
Running Java on Linux on
System z

Kishor Patil (patil@ca.ibm.com)

IBM

Wednesday, March 12, 2014

Session 14557

1:30 PM – 2:30 PM

2
2

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without
notice at IBM’s sole discretion. Information regarding potential future products is intended to outline our
general product direction and it should not be relied on in making a purchasing decision. The information
mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver
any material, code or functionality. Information about potential future products may not be incorporated into
any contract. The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY,
WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY
DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER
DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE
EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR
LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE
USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2014. All rights reserved.

Trademarks, Copyrights, Disclaimers

3

Content

• IBM Java on System z

• History, overview and roadmap

• Under the hood: J9 Virtual Machine and IBM Testarossa JIT

• IBM System zEC12 features exploited in IBM Java 7

• New features in IBM Java 7 Release 1

• Preview: Node.js™ support, Multi-tenancy, Java 8 Lambdas

• Garbage collection policies and tuning

• IBM Monitoring and Diagnostic Tools for Java

4

IBM and Java

• Java is critically important to IBM

• Infrastructure for IBM's software portfolio

• WebSphere, Lotus, Tivoli, Rational, Information Management

• IBM is investing strategically for Java in Virtual
Machines

• A single JVM supports multiple configurations (ME/SE/EE)

• New technology base (J9/Testarossa) on which to deliver improved
performance, reliability, serviceability

• IBM also invests and supports public innovation in Java

• OpenJDK, Eclipse, Apache

• (XML, Aries, Derby, Geronimo, Harmony, Tuscany, Hadoop,...)

• Broad participation in relevant open standards (JCP, OSGi)

5

Reference
Java

Technology
(openJDK,

others)

IBM

Java

IBM Java
Technology

Centre

��Listen to and act upon market Listen to and act upon market
requirementsrequirements

��World class service and World class service and
supportsupport

��Available on more platforms Available on more platforms
than any other Java than any other Java
implementationimplementation

��Highly optimizedHighly optimized

��Embedded in IBMEmbedded in IBM’’s s
middleware portfolio and middleware portfolio and
available to ISV partnersavailable to ISV partners

Quality Engineering
Performance

Security
Reliability

Serviceability

Production Requirements
IBM Software Group

IBM eServer
ISVs

IBM Clients

IBM's Approach to Java Technology

6

Differences between Oracle and IBM Java

• Both use the same reference implementation of Java Class

Libraries (e.g. OpenJDK)

• Key differences

• Security: Standards do not impose strong separation of interest

• ORB: OMG CORBA standard rules

• XML: Xerces/Xalan shipped by both vendors since Java 5, although
different levels may be used

• IBM J9/Testarossa runtime vs. Oracle HotSpot

• Different tuning and controls for JVM, JIT and GC

• Tooling is distinct (e.g. IBM Health Center)

• IBM runtimes support and exploit IBM System z and System p
platforms

7

Porting Java applications to z

• Experience shows there are subtle differences between the different JVMTMs

• Very important key point: the IBM® Java® SDK is not a "special" version

of Java, it is 100% pure Java, as it passes all compatibility tests from

OracleTM

• Differences fall into 2 categories:

• Infrastructure related differences (mostly Java

command line parameter differences, for example:

garbage collection settings)

• Coding related differences (for example: Java class

library implementation differences)

Source: http://www.smscs.com

8

Porting Java applications to z

• Best practice / strong recommendation: try to evaluate the to-be-
ported application with the IBM Java SDK on any other platform
(for example Intel® x86), before going for System z®

• Most of the porting related issues are related to the mentioned subtle differences in the
various JVMs and not System z

• Following this best practice, the problems can be addressed where they belong to
(which is either the application or the IBM Java SDK, but not System z)

• Elements / patterns that are known to cause trouble:

• Heavy usage of platform native libraries / Java Native Interface (JNI)

• Hard-coded path names (happens mostly with Java applications that were developed
on / developed for Microsoft® Windows®)

• Using vendor-specific APIs (for example Java packages starting with com.sun)

• Additional problem (project management related): running a large scale stress test for the
first time as part of the porting

• Issues in the application that are not related to the actual porting will surface

9

Evolving Java on Z

Portable and consumable
• First-class IBM Java SDK for z/OS and z/Linux

• Providing seamless portability across platforms

Pervasive and integrated across the z eco-
system

• Java business logic runs with all z middleware (IMS, CICS,
WAS etc)

• Inter-operability with legacy batch and OLTP assets

Deep System Z exploitation
• SDK extensions enabled z QoS for full integration with z/OS

• zAAP/zIIP specialty engines provide low-cost Java capacity

Performance
• A decade of hardware/software innovation and optimization

• Industry leading performance with IBM J9 Virtual Machine

• Enabling tight data locality for high-performance and
simplified systems

Enable integration of Java-based applications with core z/OS backend database environment for high

performance, reliability, availability, security, and lower total cost of ownership

10

1999

2009

1
9
9
8

2001

2003

2005

2007

SDK1.4
1. 31-bit z/OS and 31-bit and 64-bit Linux on z
2. GA 4Q2002

3. z/OS End of Marketing September, 2008

4. z/OS End of Service September, 2011

31-bit and 64-bit SDK 5
1. IBM J9 2.3 VM and JIT Technology
2. z9 Exploitation

3. GA 4Q2005
4. z/OS and Linux on z

31-bit SDK1.1.8
1. OS/390 GA 1999

2. Out of service

31-bit and 64-bit SDK 6 , V6.0.0
1. Supplies Java SE 6 APIs
2. z10 Exploitation
3. IBM J9 2.4 VM and JIT Technology
4. GA 4Q2007

5. z/OS and Linux on z

31-bit SDK1.3.1
1. z/OS and Linux on z

2. GA 3Q2000

3. End of Service: September, 2007

z/OS 64-bit SDK 1.4.2
1. IBM J9 2.2 VM and JIT Technology (1st product use)
2. GA 4Q2004
3. End of Service September, 2008

31-bit SDK1.1.1, then 1.1.4 and 1.1.6
1. First OS/390 Java product – GA 1997

2. Out of service

2014

31-bit and 64-bit z/OS Java SDK 6
V6.0.1

1. Supplies Java SE 6 APIs

2. z196 Exploitation

3. New IBM J9 2.6 VM and JIT Technology

4. Enhanced JZOS and z/OS Security

5. z/OS Java products, GA March 2011:

System z Java Product Timeline

31-bit and 64-bit Java SDK 7.x
1. z/OS and Linux on z
2. Supplies Java SE 7 APIs
3. OpenJDK
4. z196/zEC12 Exploitation
5. New IBM J9 2.6/2.7 VM and JIT

Technology
6. GA Oct 2011

Testimonials: http://www-01.ibm.com/software/os/systemz/testimonials/

IBM continues to invest aggressively in Java for
System z, demonstrating a rich history of
innovation and performance improvements.

