
Exploiting Crypto Express & CPACF
Hardware with Linux

Richard Young

IBM STG Lab Services

9:30am Monday March 10th, 2014

www.SHARE.org

Agenda

5 Configuring the IBM HTTP Server to use the Crypto Hardware

2 Making the Cryptographic Hardware Available to Linux

1 zEnterprise Crypto Hardware Background

3 Enabling Linux to use the Hardware

4 Enabling Java and WebSphere to Exploit the Crypto Hardware

6 Enabling the WAS Plugin to Use the Crypto Hardware

7 openSSL and openSSH

8 In Kernel Crypto and DM-Crypt

Agenda

5 Configuring the IBM HTTP Server to use the Crypto Hardware

2 Making the Cryptographic Hardware Available to Linux

1 zEnterprise Crypto Hardware Background

3 Enabling Linux to use the Hardware

4 Enabling Java and WebSphere to Exploit the Crypto Hardware

6 Enabling the WAS Plugin to Use the Crypto Hardware

7 openSSL and openSSH

8 In Kernel Crypto and DM-Crypt

7 openSSL and openSSH

8 In Kernel Crypto and DM-Crypt

zEnterprise Crypto Background

• System z has two categories of crypto hardware

• CPACF– Provides support for symmetric ciphers and secure hash
algorithms (SHA) on every central processor. The potential
encryption/decryption throughput scales with the number of CPs.

• CEX –The Crypto Express feature can be configured in three ways:

Either as cryptographic Coprocessor (CEXC) for secure key encrypted

transactions, or as cryptographic Accelerator (CEXA) for Secure Sockets

Layer (SSL) acceleration. A CEXA works in clear key mode. The Crypto

Express 4S allows for a third mode as a Secure IBM CCA Coprocessor

• The solutions in this presentation make use of clear key
acceleration

IB IBOB OB
TLBTLB

2nd Level
Cache

Cmpr
Exp

Cmpr
Exp

16K 16K

Crypto
Cipher

Crypto
Hash

Core 0 Core 1

Crypto
Cipher

Crypto
Hash

2nd Level
Cache

zEC12 Compression and Cryptography Accelerator

• Coprocessor dedicated to each core
(Was shared by two cores on z196)
– Independent compression engine

– Independent cryptographic engine

– Available to any processor type

– Owning processor is busy when its
coprocessor is busy

• Data compression/expansion engine
– Static dictionary compression and expansion

• CP Assist for Cryptographic Function
– 290-960 MB/sec bulk encryption rate

– DES (DEA, TDEA2, TDEA3)

– SHA-1 (160 bit)

– SHA-2 (244, 256, 384, 512 bit)

– AES (128, 192, 256 bit)

– CPACF FC 3863 (No Charge) is required to
enable some functions and is also required
to support Crypto Express4S or Crypto
Express3 features

Crypto Express4S

• One PCIe adapter per feature

• Initial order – two features

• FIPS 140-2 Level 4

• Installed in the PCIe I/O drawer

• Up to 16 features per server

• Prerequisite: CPACF (FC 3863)

• Three configuration options for the PCIe

adapter

• Only one configuration option can be chosen at
any given time

• Switching between configuration modes will erase
all card secrets

• Exception: Switching from CCA to accelerator or vice
versa

• Accelerator

• For SSL acceleration

• Clear key RSA operations

• Enhanced: Secure IBM CCA coprocessor (default)

• Optional: TKE workstation (FC 0841) for security-
rich, flexible key entry or remote key management

• New: IBM Enterprise PKCS #11 (EP11) coprocessor

• Designed for extended evaluations to meet public
sector requirements

• Both FIPS and Common Criteria certifications

• Required: TKE workstation (FC 0841) for
management of the Crypto Express4S when
defined as an EP11 coprocessor

• Supported on Crypto Express4S only

• Accelerator

• Clear Key (RSA <= 4k)

• Coprocessor

• Clear Key (RSA <= 4k and RNG)

• Secure Key (ECC via CCA)

Value of Cryptographic Hardware

For additional details see: ZSW03250-USEN-00.pdf

Value of Cryptographic Hardware

For additional details see: ZSW03250-USEN-00.pdf

Value of Cryptographic Hardware

For additional details see: ZSW03250-USEN-00.pdf

zEnterprise Crypto Background

• OpenSSL needs the engine ibmca to communicate with the interface library

(libICA). The libICA library then communicates with CPACF or via the Linux

generic device driver z90crypt with a CEX (if available). The device driver
z90crypt must be loaded in order to use CEX features.

