Linux on System z Introducing the Linux Health Checker

Martin Schwidefsky IBM Lab Böblingen, Germany March 12 2014 Session 13517

Trademarks & Disclaimer

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

IBM, the IBM logo, BladeCenter, Calibrated Vectored Cooling, ClusterProven, Cool Blue, POWER, PowerExecutive, Predictive Failure Analysis, ServerProven, System p, System Storage, System x, System z, WebSphere, DB2 and Tivoli are trademarks of IBM Corporation in the United States and/or other countries. For a list of additional IBM trademarks, please see http://ibm.com/legal/copytrade.shtml.

The following are trademarks or registered trademarks of other companies: Java and all Java based trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries or both Microsoft, Windows, Windows NT and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both. Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. UNIX is a registered trademark of The Open Group in the United States and other countries or both. Linux is a trademark of Linus Torvalds in the United States, other countries, or both. Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc. InfiniBand is a trademark of the InfiniBand Trade Association.

Other company, product, or service names may be trademarks or service marks of others.

NOTES: Linux penguin image courtesy of Larry Ewing (lewing@isc.tamu.edu) and The GIMP

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Users of this document should verify the applicable data for their specific environment. IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

Information is provided "AS IS" without warranty of any kind. All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area. All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices are suggested US list prices and are subject to change without notice. Starting price may not include a hard drive, operating system or other features. Contact your IBM representative or Business Partner for the most current pricing in your geography. Any proposed use of claims in this presentation outside of the United States must be reviewed by local IBM country counsel prior to such use. The information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any

Agenda – Part 1

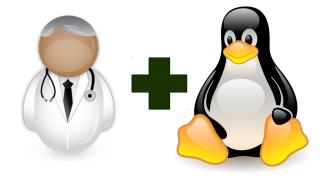
IBM

1. Introducing health checking

- 2. Using the Linux Health Checker
- 3. How to write a check

Introducing health checking

What is a health check?


- A process that identifies conditions which may lead to problems

What is the Linux Health Checker?

- A tool that performs an automated health check of a Linux system
- Checks status and configuration
- Presents report on identified problems

Helps keeping Linux systems healthy (operational)

What does it do?

IBM

Example problem classes

- Configuration errors
- Deviations from best-practice setups
- Hardware running at reduced capacity
- Unused accelerator hardware
- Single point-of-failures

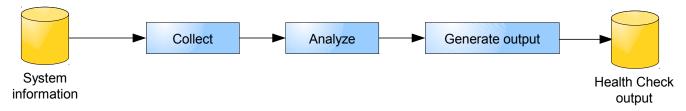
Detailed problem report

- Enable users to *understand* and *solve* problems
- Make expert knowledge available to wider audience

Goals

IBM

Ease of use

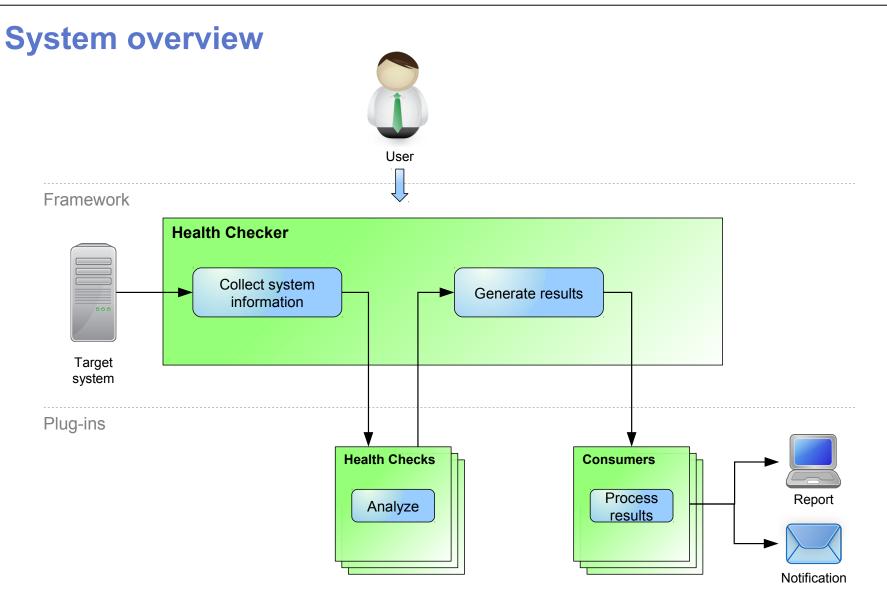

- -Simple setup: Install and run no involved configuration
- -Primary tasks easily accessible through command line interface

Flexibility through Framework/Plug-in concept

- -Health check plug-ins
 - Contain all problem area specific knowledge
- -Consumer plug-ins
 - Handle output processing
- -Extend functionality by adding new plug-ins