11

IBM Java Runtime Environment

• IBM Java Runtimes since Java 5 are built with IBM J9 Virtual Machine
and IBM Testarossa JIT Compiler technology

• Independent clean-room JVM runtime & JIT compiler

• Combines best-of breed from embedded, development and server
environments… from a cell-phone to a mainframe!

• Lightweight flexible/scalable technology

• World class garbage collection – gencon, balanced GC policies

• Startup & Footprint - Shared classes, Ahead-of-time (AOT) compilation

• 64-bit performance - Compressed references & Large Pages

• Deep System z exploitation – zEC12/z196/z10/z9/z990 exploitation

• Cost-effective for z - zAAP Ready!

• Millions of instances of J9/TR compiler

12

� Goals:
– Focus compilation CPU time where it matters
– Stager investment over time to amortize cost

� Methods start as interpreted
– Interpreter does first level profiling

� After N invocations, methods get compiled at ‘ warm’ level

� Sampling thread used to identify hot methods

� Methods may get recompiled at ‘ hot’ or ‘scorching ’ levels

� Transition to ‘ scorching ’ goes through a temporary profiling step
– Global optimizations are directed using profiling data
– Hot paths through methods are identified for register allocation, branch

straightening, etc
– Values/types are profiled
– hot paths are specialized/versioned
– Virtual calls are profiled, hot targets are in-lined

IBM Testarossa JIT Compiler – Introduction

� Compile byte-code down to native assembly to remove the
overhead of interpretation

� Significantly more efficient use of computational resource
– ~10-100x faster than interpretation

� Discovers and exploits the program's runtime environment to
generate optimal assembly

� Compilation cost is included in application runtime, hence uses

runtime profiling to direct compilation decisions
– Choose what to compile
– How much effort to invest in compilation z-

Arch
x86 Power

cold

hot

scorching

profiling

Interpreter/AOT

warm

JIT Compilation Strategy:

13

Shared Classes & Ahead-Of-Time (AOT) Compilation

� Shared Classes
– Store classes into a cache that can be shared by multiple JVMs

– Read-only portions of the class

– Memory footprint reduction

– Startup time improvements (class initialization)

– Cache memory page protection (read-only caches)

– Class compression (64-bit class compression)

– Persistent cache (between reboots)

� AOT Compilation
– Compiled code generated “ahead-of-time” to be used by a subsequent execution

• Performance of AOT code is poor

● Cannot be specialized due multi-instance use and dynamic class loading

● Dynamic class loading imposes overhead of assumption management

• Rely on recompilation to make code that matters better

– Persisted into the same shared cache

– Startup time improvements

– CPU utilization reduction

14

Java Road Map

Language Updates

Java 5.0
• New Language features:

• Autoboxing
• Enumerated types
• Generics
• Metadata

Java 6.0
• Performance Improvements

• Client WebServices Support

• Support for dynamic languages

• Improve ease of use for SWING

• New IO APIs (NIO2)

• Java persistence API

• JMX 2.x and WS connection for JMX

agents

• Language Changes

Java 7.0

IBM Java Runtimes
IBM Java 5.0 (J9 R23)
• Improved performance

• Generational Garbage Collector
• Shared classes support
• New J9 Virtual Machine
• New Testarossa JIT technology

• First Failure Data Capture

• Full Speed Debug

• Hot Code Replace

• Common runtime technology
• ME, SE, EE

IBM Java 6.0 (J9 R24)
• Improvements in

• Performance
• Serviceability tooling
• Class Sharing

• XML parser improvements
• z10™ Exploitation

• DFP exploitation for BigDecimal
• Large Pages
• New ISA features

5
.0

6
.0

2005 2009

S
E

 5
.0

1
8
 p

la
tf

o
rm

s

S
E

 6
.0

2
0
 p

la
tf

o
rm

s

EE 5

WAS

6.1
WAS

7.0

2006 2008

WAS

6.0

200704

EE 6.x

**Timelines and deliveries are subject to change.

2010 2011

IBM Java 6.0.1/Java7.0
(J9 R26)

• Improvements in
• Performance
• GC Technology

• z196™ Exploitation
• OOO Pipeline
• 70+ New Instructions

• JZOS/Security Enhancements

WAS

8.5

2012 2013 2014

7
.0

• Language improvements

• Closures for simplified fork/join

Java 8.0**

S
E

6
0
1
/
7
.x

>
=

 2
0
 p

la
tf

o
rm

s

IBM Java7.0SR3
• Improvements in

• Performance
• zEC12™ Exploitation

• Transactional Execution
• Flash 1Meg pageable LPs
• 2G large pages
• Hints/traps

IBM Java7R1
• Improvements in

• Performance
• RAS
• Monitoring

• zEC12™ Exploitation
• zEDC for zip acceleration
• SMC-R integration
• Transactional Execution
• Runtime instrumentation

• Hints/traps
• Data Access Accelerator

15

zEC12 – More Hardware for Java
Continued aggressive investment in Java on Z

Significant set of new hardware features
tailored and co-designed with Java

Hardware Transaction Memory (HTM) *
Better concurrency for multi-threaded applications
eg. ~2X improvement to juc.ConcurrentLinkedQueue

Run-time Instrumentation (RI)*
Innovation new h/w facility designed for managed runtimes
Enables new expanse of JRE optimizations

2GB page frames **
Improved performance targeting 64-bit heaps

Pageable 1M large pages with Flash Express**
Better versatility of managing memory