• Many potential exploiters
• WebSphere Application Server/Portal

• Java Applications

• IBM HTTP Server

• Apache

• WebSphere Plugin

• Linux SSH, SFTP, SCP

• In Kernel Crypto Exploiters

• DM-Crypt

• IPSec

Linux on System z Crypto Stack

openssl

Ibmca engine

Opencryptoki pkcs11

ica token cca token

ica library cca library

openssh

ssh, sftp, scp

Apache

(mod_ssl)

Apache

(mod_nss)

nss

IBM c/c++

sw

GSKIT

WAS
Cust c/c++

PKCS11

JCA/JCE

IBMPKCS11Impl

Customer

Java JCE

zcrypt device driver
ipsec dm-crypt

Kernel crypto framework

System z backend

Accelerator
rsa

Co-processor
rsa,rng,ecc

CPACF
des,3des,aes,sha,rng

Hardware

Operating
System

System z HW
crypto Libraries

Standard
Crypto
Interfaces

Application
Customer

CCA

icc

Clear SecureProtected

Agenda

5 Configuring the IBM HTTP Server to use the Crypto Hardware

2 Making the Cryptographic Hardware Available to Linux

1 zEnterprise Crypto Hardware Background

3 Enabling Linux to use the Hardware

4 Enabling Java and WebSphere to Exploit the Crypto Hardware

6 Enabling the WAS Plugin to Use the Crypto Hardware

7 openSSL and openSSH

8 In Kernel Crypto and DM-Crypt

Making the Crypto Hardware available to Linux

• Crypto Express hardware needs to be configured at the HMC to the
LPAR

• Need to make the Crypto Express Accelerator available to the guest
when running under z/VM

• This can be configured as dedicated, shared, or to a specific crypto
domain

• The CPACF is automatically made available with the PU, you just
need to ensure the enabling microcode is on. (Feature code 3863)

• Supported algorithms vary by processor model and Express card

Making the Crypto Hardware available to Linux

Making the Crypto Hardware available to Linux

•DIRM FOR RGYLXWS8 CRYPTO APVIRT

•Provides access to the CEX

•Alternatively it could be dedicated, which is typically used for secure key
operations

• Or add to your Linux directory “profile” (LINDFLT above)

• CPACF always available from a hardware virtualization perspective

Agenda

5 Configuring the IBM HTTP Server to use the Crypto Hardware

2 Making the Cryptographic Hardware Available to Linux

1 zEnterprise Crypto Hardware Background

3 Enabling Linux to use the Hardware

4 Enabling Java and WebSphere to Exploit the Crypto Hardware

6 Enabling the WAS Plugin to Use the Crypto Hardware

Preparing Linux – Required packages

• Required Packages

• libica (qty 2)

• openCryptoki (qty 3)

• Given continued enhancements, the more current the better

• Examples shown in the presentation are with:

• WebSphere V8

• SLES 11 SP2

About the Linux Packages

• openCryptoki provides the pkcs11 interfaces

• PKCS #11 is one of the family of standards for Public Key
Cryptography Standards. It provides a platform independent API to
cryptographic tokens (such as HSMs).

• libica - The Library for IBM® Cryptographic Architecture provides the

header files and libica library to write cryptographic programs both with
and without cryptographic hardware. It also provides programs such
as icainfo and icastats

Preparing Linux - Validating CPACF

• “icainfo” will show the cryptographic operations supported by libica on your

system

• Influenced by processor model and microcode enablement feature

Preparing Linux

• The z90crypt module and pkcsslot daemon must be loaded and
started. Do this dynamically with

• rcz90crypt start

• rcpkcsslotd start

• Don’t forget to permanently enable

• chkconfig z90crypt on

• chkconfig pkcsslotd on

Preparing Linux - Confirming CEX Adapter

• /proc/driver/z90crypt will shows the number and type of Crypto
Express devices enabled to your system.

Preparing Linux

• Before the crypto hardware can be used the PKCS11 token must be initialized.

