaggressive + Flash Express pageable 1Meg large pages

TradelLite Servlet and JSP
WASS8.5 and WASS8.5 Liberty Profile on zEC12 with Java7SR3

200%

180% —_—

83% [ Java7SR3

160% -

140%

/ ZEC12
120% / WAS Liberty

100% | oo e e -

80% -
60% -

40%

Throughput
(Normalized to WAS8.5 on z196)

20%

Oo/o T T
WASS8.5 on z196 WASS8.5 on zEC12 WASS8.5 Liberty on z196 WASS8.5 Liberty on
zEC12 + Java7SR3

. WASBS.5 Liberty on zEC12 using IBM Java 7 vs WAS8.5 on 2196 running TradeLite demonstrates a 83%
improvement to Servlet and JSP throughput.

. WASS.5 Liberty offers up to 5x start-up time reduction vs. WAS8.5 (<5 seconds)
. WASS.5 Liberty offers reduced real-storage requirements up to 81% vs. WAS8.5 (80M versus 4@”‘ ARE

67 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval (Controlled measurement environment, results may Vagy) *



Java on zEC12 —_— . é r“/
WAS On Z/OS - SLI-IA‘RE

DayTrader2.0 EJB — Then and Now

DayTrader2.0 EJB
WAS7.0 on z196 and WAS8.5.0.2 on zEC12

o 90%

160.00% /
140.00%

120.00% /

200.00%

180.00%

©

(<]

N

c

o
-2
=
[< 7))
£ g
2= 100.00% - ’
(=]
F g 80.00%

N

® 60.00%

E

g 40.00%

20.00% -
0.00% ‘ ' '
WAS7.0 on z196 WASS8.5 on z196 WASS8.5 on zEC12 WASS8.5.0.2 on zEC12 +
Java7SR4

. WASS8.5.0.2 on zEC12 vs WAS7 on z196 running DayTrader2.0 EJB demonstrates a 90% improvement to throughput
. zEC12 improves WASS.5 throughput by up to 32% over z196

. WASS.5 improves throughput by up to 25% over WAS7.0
WASB8.5.0.2 uses IBM Java 7 which improves throughput by an additional 15% over WAS8.5 on zEC¥2- - - —

68 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval 0g0®



Java on zEC12 -
rs
WAS on z/0OS — DayTrader SHARE

Aggregate HW, SDK and WAS Improvement: WAS 6.1 (IBM Java 5) on z9 to WAS 8.5
(IBM Java 7) on zEC12

History of WAS on z/OS Hardware/Software Performance

7.0
Hardware Improvement +16%
5.0 Software Improvement .
- /
S
Q 50
S +25%
B 10 3.9
@ +43%
a 3.1
| 30 0%
2 +57Y, 2.2
% 0
< ° / 1.6
1.0
1.0
JavaT
Javas Javah JavaG01 SR4
0.0

Version 6.1onz9  Version 6.1 onz10  Version 7.0 on z10 Version 7.0 on z196 Version 8.5 on z196 Version 8.5 on EC12 Version 8.5 on EC12

6x aggregate hardware and software improvement comparing WAS 6.1 IBM Java5 on z9 to WAS 8.5 IBM Java7 on zEC12

.2 NMARLK
69 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval _ ®eoe®




m JJ < B
z/0S Java SDK 7: zBC12 4-way Performance o |

64-bit Java Multi-threaded Benchmark on 16-Way SHARE

z/OS Multi-Threaded 64 bit Java Workload
zBC12 (4-way) vs z114 (4-way)
~90% Aggregate Hardware and Software Improvement
64% Hardware (zBC12) and 15% Software (SDK7 SR3) Improvement

——2zBC12 SDK 7 SR3
Aggressive +
LP Code Cache

—=—27zBC12 SDK 7 SR1

| é/ s+ 7114 SDK 7 SR

4 5 6 7 8
Threads

Normalized Throughput
- D W A~ OO N 0O ©

—
\}
w

Aggregate 90% improvement from zBC12 and Java7SR3 (Controlled measurement environment, results may vary)