Shared-Memory-Communication**
RDMA over Converged Ethernet

zEnterprise Data Compression accelerator**
gzip accelerator

New software hints/directives/traps
Branch preload improves branch prediction

Reduce overhead of implicit bounds/null checks

New 5.5 GHz 6-Core Processor Chip

Large caches to optimize data serving

Second generation OOO design

Up-to 60% improvement in throughput amongst Java
workloads measured with zEC12 and Java7SR3

Engineered Together—IBM Java and zEC12 Boost Workload Performance

http://www.ibmsystemsmag.com/mainframe/trends/whatsnew/java_compiler/

* Not supported under zVM, native LPAR needs
SLES11 SP3/RHEL6.3
** Linux lp is already pagable, but no flash support
** currenlt only supported on zOS

16

• Allow lockless interlocked execution of a block of code called a “transaction”

− Transaction: segment of code that appears to execute “atomically” to other CPUs
� Other processors in the system will see either-all-or-none of the storage updates by the transaction

• How it works

− TBEGIN instruction starts speculative execution of transaction

− Storage conflict detected by hardware and causes roll-back of storage and registers
� Transaction can be re-tried; or

� A fall-back code path that performs locking can be used to guarantee forward progress

− Changes made by transaction become visible to other CPUs after TEND instruction

Storage conflict:
Trans. A will abort

Trans. B will commit
changes to X and Y

TBEGIN

…

load Y

load X

…

TEND

CPU 0: Trans. A

X = Y = 0;

TBEGIN

X = 1

store X

Y = 1

store Y

TEND

CPU 1: Trans. B

CPU 0 can only see (X=Y=0) or (X=Y=1),

cannot see (X=1,Y=0) or (X=0,Y=1)

Hardware Transactional Memory (HTM)

17

Transaction Lock Elision on HashTable.get()

Java Prototype

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
e

c
)

HTM Example:
Transactional Lock Elision (TLE)

Threads must serialize despite only

reading… just in-case a writer updates

the hash

read_hash(key) {

Wait_for_lock();

read(hash, key);

Release_lock();

}

Thr1: read_hash()

Thr2: read_hash()

Thr3:read_hash()

T

Lock elision allows readers to

execute in parallel, and safely back-

out should a writer update hash

read_hash(key)

TRANSACTION_BEGIN

read hash.lock;

BRNE serialize_on_hash_lock

read (hash, key);

TRANSACTION_END

Thr1: read_hash() … Thr3: read_hash()

T’

Java on zEC12

(Controlled measurement environment, results may vary)

18

Transactional Execution: Concurrent Linked Queue

• ~2x improved scalability of juc.ConcurrentLinkedQueue

• Unbound Thread-Safe LinkedQueue
• First-in-first-out (FIFO)

• Insert elements into tail (en-queue)

• Poll elements from head (de-queue)

• No explicit locking required

• Example usage: a multi-threaded work queue
• Tasks are inserted into a concurrent linked queue as multiple worker threads

poll work from it concurrently

head

node

node

node

tail

….

last
node

En-queue

first
node

De-queue

New TX-base
implementation

Traditional CAS-base
implementation

(Controlled measurement environment, results may vary)

19

START:

IA1 BR THERE

HERE:

IA10 LR

IA11 LR

IA12 AR

IA13 collect GR1

….

IA25 L � Sample

….

THERE:

IA100 ….

ST

…

IA200 BR HERE

…

IA1

IA100

Circular

Collection Buffer

IA200

IA10

IA13

GR1CB head

Event Tracing

Just-in-time Compiler

Profiler

Immediate representation generator

Optimizer

Code generator

Runtime

• Low overhead profiling with hardware support

• Instruction samples by time, count or explicit marking

• Sample reports include hard-to-get information:

• Event traces, e.g. taken branch trace

• “costly” events of interest, e.g. cache miss information

• GR value profiling

• Enables better “self-tuning” opportunities

Runtime Instrumentation

Event
Trace

Instrumentation
controlsInstruction

processing Pre-allocated
storage

1 (setup)

2

3

4
5

6 (analyze)

CPU

JVM

GC

Bytecodes

Java on zEC12

20

Linux on System z and IBM Java 7 on
zEC12:

64-Bit Java Multi-threaded Benchmark on 16-Way

(Controlled measurement environment, results may vary)Aggregate 60% improvement from zEC12 and IBM Java 7

� zEC12 offers a ~45% improvement over z196 running the Java Multi-Threaded Benchmark

� IBM Java7 offers an additional ~10% improvement (SR3 and -Xaggressive)

Linux on System z Multi-Threaded 64 bit Java Workload 16-Way

~60% Hardware (zEC12) and Software (SDK 7 SR3) Improvement

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

zEC12 SDK 7 SR3

 Aggressive +

 LP Code Cache

zEC12 SDK 7 SR1

z196 SDK 7 SR1

Java on zEC12

21

Linux on System z and Java7SR3 on zEC12:
64-Bit Java Multi-threaded Benchmark on 16-Way

(Controlled measurement environment, results may vary)

~12x aggregate hardware and software improvement comparing IBM Java5 on z9 to IBM Java7 on zEC12

LP=Large Pages for Java heap CR= Java compressed references

IBM Java7SR3 using -Xaggressive + 1Meg large pages

Linux on System z - Multi-Threaded 64 bit Java Workload 16-Way

~12x Improvement in Hardware and Software

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

zEC12 SDK 7 SR3

 Aggressive +

 LP Code Cache

zEC12 SDK 7 SR1

z196 SDK 7 SR1

z196 SDK 6 SR9

z10 SDK 6 SR4

z9 SDK 5 SR4

 NO (CR or Heap LP)

Java on zEC12

22

WAS on zLinux –
Aggregate HW, SDK and WAS Improvement: WAS 6.1 (Java 5) on z9 to WAS 8.5 (Java 7) on zEC12

(Controlled measurement environment, results may vary)

~4x aggregate hardware and software improvement comparing WAS 6.1 with IBM Java5 on z9 to WAS 8.5 with IBM Java7 on zEC12

Java on zEC12

23

IBM SDK, Java Technology Edition,Version 7
Release 1
http://www.ibm.com/developerworks/java/jdk/linux/download.html

• New IBM Java runtime (J9R27) with Java 7 class library

• Expand zEC12/zBC12 exploitation

• More TX, instruction scheduler, traps, branch preload

• Runtime instrumentation exploitation

• zEDC exploitation through java/util/zip

• Integration of SMC-R

• Improved native data binding - Data Access Accelerator

• Integrated with JZOS native record binding framework

• Improved general performance/throughput

• Up-to 19% improvement to throughput (ODM)