• Initializing the PKCS11 token/hardware requires a security officer and user PIN

to be set

• BOTH must be changed after they are set before crypto operations can occur on
the hardware

• A token label must also be set

• These setting are unique to the individual Linux guest, however they could be set
on a Linux master image you clone from

Preparing Linux – Initialize Token and Change SO PIN

• The PKCS11 token is initialized with pkcsconf, a Security Officer PIN set,

and a token label applied

• You will need to use this token label later

• The PINS must be changed after the initial setting

• The Security Officer PIN must be changed before proceeding further

• pkcsconf –c 0 –P

Preparing Linux – Status After Initialization

• After initializing the token hardware is still not ready

• pkcsconf -t

• When ready the flags will be 0x44D

• Ensure you are checking the correct token/label

Preparing Linux – Set and Change the User PIN

• The User PIN is set, the SO PIN is required for this operation

• pkcsconf –c 0 –u

• The User Pin must be changed before use also.

• pkcsconf –c 0 –p

Preparing Linux –> 0x44D = Ready

• When ready for use, the Flags value is 0x44D, anything else does not work

Preparing Linux Summary

• You can configure the Security Officer and User PINs on your
master image

• PINS must be changed after they are initially set

• Crypto APVIRT (or variation) required for a virtualized CEX

• Get the most current libica and openCryptoki from your distributor
for your version / release

• Monitor with

• /proc/driver/z90crypt

• icainfo/icastats

• pkcsconf –t

• lszcrypt

Agenda

5 Configuring the IBM HTTP Server to use the Crypto Hardware

2 Making the Cryptographic Hardware Available to Linux

1 zEnterprise Crypto Hardware Background

3 Enabling Linux to use the Hardware

4 Enabling Java and WebSphere to Exploit the Crypto Hardware

6 Enabling the WAS Plugin to Use the Crypto Hardware

7 openSSL and openSSH

8 In Kernel Crypto and DM-Crypt

Enabling Java and WebSphere

• Steps

• Update the Java policy files to be unrestricted

• Set the WebSphere JVM Custom property

• Create the hardware token file

• Update the Java security file

• Customize the WebSphere Cipher Suite

• Make userid(s) part of the PKCS11 group

• Validate use of the hardware

• IBM SDKs ship with a strong but limited set of policy files.

• To use the strongest encryption you need to update the policy files with
the unrestricted version.

• The link for SDK 6 is:

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=j

cesdk

• The updated files go in:

/opt/IBM/WebSphere/AppServer/java/jre/lib/security

Enabling Java and WebSphere

Enabling Java and WebSphere

• Unzip the unrestricted.zip in a temporary work directory

• Copy the local_policy.jar and US_export_policy.jar in to the WebSphere
java/jre/lib/security directory

• Backup copies are handy, as maintenance to the SDK will overlay your

unrestricted file with the restricted one.

• Set permissions and ownership as desired

Enabling Java and WebSphere

• JVM Custom property needed for every JVM in Cell (Dmgr, Node Agents, App Servers)

• Per APAR PK45677, Add JVM custom property:

com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA

with value of true

Enabling Java and WebSphere

• Need to create hwcrypto.cfg file

• Suggested location is /opt/IBM/WebSphere/

• Customize contents with

• Unique token label (the one you specified on the pkcsconf –c 0 –I

initialization)

• Token slot number (the zero above, in this case)

• Example on the next slide

Contents sample hwcrypto.cfg

name = rgylxws8

library=/usr/lib/pkcs11/PKCS11_API.so64

description=custom

slotListIndex = 0

disabledMechanisms = {

CKM_MD5

CKM_SHA_1

CKM_MD5_HMAC

CKM_SHA_1_HMAC

CKM_SSL3_MASTER_KEY_DERIVE

CKM_SSL3_KEY_AND_MAC_DERIVE

CKM_SSL3_PRE_MASTER_KEY_GEN

}

• Token Label

• Slot number

Enabling Java and WebSphere

• Java.security file must be customized

• Resides in /opt/IBM/WebSphere/AppServer/java/jre/lib/security

• IBMPKCS11Impl moved to the top of the list and the hwcrypto.cfg file referenced

• Its good to have backup copies just in case…

Enabling Java and WebSphere

• Original java.security

Enabling Java and WebSphere

• Customized java.security

• hwcrypto.cfg line is wrapped as shown, but is a single line

Enabling Java and WebSphere

• The WebSphere cipher suite needs to be adjusted to include
those which your hardware and software will service