Basic approach to health checking

Collect system information

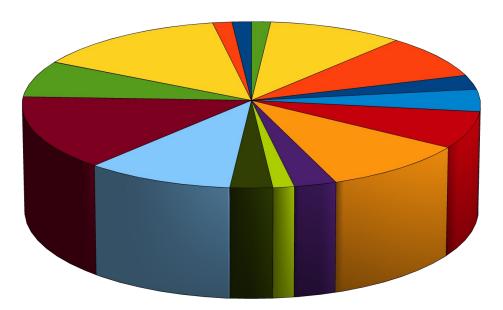

- -File contents, for example /var/log/messages
- -Program output, for example /bin/df

Analyze information

- -Find relevant data points
- -Compare with best-practice values

Generate report

Health checks in version 1.3


70 checks in total (v1.0 had 25):

Check whether the recommended runlevel is used and set as default Check whether the CPUs run with reduced capacity Confirm that CPACF is enabled Verify System z cryptographic hw support through CCA stack Verify System z cryptographic hw support for PKCS#11 clear key [...] Verify System z cryptographic hw support for PKCS#11 clear key [...] Verify System z cryptographic hw support for PKCS#11 secure key [...] Verify System z cryptographic hw support for PKCS#11 secure key [...] Check whether the path to the OpenSSL library is configured correctly Verify System z cryptographic hw support through an OpenSSL stack Verify System z cryptographic hw support through an OpenSSL stack Confirm that the System z cryptography kernel module is loaded Identify I/O devices that are in use although they are on the exclusion list Check for CHPIDs that are not available Identify unusable I/O devices Check for an excessive number of unused I/O devices Identify I/O devices that are not associated with a device driver Identify unusable Fibre Channel(FC) remote ports Verify that the bootmap file is up-to-date Identify standard DASD device nodes in the fstab file Check if filesystems are skipped by filesystem check (fsck) Check file systems for an adequate number of free inodes Check for read-only filesystems Verify that temporary files are deleted at regular intervals. Check file systems for adequate free space Confirm that automatic problem reporting is activated Check if control program identification can display Linux instance names Verify that syslog files are rotated Check if swap space is available Ensure memory usage is within the threshold Identify bonding interfaces that are configured with single network interfaces Identify bonding interfaces that aggregate geth interfaces with the same CHPID Ensure nameserver is listed with correct address Check for an excessive error ratio for outbound HiperSockets traffic Check the inbound network traffic for an excessive error or drop ratio

Identify geth interfaces that do not have an optimal number of buffers Identify network services that are known to be insecure Ensure processes do not hog cpu time Ensure the system is running with optimal load Check the kernel message log for out-of-memory (OOM) occurrences Ensure processes do not hog memory Ensure that privilege dump is switched off Ensure kdump is configured and running Confirm that the dump-on-panic function is enabled Ensure that panic-on-oops is switched on Identify unusable SCSI devices Confirm that root logins are enabled for but restricted to secure terminals Screen users with superuser privileges Identify CDL-formatted DASD where the metadata area is used for storing data Confirm 4K block size on ECKD DASD devices Check Linux on z/VM for the "nopav" DASD parameter Identify active DASD alias devices without active base device Identify multipath setups that consist of a single path only Identify multipath devices with too few available paths or too many failed paths Verify that the multipath service starts automatically when the system launches Check for two or more host ports and two or more target ports (WWPNs) Spot getty programs on the /dev/console device Check for current console loglevel Detect terminals with multiple device nodes Confirm that all available z/VM IUCV HVC terminals are enabled for logins Identify idle terminals Identify idle users Identify unused terminals (TTY) Check whether N Port ID Virtualization (NPIV) is active Check if FCP device recovery failed Identify FCP devices that share channel-path identifiers (CHPIDs) Ensure that all LUNs configured for persistence are available Identify if recovery of a zFCP LUN failed Check if the recovery of a target port failed Check the privilege classes of the z/VM guest virtual machine

Health checks in version 1.3

Checks by Component

Boot CPU Crypto CSS ■ FCP Filesystem ■ Firmware Log Memory Network Process RAS Security Storage Terminal z/VM

Agenda – Part 2

1. Introducing health checking

► 2. Using the Linux Health Checker

3. How to write a check

Preparations

Obtaining the Linux Health Checker

- -Releases: V1.0 released March 2012, V1.3 in December 2013
- -Open source under Eclipse Public License v1.0
- –Download RPM or source package from http://lnxhc.sourceforge.net
- -Install using RPM command or make install
- -Distribution support in progress

Requirements

- -Linux
 - Framework should run on *any* hardware platform
 - Health checks may be platform specific
- -Perl 5.8 or later
 - Additional Perl modules which are usually part of default installation