• Up-to 2.4x savings in CPU-time for record parsing batch application

• Improved WLM capabilities

• Improved SAF and cryptography support

• Additional reliability, availability, and serviceability (RAS)
enhancements

• Enhanced monitoring and diagnostics

24

Java-based Store, Inventory and Point-of-Sale
App and IBM Java 7R1

� 10% improvement to Java-based Inventory and Point-of-Sale application with IBM Java 7R1
compared to IBM Java 7

(Controlled measurement environment, results may vary)

Java Store, Inventory and Point-Of-Sale Application zEC12 16-way

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

IBM Java 7 IBM Java 7R1

N
o

rm
a
li

z
e
d

M
a
x
im

u
m

 O
p

e
ra

ti
o

n
s
 p

e
r

s
e
c
o

n
d

25

IBM Operational Decision Manager

� 19% improvement to ODM with IBM Java7R1 compared to IBM Java7 SR4

� 19% improvement to ODM with IBM Java7 SR4 compared to IBM Java 7 SR1

� 22% improvement to ODM with zEC12 compared to z196

(Controlled measurement environment, results may vary)

Java 7R1

Java 7R1

IBM Operational Decision Management zEC12 16-way

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

IBM Java 7 IBM Java 7R1

T
h

ro
u

g
h

p
u

t

(N
o

rm
a
li

z
e
d

 t
o

 I
B

M
 J

a
v
a
 7

 S
R

4
)

26

Store your Data - zEnterprise Data Compression and IBM Java 7R1

** IDC: The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East

With IBM Java 7R1 : Up-to 12x improvement in CPU time

Up-to 3x improvement in elapsed time

Compression ratio of ~4x

CPU Time for Software versus zEDC Hardware Compression

-

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

F1 F2 F3

Compressed Data File

C
P

U
 T

im
e
 M

il
li
s
e
c
o
n
d
s

Software Default

Software Level 1

zEDC Hardware

Size of Compressed Data - Software versus zEDC Hardware

-

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

F1 F2 F3

Compressed Data File

D
a
ta

 S
iz

e
 i
n
 B

y
te

s

Input Buffer

Software Default

Software Level 1

zEDC Hardware

What is it?

� zEDC Express is an IO adapter

that does high performance

industry standard compression

� Used by z/OS Operating System

components, IBM Middleware

and ISV products

� Applications can use zEDC

via industry standard APIs

(zlib and Java)

� Each zEDC Express sharable

across 15 LPARs, up to 8

devices per CEC.

� Raw throughput up to 1 GB/s per

zEDC Express Hardware Adapter

Every day over 2000 petabytes of data are created
Between 2005 to 2020, the digital universe will grow by 300x, going from 130 to 40,000 exa-bytes**
80% of world's data was created in last two years alone.

(Controlled measurement environment, results may vary)

27

� Transparent exploitation for TCP sockets based applications

� Compatible with existing TCP/IP based load balancing solutions

� Up-to 40% reduction in end-to-end transaction latency

� Slight increase in CPU is due to very small message size in this workload (~100 bytes). Workloads with larger
payloads are expected to show a CPU savings

Move your Data - Shared Memory Communications (SMC-R):

Exploit RDMA over Converged Ethernet (RoCE) with qualities of service support for
dynamic failover to redundant hardware

SMC-R vs TCP/IP (OSA)

W AS Libe rty<->DB2 W orkloa d

-40.00%

3.11%

-45.00%

-40.00%

-35.00%

-30.00%

-25.00%

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

Latency CPU Consumption per tran

P
e

rc
e

n
t

C
h

a
n

g
e

SMC-R vs TCP/IP (OSA) (40 Client
Connections)

OSA RNIC

TCP

IP

Interface

SMC-R

Sockets

Middleware/Application

System z

IP Network

(Ethernet)

RDMA Network

RoCE (CEE)

ETH RNIC

TCP

IP

Interface

SMC-R

Sockets

Middleware/Application

SMC-R enabled platform

TCP connection establishment over IP

Dynamic negotiation for SMC -R

Data Flows using RDMA

over RoCE

OSA RNIC

TCP

IP

Interface

SMC-R

Sockets

Middleware/Application

System z

IP Network

(Ethernet)

RDMA Network

RoCE (CEE)

ETH RNIC

TCP

IP

Interface

SMC-R

Sockets

Middleware/Application

SMC-R enabled platform

TCP connection establishment over IP

Dynamic negotiation for SMC -R

Data Flows using RDMA

over RoCE

(Controlled measurement environment, results may vary)

28

Java7R1: Data Access Accelerator

� A Java library for bare-bones data

conversion and arithmetic
− Operates directly on byte arrays

− Avoids expensive Java object instantiation

− Orchestrated with JIT for deep platform opts

− Library is platform- and JVM-neutral

� Current approach

� Proposed Solution

Marshalling and Unmarshalling

� Transforms byte arrays ↔ Java variables

� Supports both big-endian and little-endian byte arrays

Packed Decimal (PD) Operations

� Arithmetic: +, -, *, /, %

� Logical:>, <, >=, <=, ==, !=

� Validation: verifies if a PD operand is well-formed

� Others: optimized shifts, moves on PD operand

Decimal Type Conversions

� Decimal ↔ Primitive

� Convert Packed Decimal (PD), External Decimal (ED)
and
Unicode Decimal (UD) ↔ primitive types (int, long)

� Decimal ↔ Decimal

� Convert between decimal types (PD, ED, UD)

� Decimal ↔ Java

� Convert decimal types ↔ BigDecimal/BigInteger objects

Detailed API Specification: https://ibm.biz/BdRvwC

byte[] addPacked(byte a[], byte b[]) {

BigDecimal a_bd = convertPackedToBd(a);

BigDecimal b_bd = convertPackedToBd(b);

a_bd.add(b_bd);

return (convertBDtoPacked(a_bd));

}

byte[] addPacked(byte a[], byte b[]) {

DAA.addPacked(a, b);

return a;