• Older configurations might use AES 128 and/or Triple DES

• SSL_RSA_WITH_AES_128_CBC_SHA

• SSL_RSA_WITH_3DES_EDE_CBC_SHA

• Newer Configurations

• SSL_RSA_WITH_AES_256_CBC_SHA

• See ZSW03250-USEN-00 for a discussion of cipher support

Enabling Java and WebSphere

• Original default ciphers

Enabling Java and WebSphere

• Customized high strength ciphers eligible for offload

• Repeat for other “SSL Configurations” as needed

Enabling Java and WebSphere

• The userid that will run the software using the pkcs11 cryptographic hardware

must be added to the pkcs11 group

• In this case wasadmin is added to the pkcs11 group

• root is automatically added to this group when the pkcsslot daemon is started

Enabling Java and WebSphere

Enabling Java and WebSphere

Enabling Java and WebSphere

icastats – Part of libica V2

package. Tracks hardware

and software requests through
the libica package and allows
you to understand how many

request are performed in

hardware vs software

Enabling Java and WebSphere

• Don’t forget to enable your deployment manager and node
agents

• Remember to reapply customizations after apply maintenance

• Minimum levels:

• SLES 10 SP3

• RHEL 5.5

• WAS 7.0.0.9

• SDK 1.6 SR7

• Shared CEX2C device, z/VM APAR VM64727

Sample Java JCE Application

• Modified to encrypt text 1000 times to clearly show in icastats

• Utilizes previously defined hwcrypto.cfg and modifed java.security file
from previous WebSphere example

• Sample runs with and without crypto hardware WITHOUT
modification

Sample Java JCE Application

class JCEtestz {
public static void main (String[] args)
{

SecretKey aesKey = null;
try { // create random AES key

KeyGenerator keygen =
KeyGenerator.getInstance("AES");
aesKey = keygen.generateKey();

} catch (Exception e){e.printStackTrace(); }
Cipher aesCipher;
try { // Create the cipher

aesCipher =
Cipher.getInstance("AES/ECB/NoPadding");
// Initialize the cipher for encryption
aesCipher.init(Cipher.ENCRYPT_MODE,
aesKey);
// Our cleartext
String str = "Can you read me now? ";
byte[] cleartext = str.getBytes();

new String(cleartext);
System.out.println(new String(cleartext));
byte[] ciphertext = null;
//Encrypt the cleartext
for(int i=0; i<1000; i++){

ciphertext = aesCipher.doFinal(cleartext);
}

System.out.println(new String(ciphertext));
//Initialize the same cipher for
//decryption
aesCipher.init(Cipher.DECRYPT_MODE,
aesKey);

//Decrypt the ciphertext
byte[] cleartext1 =
aesCipher.doFinal(ciphertext);

//Print cleartext1
System.out.println(new String(cleartext1));

} catch (Exception e) { e.printStackTrace(); }
System.out.println("Done!");
}

}

Sample Java JCE Application

Agenda

5 Configuring the IBM HTTP Server to use the Crypto Hardware

2 Making the Cryptographic Hardware Available to Linux

1 zEnterprise Crypto Hardware Background

3 Enabling Linux to use the Hardware

4 Enabling Java and WebSphere to Exploit the Crypto Hardware

6 Enabling the WAS Plugin to Use the Crypto Hardware

7 openSSL and openSSH

8 In Kernel Crypto and DM-Crypt

Enabling the IBM HTTP Server

• Other HTTP servers can be enabled but the steps are

different

• Required steps:

• Install HTTP Server and current fixpack

• Generate the a certificate and key pair

• Create a Stash file for the User PIN

• Add IHS user to the PKCS11 groups

• Update the httpd.conf

• Restart the server

Enabling the IBM HTTP Server

• My example environment consisted of

• SLES 11 SP2+

• IHS 8.0

• IHS Java 8.0

• IHS 6.1 will perform Asymmetric key encryption with the Crypto
Express (CEX)

• IHS V6.1 has added support for using the CPACF hardware in
APAR PK93112

• IHS 7.0 and 8.0 can perform Asymmetric encryption via CEX as
well as Symmetric key encryption via the CPACF

• Remove gskikm.jar from /opt/IBM/HTTPServer/java/jre/lib/ext
(Only for V7, NOT V8)

Enabling IHS –Certificate Generation

• Be sure to apply IHS fixpack

• Apply WAS SDK fixpack to IHS also.