First health check run

[user@lnxhost ~]\$ lnxhc run Collecting system information		
Running checks (12 checks)	NO OF	
CHECK NAME	HOST ====================================	RESULT
<pre>boot_zipl_update_required</pre>	. lnxhost	SUCCESS
css_ccw_availability		SUCCESS
css_ccw_chpid	. lnxhost	SUCCESS
css_ccw_no_driver		SUCCESS
css_ccw_unused_devices	. lnxhost	EXCEPTION-LOW
Of 4664 I/O devices, 4659 (99.89%) fs_disk_usage mm_oom_killer_triggered net_hsi_tx_errors ras dump on panic	. lnxhost . lnxhost . lnxhost	SUCCESS SUCCESS NOT APPLICABLE EXCEPTION-HIGH
<pre>>EXCEPTION ras_dump_on_panic.no_standa The dump-on-panic function is not e</pre>	lone(high)	
sec_services_insecure	. lnxhost	SUCCESS
sys_sysctl_call_home		NOT APPLICABLE
<pre>sys_sysinfo_cpu_cap</pre>	. lnxhost	SUCCESS
10 checks run, 2 exceptions found (use	'lnxhc runreplay -V' fo	or details)

13

IBM

Interpreting output

A potential problem was found

-Full exception ID

• css_ccw_unused_devices.many_unused_devices

-Exception severity

• low

- Exception summary

• Of 4664 I/O devices, 4659 (99.89%) are unused

Getting more details

[user@lnxhost ~]\$ lnxhc run -V css_ccw_unused_devices CHECK NAME HOST	RESULT			
css_ccw_unused_devices lnxhost	EXCEPTION-LOW			
>EXCEPTION css_ccw_unused_devices.many_unused_devices(low)				
SUMMARY Of 4664 I/O devices, 4659(99.89%) are unused				
EXPLANATION The number of unused (offline) I/O devices, 4664 (99.89%) of a total of 4659, exceeds the specified threshold. During the boot process, Linux senses and analyzes All available I/O devices, including unused devices. Therefore, unused devices unnecessarily consume memory and CPU time.				
SOLUTION Use the "cio_ignore" feature to exclude I/O devices that you do not need from being sensed and analyzed. Be sure not to inadvertently exclude required devices. To ex- clude devices, you can use the "cio_ignore" kernel parameter or a command like this:				
echo "add <device_bus_id>" > /proc/cio_ignore</device_bus_id>				
where <device_bus_id> is the bus ID of an I/O device to be excluded.</device_bus_id>				
REFERENCE For more information about the "cio_ignore" feature, see the s "cio_ignore" kernel parameter in "Device Drivers, Features, and Comm				

Additional functions

Viewing health check information

[user@lnxhost ~]\$ lnxhc check --info fs_disk_usage

Check fs_disk_usage (active)

Title:

Check file systems for adequate free space

Description:

Some applications and administrative tasks require an adequate amount of free space on each mounted file system. If there is not enough free space, these applications might no longer be available or the complete system might be compromised. Regular monitoring of disk space usage averts this risk.

Exceptions:

```
critical_limit=high (active)
warn limit=low (inactive)
```

Parameters:

```
critical_limit=95
File system usage (in percent) at which to raise a high-severity exception.
Valid values are integers in the range 1 to 100.
```

Default value is "95".

. . .

Modifying health check properties

Activation state

-Specifies if a check should be performed during health check run

```
[user@lnxhost ~]$ lnxhc check fs_disk_usage --state inactive
Setting state of check 'fs_disk_usage' to 'inactive'
Done.
```

Parameter values

- -Values defined by health checks
- -Enable users to customize certain aspects of the health check

```
[user@lnxhost ~]$ lnxhc check --param fs_disk_usage.critical_limit=99
Setting value of parameter fs_disk_usage.critical_limit to '99'
Done.
```

See man page for full list of properties

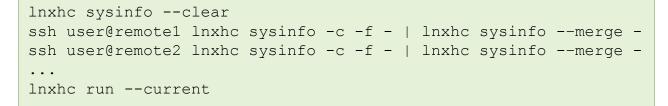
```
-man lnxhc_properties.7
```

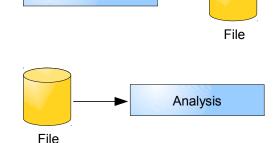
Collect

Advanced health checking modes

Collect data to file

lnxhc sysinfo --collect --file lnxhost.sysinfo

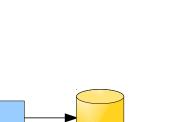

Analyze from file


lnxhc run --file lnxhost.sysinfo

Analyze from remote host

ssh user@remote lnxhc sysinfo -c -f - | lnxhc run -f -

Analyze from multiple hosts



Collect

Internal DB

Analyze

Collect

Agenda – Part 3

- 1. Introducing health checking
- 2. Using the Linux Health Checker
- 3. How to write a check

Example idea

What to check?