}

29

DAA – JZOS Medicare Record Benchmark and IBM Java 7R1

• 31-bit IBM Java 7R1 with DAA versus IBM Java 7 CPU Time improved by by 2.4x

• 64-bit IBM Java 7R1 with DAA versus IBM Java 7 CPU Time improved by by 1.9x
http://www.ibm.com/developerworks/java/zos/javadoc/jzos/index.html?com/ibm/jzos/sample/fields/MedicareRecord.html

(Controlled measurement environment, results may vary)

JZOS Medicare Record Parsing Benchmark

0

0.2

0.4

0.6

0.8

1

1.2

31-bit 64-bit

C
P

U
-t

im
e
 t

o
 P

a
rs

e
 5

M
 R

e
c
o

rd
s

(N
o

rm
a
li

z
e
d

 t
o

 3
1
-b

it
 I

B
M

 J
a
v
a
 7

 S
R

4
 w

/o
 D

A
A

)

IBM Java 7 SR4

IBM Java 7R1

30

• Stand-alone JavaScript® runtime and server-side

JavaScript solution for IBM platforms.
• Node.js™ (http://nodejs.org) platform built on Google’s V8 JavaScript

engine (http://code.google.com/p/v8/)

• Available: Binaries for Linux on IBM POWER Systems, and
Linux/Windows/Mac OS X on Intel

• https://www.ibm.com/developerworks/web/nodesdk/

• Support for other IBM platforms is being developed**.

• Open source projects with active development in GitHub**
• V8 on System z: https://github.com/andrewlow/v8z

• V8 on System p: https://github.com/andrewlow/v8ppc

• Node.js™: https://github.com/andrewlow/node

• Development builds: http://v8ppc.osuosl.org:8080/

• Now includes early AIX builds

• Provide feedback via IBM developerWorks community
• https://www.ibm.com/developerworks/community/groups/community/node

IBM SDK for Node.js™

**Timelines and deliveries are subject to change.

31

• Multi-tenancy support will allow multiple
applications to run in a single shared JVM
for high-density deployments

• Win: Footprint reduction enabled by sharing runtime and

JVM artifacts while enforcing resource consumption

quotas

• Platform Coverage: 64-bit, balanced GC policy only

• Ergonomics: Single new command-line flag

(-Xmt = multi-tenancy)

Timelines and deliveries are subject to change.

Data
Multi-
tenancy

Virtualization

• Hypervisor, Virtual Guest, and Extended-OS JMX Beans
• Allows applications to detect and identify the installed hypervisor and query

attributes of LPAR

• Provides richer access to operating system performance statistics

Cloud with IBM Java

32

Cloud with IBM Java

• Runtime adjustable heap size (-Xsoftmx)

− JMX beans allow for dynamically adjusting heap size

− Allows users to take advantage of hot-add of memory in
virtualized environments

− Available in Java 7 SR3

• JIT support for “deep idle” state

− Enabled with -Xtune:virtualized (Java 7 SR4)

− Reduces CPU cycles used by the JIT during idle periods

� Important for dense virtualized System z environments

� Early results with WAS Liberty show ~2x to ~6x reduction

33

Economies of Scale for Java in the Cloud

Hardware

OS Images

Middleware

Application

Hardware

OS Images

Middleware

Application

Hardware

OS Images

Middleware

Application

OS Images

Middleware

Application

Hardware

OS Image

Middleware

Application

Middleware

Application

Hardware

OS Image

Middleware (e.g. WAS)

Application Application

Share-nothing
(maximum isolation)

Shared hardware Shared OS Shared Process

Hardware

OS Image

Middleware (e.g. WAS)

Application

Tenant Tenant

Share-everything
(maximum sharing)

Density

-Xshareclasses -Xshareclasses

Tenant API

‘Mission critical’
apps

‘free’ apps

1+ GB / tenant 100’s MB / tenant1+ GB / tenant 10’s MB / tenant 10’s KB / tenant

34

Java 7R1 Tech Preview:

Multi-tenancy: IBM's approach to 'Virtualized JVMs'

• A standard 'java' invocation creates a dedicated (non-shared) JVM in each process

java

1

JVM

java

2

JVM

java

3

JVM

java
1

proxy

javad

JVM

java
1

proxy

java
1

proxy

• IBM's Multitenant JVM puts a lightweight 'proxy' JVM in each 'java' invocation. The 'proxy'

knows how to communicate with the shared JVM daemon called javad.

• 'javad' is launched and

shuts down automatically

• No changes required to

the application

• 'javad' process is where

aggressive sharing of

runtime artifacts

happens

35

Java8: Language Innovation – Lambdas
and Parallelism

New syntax to allow concise code snippets and expression

• Useful for sending code to java.lang.concurrent

• On the path to enabling more parallelisms

More Information on Java 8 Lambdas:

http://www.dzone.com/links/presentation_languagelibraryvm_coevolution_in_jav.html

36

IBM J9 Garbage Collector Family

• Why have many policies? Why not just “the best?”

− Cannot always dynamically determine what trade-offs the

user/application are willing to make

− Pause time vs. Throughput

� Trade off frequency and length of pauses vs. throughput

− Footprint vs. Frequency
� Trade off smaller footprint vs. frequency of GC pauses/events

Policy Recommended usage Notes

optThroughput optimized for throughput default in Java 5 and Java 6

optAveragePause optimized to reduce pause times

gencon optimized for transactional workloads default in Java 6.0.1/Java 7

subPools optimized for large MP systems deprecated in Java 6.0.1/Java 7

balanced optimized for large heaps added in Java 6.0.1/Java 7

37

64-bit Java Performance : Compressed References

• Option to enable compression in 64-bit Java 6 SR4, WAS 7 (Service Pack 3)

• use –Xcompressedrefs option

• Java objects are 8-byte aligned

• Low 3 bits of object address = 000

• Address range restriction

• Java heap allocated in 231 – 235 range (2GB – 32GB virtual)

• High 29 bits of object address = 000 … 000

• 32 out 64 bits are 0!