° zBC12 offers a ~64% improvement over 2196 running the Java Multi-Threaded Benchmark

) Java7SRa3 offers an additional ~15% improvement (-xaggressive + Flash Express pageable 1Meg large pages) ¥ T m——
70 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval "oee




WAS on z/0S -

DayTrader2.0 EJB on zBC12 with Java7

SHARE

Technology - Connections - Resul

120%

100%

80%

60%

40%

Relative Improvement

20%

0%

WAS DayTrader on zBC12

WASS8.5 on zBC12 Java7SR1

WAS8.5.0.2 on zBC12 Java7SR4

(Controlled measurement environment, results may vary)

. OnzBC12 with z/OS 1.13, WAS 8.5.0.2 full profile (with Java7SR4 *) throughput performance improved 12% over
WAS 8.5 full profile running DayTrader.

* Java7SR4 using -Xaggressive + Flash Express pageable 1Meg large pages

71 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

®e¢¢® inAnaheim

Its

e\ AN LT

W/



3 <
WAS on z/0OS - Servlets and JSPs with the Liberty Prorile** = 3

k
SHARE

Technology - Connections - Results

WAS Liberty Profile Running TradeLite on zBC12

160%

140% ]
Java7SR4*

120% -
100% j> WAS Liberty

80% -

60% -
D

Relative Throughput

40% -

20%

0%

WASS8.5 on zBC12 WASS.5 Liberty on zBC12 + WASS8.5.0.2 Liberty on zBC12 +
Java7SR1 Java7SR4*

(Controlled measurement environment, results may vary)
. OnzBC12 with z/OS 1.13, WAS 8.5 liberty profile throughput is improved 28% over WAS 8.5 full profile
running TradeLite.
. On zBC12 with z/OS 1.13, WAS 8.5.0.2 liberty profile (with Java 7 SR4 *) throughput performance improved
8% over WAS 8.5 liberty profile running TradeLite.

. WASBS.5 Liberty using Java7SR4 vs traditional WASB8.5 using Java7SR1 running TradeLite demonstrates a
aggregate 38% improvement to Serviet and JSP throughput . SHARE

** See backup charts for list of Liberty Profile capabilities , .
/2 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval . Java7SR4 using -Xaggressive + Flash Express pageable 1Meg lafg® bages



JCICS and Java7SR3 on zEC12

Technology - Connections - Results

» Using complex Java workload —

Axis2 webservice 3500
- Equivalent throughput using CICS 3000 +30%+39/°
xi; on z196 compared to CICS E 5500 oS VazaTes
» 30% improvement in throughput 3 2000 B CICS V512196
using CICS V5.1 on zEC12 £ 1500 0 CICS V5.1 ZEC12
compared to CICS V4.2 on z196 3 OGS 2EC12e
 39% improvement in throughput g 1000 exploitation
USing CICS V51 W|th Java 7 500 higher is better
zEC12 exploitation compared to
CICS V4.2 on 2196 0

(Controlled measurement environment, results may vary)

73 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eqge®



IMS JMP region performance

Hardware stack improvements

s 5

SHARE

Technology - Connections - Results

25000

20000

15000

10000

ETR (Tran/Sec)

5000

IMS Java - Hardware stack improvements

z196

zEC12

e\ AN LT

WA

(Controlled measurement environment, results may vary)

74 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

T NmMMne
®eoe® inAnaheim



IMS JMP region performance
Aggregate SDK, software and hardware improvements

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

IMS Java transaction throughput from 2009 to 2012

25000

20000 -

15000

10000 -

ETR (Tran/Sec)

5000 -

Jun-08 Dec-08 Jul-09 Jan-10 Aug-10 Feb-11 Sep-11 Apr-12 Oct-12

Timeline

(Controlled measurement environment, results may va

Over 4x aggregate throughput improvement from 2009 to 5012
due to the following enhancements

« Java version to version performance improvements

* |IMS improvements

« Hardware improvements

« DASD improvements : SHARE

75 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval ®eoe®