-Value of sysctl setting panic_on_oops should be '1'

• Why?

- -"Kernel oops" = severe kernel error
- -Indication that the kernel can no longer be trusted
- -Kernel will continue anyway if panic_on_oops is '0'

How to check

```
[user@lnxhost ~]$ cat /proc/sys/kernel/panic_on_oops
0
```

Solution

[user@lnxhost ~]\$ echo 1 > /proc/sys/kernel/panic_on_oops

Implementation without framework

Check program 'check.sh'

```
#!/bin/bash
FILENAME="/proc/sys/kernel/panic_on_oops"
PANIC_ON_OOPS=`cat $FILENAME`

if [ "$PANIC_ON_OOPS" -eq 0 ] ; then
        echo "The panic-on-oops setting is disabled"
        echo "Enable it using 'echo 1 > /proc/sys/kernel/panic_on_oops'"
        exit 1
fi
exit 0
```

Sample output

[user@lnxhost ~]\$./check.sh
The panic-on-oops setting is disabled
Enable it using 'echo 1 > /proc/sys/kernel/panic on oops'

Writing checks for the Linux Health Checker framework

One directory per check

-Directory name is check name

Files for

-Meta data

-Text

-Check program

panic_on_oops — definitions	
- descriptions	
exceptions	
check	

Definitions file

Contains data about the health check

[check] author = user@host component = system	Meta-data
[sysinfo panic_on_oops] file = /proc/sys/kernel/panic_on_oops	 System information Files, command output, etc.
[exception no_panic_on_oops] severity = high	 Exceptions ID and severity

Optional parameters

Descriptions file

IBM

Contains health check and parameter descriptions

[title] Ensure that panic-on-oops is enabled	Check title
[description] The panic-on-oops setting ensures that a Linux instance is stopped if a kernel oops occurs.	 Basic check description

Description of parameters

Exceptions file

IBM

Contains problem report text

References exception specified in definitions file through label

[summary no_panic_on_oops] The panic-on-oops setting is disabled	Problem summary
[explanation no_panic_on_oops] Without the panic-on-oops setting, a Linux instance might keep running after an oops.	Explanation – Why is this a problem?
<pre>[solution no_panic_on_oops] Use the following command to enable the panic-on-oops setting echo 1 > /proc/sys/kernel/panic_on_oops</pre>	 Solution Step-by-step instruction
[reference no_panic_on_oops] See kernel documentation on panic-on-oops setting.	 Reference for further reading If available

26

Check program

IBM

Implements health check analysis logic

```
#!/bin/bash
FILENAME=$LNXHC_SYSINFO_panic_on_oops
PANIC_ON_OOPS=`cat $FILENAME`

if [ "$PANIC_ON_OOPS" -eq 0 ] ; then
echo "no_panic_on_oops" >> $LNXHC_EXCEPTION
fi
exit 0

exit 0
Indicate result code
- 0 = Success
- 64 = Missing dependency
```

- Other = Run-time error

Putting it all together

<pre>[user@lnxhost ~]\$ lnxhc run -V ./panic_on_oops Collecting system information Running checks (1 checks)</pre>		
CHECK NAME	HOST	RESULT
panic_on_oops	lnxhost	EXCEPTION-HIGH
>EXCEPTION panic_on_oops.no_pa	anic_on_oops(high)	
SUMMARY The panic-on-oops setting :	is disabled	
EXPLANATION Without the panic-on-oops keep running after an oops	s setting, a Linux instance mig	ıht
SOLUTION Use the following command to enable the panic-on-oops setting echo 1 > /proc/sys/kernel/panic_on_oops		
REFERENCE See kernel documentation on panic-on-oops setting.		

If it doesn't work, add more "-V"s

-Increase level of verbosity to help debugging

Wrap-up

IBM

To implement a check

- -Create a directory
- -Add files
 - Meta-data
 - Text files
 - Check program
- -Run/debug until it works

Health check creation dialog

lnxhc devel --create-check my_check

-Creates template files based on dialog input

Further reading

Man pages

- -Once installed use 'apropos lnxhc' to list man pages
- -Also available on the web: http://lnxhc.sourceforge.net/manpages.html

User's Guide

-http://lnxhc.sourceforge.net/documentation.html

Main web page

-http://lnxhc.sourceforge.net/

Mailing list

-Open for questions, comments, ideas, code contributions, etc.

-Inxhc-list@lists.sourceforge.net

Questions?

Martin Schwidefsky

Linux on System z Development

Schönaicher Strasse 220 71032 Böblingen, Germany

Phone +49 (0)7031-16-2247 schwidefsky@de.ibm.com