• Store 32-bit shifted offset in objects

• Shift values of 0 through 3 are used

• Maximum allowable heap is ~32GB, Actual allowed heap depends on shift value and virtual memory fragmentation

• Reference whitepaper: http://tiny.cc/mi4fgw

38

IBM J9 Garbage Collector: -Xgcpolicy:optthruput

• Default policy in Java 5 and Java 6

• Used where raw throughput is more important than short
GC pauses

• Application stopped whenever garbage is collected

Time

Thread 1

Thread 2

Thread 3

Thread n

GC

Application

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

39

• Trades high throughput for shorter GC pauses by
performing some of the garbage collection concurrently

• Application paused for shorter periods

Time

GC

Application

Concurrent Tracing

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

Thread 1

Thread 2

Thread 3

Thread n

IBM J9 Garbage Collector: -Xgcpolicy:optavgpause

40

IBM J9 Garbage Collector: -Xgcpolicy:gencon

• Best of both worlds

− Good throughput + small pause times

− Shown most value with customers

• Two types of collection

− Generational nursery (local) collection

− Partially concurrent nursery & tenured (global) collection

• Why a generational + concurrent solution?

− Objects die young in most workloads
� Generational GC allows a better ROI (less effort, better reward)

� Performance is close to or better than standard configuration

− Reduce large pause times
� Partially concurrent with application thread (“application thread is taxed”)

� Mitigates cost of object movement and cache misses

41

• Default policy in Java 6.0.1 and Java 7

• Applications with many short-lived objects benefit from
shorter pause times while still producing good throughput

Time

Global GC

Application

Concurrent Tracing

Scavenge GC

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

Thread 1

Thread 2

Thread 3

Thread n

IBM J9 Garbage Collector: -Xgcpolicy:gencon

42

IBM J9 Garbage Collector: -Xgcpolicy:gencon

• Heap is split into two areas

− Objects created in nursery (small but frequently collected)

− Objects that survive a number of collections are promoted

to tenured space (less frequently collected)

Nursery Tenured Space

43

IBM J9 Garbage Collector: -Xgcpolicy:gencon

• Nursery is further split into two spaces

− allocate and survivor

− Division dynamically adjusted according to survival rate

Nursery

Tenured SpaceAllocate Space Survivor Space

44

IBM J9 Garbage Collector: -Xgcpolicy:gencon

• A scavenge copies objects from allocate space to survivor space

− Less heap fragmentation

− Better data locality

− Faster future allocations

• If an object survives X number of scavenges, it is promoted to tenured
space

Nursery

Tenured SpaceAllocate Space Survivor Space

45

IBM J9 2.6 Enhancement: -Xgcpolicy:balanced

• Improved application responsiveness

− Reduced maximum pause times to achieve more consistent
behavior

− Incremental result-based heap collection targets best ROI areas
of the heap

− Native memory-aware approach reduces non-object heap
consumption

46

IBM J9 2.6 Enhancement: -Xgcpolicy:balanced

• Next-generation technology expands platform exploitation
possibilities

− Virtualization: group heap data by frequency of access, direct OS
paging decisions

− Dynamic re-organization of data structures to improve memory
hierarchy utilization

47

IBM J9 2.6 Enhancement: -Xgcpolicy:balanced

• Recommended deployment scenarios

− Large (>4GB) heaps

− Frequent global garbage collections

− Excessive time spent in global compaction

− Relatively frequent allocation of large (>1MB) arrays

• Input welcome: Help set directions by telling us your needs

48

IBM J9 Garbage Collector: Tuning

• Typical approach

− Pick a policy based on desired application behavior

− Monitor GC behavior; overhead should be no more than

10%

− Tune heap sizes (-Xms, -Xmx)

− Tune helper threads (-Xgcthreads)

− Many other knobs exist

• Best practices

− Avoid finalizers

− Don't use System.gc()

49

IBM J9 Garbage Collector: Tuning

• Typical approach

− Pick a policy based on desired application behavior

− Monitor GC behavior; overhead should be no more than

10%

− Tune heap sizes (-Xms, -Xmx)

− Tune helper threads (-Xgcthreads)

− Many other knobs exist

• Best practices

− Avoid finalizers

− Don't use System.gc()

50

IBM J9 Garbage Collector: Tuning

• IBM Garbage Collection and Memory Visualizer (GCMV)

− Uses -verbose:gc output to provide detailed view of Java
memory footprint and GC behavior

− Uses ps -p $PID -o pid,vsz,rss output to plot native footprint

51

IBM J9 Garbage Collector: Tuning

• GC tuning documentation
− http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=java+technology+ibm+style

− http://www-01.ibm.com/support/docview.wss?uid=swg27013824&aid=1

− http://proceedings.share.org/client_files/SHARE_in_San_Jose/S1448KI161816.pdf

− http://www.redbooks.ibm.com/redpapers/pdfs/redp3950.pdf

• Memory leaks are possible even with GC

− Detect large objects/object cycles with IBM Memory Analyzer

52

• ISA Workbench

− A free application that simplifies
and automates software support

− Helps customers analyze and
resolve questions and problems

with IBM software products

− Includes rich features and
serviceability tools for quick

resolution to problems

• Meant for diagnostics and
problem determination

− Not a production monitoring tool

What is IBM Support Assistant?

53

IBM Monitoring and Diagnostic Tools for Java:
Health Center

• What problem am I solving?

− What is my JVM doing? Is

everything OK?

− Why is my application running

slowly?

− Why is it not scaling?

− Am I using the right JVM options?

• Health Center Overview

− Lightweight monitoring tool with very low

overhead

− Understands how your application behaves and

offers recommendations for potential problems

− Features: GC visualization, method

profiling/tracing, thread monitoring, class loading

history, lock analysis, file I/O and native memory

usage tracking

− Suitable for all applications running on IBM JVMs

54

IBM Monitoring and Diagnostic Tools for Java:
Health Center

Track available system

memory and native

memory used by the JVM

Keep track of

running threads and

monitor contention

55

IBM Monitoring and Diagnostic Tools for Java:
GCMV

• What problem am I solving?

− How is the garbage collector behaving?

Can I do better?

− How much time is GC taking?

− How much free memory does my JVM

have?

• GCMV Overview

− Analyzes Java verbose GC logs and

provides insight into application behavior

− Visualize a wide range of GC data and

Java heap statistics over time

− Provides the means to detect memory

leaks and to optimize garbage collection

− Uses heuristics to make recommendations

and guide user in tuning GC performance

56

IBM Monitoring and Diagnostic Tools for Java:
Memory Analyzer

• What problem am I solving?

− Why did I run out of Java memory?

− What's in my Java heap? How can I

explore it and get new insights?

• Memory Analyzer Overview

− Examines memory dumps and

identifies Java memory leaks

− Analyzes footprint and provides

insight into wasted space

Features: visual objects by size/class/classloader, dominator tree analysis, path to GC roots

analysis, object query language (OQL)

− Works with IBM system dumps, IBM portable heap dumps as well as Oracle

HPROF binary heap dumps

− IBM Extensions for Memory Analyzer offer additional, product-specific capabilities

57

IBM Monitoring and Diagnostic Tools for Java:
Memory Analyzer

Navigate the dominator tree,

and find which objects keep

which other objects alive

Build custom queries with

OQL to search for specific

object instances

58

IBM Monitoring and Diagnostic Tools for Java

• All tools can be downloaded/installed as plugins for IBM Support
Assistant Workbench

− http://www.ibm.com/software/support/isa/workbench.html

− http://www.ibm.com/developerworks/java/jdk/tools/

• Newest addition: Interactive Diagnostic Data Explorer (IDDE)

− Postmortem analysis of system core dumps or javacore files

− Useful for debugging JVM issues

59

Questions?

59

60

61

Important references

• IBM Java on Linux for System z

• http://www.ibm.com/developerworks/java/jdk/linux/download.html

• IBM z/OS Java web site

• http://www.ibm.com/systems/z/os/zos/tools/java/

• IBM Java documentation

• http://www.ibm.com/developerworks/java/jdk/docs.html

• IBM Java Diagnostic and Monitoring Tools

• http://www.ibm.com/developerworks/java/jdk/tools/index.html

• White paper on 64-bit compressed references and large pages features in IBM 64-bit

Java SDK on System z

• https://ibm.biz/BdRmRD

• JZOS Batch Launcher and Toolkit Installation and User’s Guide (SA38-0696-00)

• http://publibz.boulder.ibm.com/epubs/pdf/ajvc0110.pdf

62

Liberty feature set as of V8.5.5

62

WAS V8.5.5

Liberty Profile

Application

Manager
HTTP TransportFeature Manager

63

z/OS IBM Java 7:16-Way Performance

64-bit Java Multi-threaded Benchmark on 16-Way

(Controlled measurement environment, results may vary)Aggregate 60% improvement from zEC12 and IBM Java7

� zEC12 offers a ~45% improvement over z196 running the Java Multi-Threaded Benchmark

� IBM Java 7 offers an additional ~13% improvement (sr3 + -Xaggressive + Flash Express pageable 1Meg large pages)

Java on zEC12

z/OS 1.13 Multi-Threaded 64 bit Java Workload

~60% Hardware (zEC12) and Software (SDK 7 SR3) Improvement

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

zEC12 SDK 7 SR3

Aggressive +

LP Code Cache

zEC12 SDK 7 SR1

z196 SDK 7 SR1

64

z/OS IBM Java 7: 16-Way Performance
Aggregate HW and SDK Improvement z9 IBM Java 5 to zEC12 IBM Java 7

(Controlled measurement environment, results may vary)

~12x aggregate hardware and software improvement comparing IBM Java5 on z9 to IBM Java 7 on zEC12

LP=Large Pages for Java heap CR= Java compressed references

Java7SR3 using -Xaggressive + Flash Express pageable 1Meg large pages

Java on zEC12

z/OS Multi-Threaded 64 bit Java Workload 16-Way

~12x Improvement in Hardware and Software

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

zEC12 SDK 7 SR3

Aggressive +

LP Code Cache

zEC12 SDK 7 SR1

z196 SDK 7 SR1

z196 SDK 6 SR8

z10 SDK 6 SR4

z10 SDK 6 GM

NO (CR or Heap LP)

z9 Java 5 SR5

NO (CR or Heap LP)

65

z/OS IBM Java 7: CPU-Intensive Benchmark

(Controlled measurement environment, results may vary)

zEC12 and IBM Java 7 offer a ~40% composite improvement over z196 running the CPU Intensive benchmark

� zEC12 offers a ~33% improvement over z196 running the CPU-Intensive Benchmarks

� IBM Java 7 offers an additional ~5% improvement (SR3 + -Xaggressive + Flash Express pageable 1Meg large pages)

Java on zEC12

66

IBM Operational Decision Manager with IBM Java 7 and zEC12

(Controlled measurement environment, results may vary)

Aggregate 45% improvement from zEC12 and IBM Java7

� zEC12 offers a ~22% improvement over z196 running the ODM Benchmark

� IBM Java7 offers an additional ~19% improvement (SR4 + -Xaggressive + Flash Express pageable 1Meg large pages)

Java on zEC12

IBM Operational Decision Manager

Java7SR1 on z196 vs Java7SR4 on zEC12

0%

20%

40%

60%

80%

100%

120%

140%

160%

z196 zEC12

T
h

ro
u

g
h

p
u

t

(N
o

rm
a

li
z
e

d
 t

o
 J

a
v

a
7

S
R

1
 o

n
 z

1
9

6
)

Java7SR4

Java7SR1

67

TradeLite Servlet and JSP

WAS8.5 and WAS8.5 Liberty Profile on zEC12 with Java7SR3

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

WAS8.5 on z196 WAS8.5 on zEC12 WAS8.5 Liberty on z196 WAS8.5 Liberty on

zEC12 + Java7SR3

T
h

ro
u

g
h

p
u

t

(N
o

rm
a
li

z
e
d

 t
o

 W
A

S
8
.5

 o
n

 z
1
9
6
) 83%

WAS on z/OS – Servlets and JSPs with the Liberty Profile**

(Controlled measurement environment, results may vary)

� WAS8.5 Liberty on zEC12 using IBM Java 7 vs WAS8.5 on z196 running TradeLite demonstrates a 83%
improvement to Servlet and JSP throughput.

� WAS8.5 Liberty offers up to 5x start-up time reduction vs. WAS8.5 (<5 seconds)

� WAS8.5 Liberty offers reduced real-storage requirements up to 81% vs. WAS8.5 (80M versus 420M)

Java on zEC12

** See backup charts for list of Liberty Profile capabilities

++ Java7SR3 using -Xaggressive + Flash Express pageable 1Meg large pages

Java7SR3

zEC12

WAS Liberty

68

WAS on z/OS –
DayTrader2.0 EJB – Then and Now

(Controlled measurement environment, results may vary)

� WAS8.5.0.2 on zEC12 vs WAS7 on z196 running DayTrader2.0 EJB demonstrates a 90% improvement to throughput

� zEC12 improves WAS8.5 throughput by up to 32% over z196

� WAS8.5 improves throughput by up to 25% over WAS7.0

� WAS8.5.0.2 uses IBM Java 7 which improves throughput by an additional 15% over WAS8.5 on zEC12

Java on zEC12

DayTrader2.0 EJB

WAS7.0 on z196 and WAS8.5.0.2 on zEC12

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

180.00%

200.00%

WAS7.0 on z196 WAS8.5 on z196 WAS8.5 on zEC12 WAS8.5.0.2 on zEC12 +

Java7SR4

T
h

ro
u

g
h

p
u

t

(N
o

rm
a

li
z
e

d
 t

o
 W

A
S

7
.0

 o
n

 z
1

9
6

)

90%

69

WAS on z/OS – DayTrader
Aggregate HW, SDK and WAS Improvement: WAS 6.1 (IBM Java 5) on z9 to WAS 8.5

(IBM Java 7) on zEC12

(Controlled measurement environment, results may vary)

Java on zEC12

6x aggregate hardware and software improvement comparing WAS 6.1 IBM Java5 on z9 to WAS 8.5 IBM Java7 on zEC12

70

z/OS Java SDK 7: zBC12 4-way Performance
64-bit Java Multi-threaded Benchmark on 16-Way

(Controlled measurement environment, results may vary)Aggregate 90% improvement from zBC12 and Java7SR3

� zBC12 offers a ~64% improvement over z196 running the Java Multi-Threaded Benchmark

� Java7SR3 offers an additional ~15% improvement (-Xaggressive + Flash Express pageable 1Meg large pages)

z/OS Multi-Threaded 64 bit Java Workload

zBC12 (4-way) vs z114 (4-way)

~90% Aggregate Hardware and Software Improvement

64% Hardware (zBC12) and 15% Software (SDK7 SR3) Improvement

-

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Threads

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

zBC12 SDK 7 SR3
Aggressive +
LP Code Cache

zBC12 SDK 7 SR1

z114 SDK 7 SR1

71

WAS on z/OS –
DayTrader2.0 EJB on zBC12 with Java7

(Controlled measurement environment, results may vary)

� On zBC12 with z/OS 1.13, WAS 8.5.0.2 full profile (with Java7SR4 *) throughput performance improved 12% over
WAS 8.5 full profile running DayTrader.

WAS DayTrader on zBC12

0%

20%

40%

60%

80%

100%

120%

WAS8.5 on zBC12 Java7SR1 WAS8.5.0.2 on zBC12 Java7SR4

R
e
la

ti
v
e
 I

m
p

ro
v
e
m

e
n

t

* Java7SR4 using -Xaggressive + Flash Express pageable 1Meg large pages

72

WAS Liberty Profile Running TradeLite on zBC12

0%

20%

40%

60%

80%

100%

120%

140%

160%

WAS8.5 on zBC12 WAS8.5 Liberty on zBC12 +

Java7SR1

WAS8.5.0.2 Liberty on zBC12 +

Java7SR4*

R
e
la

ti
v
e
 T

h
ro

u
g

h
p

u
t

WAS on z/OS – Servlets and JSPs with the Liberty Profile**

(Controlled measurement environment, results may vary)

� On zBC12 with z/OS 1.13, WAS 8.5 liberty profile throughput is improved 28% over WAS 8.5 full profile
running TradeLite.

� On zBC12 with z/OS 1.13, WAS 8.5.0.2 liberty profile (with Java 7 SR4 *) throughput performance improved
8% over WAS 8.5 liberty profile running TradeLite.

� WAS8.5 Liberty using Java7SR4 vs traditional WAS8.5 using Java7SR1 running TradeLite demonstrates a
aggregate 38% improvement to Servlet and JSP throughput

** See backup charts for list of Liberty Profile capabilities

* Java7SR4 using -Xaggressive + Flash Express pageable 1Meg large pages

Java7SR4*

WAS Liberty

73

JCICS and Java7SR3 on zEC12

• Using complex Java workload –
Axis2 webservice

• Equivalent throughput using CICS
V5.1 on z196 compared to CICS
V4.2

• 30% improvement in throughput
using CICS V5.1 on zEC12
compared to CICS V4.2 on z196

• 39% improvement in throughput
using CICS V5.1 with Java 7
zEC12 exploitation compared to
CICS V4.2 on z196 0

500

1000

1500

2000

2500

3000

3500

th
ro

u
g

h
p

u
t

(I
T

R
)

CICS V4.2 z196

CICS V5.1 z196

CICS V5.1 zEC12

CICS zEC12 +
exploitation

+30%

+39%

higher is better

0

500

1000

1500

2000

2500

3000

3500

th
ro

u
g

h
p

u
t

(I
T

R
)

CICS V4.2 z196

CICS V5.1 z196

CICS V5.1 zEC12

CICS zEC12 +
exploitation

+30%

+39%

higher is better

(Controlled measurement environment, results may vary)

74

IMS JMP region performance
Hardware stack improvements

(Controlled measurement environment, results may vary)

IMS Java - Hardware stack improvements

19838

14754

0

5000

10000

15000

20000

25000

z196 zEC12

E
T

R
 (

T
ra

n
/S

e
c
)

Up to 32%

ETR

throughpu
t increase

moving

same

workload

(Controlled measurement environment, results may vary)

75

IMS JMP region performance
Aggregate SDK, software and hardware improvements

Over 4x aggregate throughput improvement from 2009 to 2012
due to the following enhancements

• Java version to version performance improvements

• IMS improvements

• Hardware improvements

• DASD improvements

(Controlled measurement environment, results may vary)

IMS Java transaction throughput from 2009 to 2012

4191

7600 8448
9389

12540

19838

0

5000

10000

15000

20000

25000

Jun-08 Dec-08 Jul-09 Jan-10 Aug-10 Feb-11 Sep-11 Apr-12 Oct-12

Timeline

E
T

R
 (

T
ra

n
/S

e
c
)