• For V7 use ikeyman or gsk7cmd/gsk7cmd_64 to generate
certificates, used gskcmd for V8

• For V7 use the 64 bit gsk7cmd_64 command with 64 bit crypto
libraries, gskcmd is always 64 bit with V8

gskcmd -cert -create -crypto

/usr/lib/pkcs11/PKCS11_API.so64 -tokenlabel

rgylxws8 -pw 88888888 -size 1024 -dn

"CN=rgylxws8.pdl.pok.ibm.com, O=IBM, OU=LBS,

ST=New York, C=US" -label lbstest -expire 7300

Enabling the IHS – Sample Script V7

#/bin/sh

exportPATH=/opt/IBM/HTTPServer/gsk7_64/bin:/opt/IBM/HTTPServer/bi
n:/opt/IBM/HTTPServer/java/jre/bin:$PATH

export JAVA_HOME=/opt/IBM/HTTPServer/java/jre/

echo "!!!! gskikm.jar must be removed from the java path !!!"

gsk7cmd_64 –version

gsk7cmd_64 -keydb -create -db /opt/certs/dummy.kdb -pw zlinux -
type cms -expire 7300 -stash

echo "Listings certs in the pkcs11 crypto"

gsk7cmd_64 -cert -list all -crypto
/usr/lib/pkcs11/PKCS11_API.so64 -tokenlabel rgylx001 -pw
11111111

mkdir /opt/certs

/opt/IBM/HTTPServer/bin/sslstash -c /opt/certs/pkcs11.sth crypto
11111111

chmod 700 /opt/certs/pkcs11.sth

echo "Createing new self signed certifcate"

gsk7cmd_64 -cert -create -crypto /usr/lib/pkcs11/PKCS11_API.so64
-tokenlabel rgylx001 -pw 11111111 -size 1024 -dn
"CN=rgylx001.ibm.com, O=IBM, OU=LBS, ST=New York, C=US" -label
lbstest -expire 7300

Enabling the IHS – Sample Script V8

#/bin/sh

export
PATH=/opt/IBM/HTTPServer/gsk8/bin:/opt/IBM/HTTPServer/bin:/opt/I
BM/HTTPServer/java/jre/bin:$PATH

export JAVA_HOME=/opt/IBM/HTTPServer/java/jre/

gsk8cmd –version

gsk8cmd -keydb -create -db /opt/certs/dummy.kdb -pw zlinux -type
cms -expire 7300 -stash

echo "Listings certs in the pkcs11 crypto"

gsk8cmd -cert -list all -crypto /usr/lib/pkcs11/PKCS11_API.so64
-tokenlabel rgylxws8 -pw 88888888

mkdir /opt/certs

/opt/IBM/HTTPServer/bin/sslstash -c /opt/certs/pkcs11.sth crypto
88888888

chmod 700 /opt/certs/pkcs11.sth

echo "Createing new self signed certifcate"

gsk8cmd -cert -create -crypto /usr/lib/pkcs11/PKCS11_API.so64 -
tokenlabel rgylxws8 -pw 88888888 -size 1024 -dn
"CN=rgylxws8.pdl.pok.ibm.com, O=IBM, OU=LBS, ST=New York, C=US"
-label lbstest -expire 7300

• No jar removal

• New gsk command

Enabling IHS –Certificate Generation

• Utilizing a script for certificate generation can simplify and automate the

process

• Allows an easy way to test certificate management after every fix/fixpack is

applied

• No gui required

• Very repeatable

Enabling IHS –Stash file for User PIN

• Crypto user PIN required and provided via “stash file”

• Can imbed in your certificate generation script

• Below 11111111 is the “user PIN” in the example

mkdir /opt/certs

/opt/IBM/HTTPServer/bin/sslstash -c

/opt/certs/pkcs11.sth crypto 11111111

chmod 700 /opt/certs/pkcs11.sth

LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

Listen 443

<VirtualHost *:443>

SSLEnable

SSLProtocolDisable SSLv2

ServerName rgylxws8.pdl.pok.ibm.com

SSLCipherSpec 3A

DocumentRoot /opt/IBM/HTTPServer/htdocs

KeyFile /opt/certs/dummy.kdb

SSLServerCert rgylxws8:lbstest

SSLStashfile /opt/certs/pkcs11.sth

SSLPKCSDriver /usr/lib/pkcs11/PKCS11_API.so
############################

Symmetric offload (required with older gskit)

SSLAttributeSet 417 549
###########################

</VirtualHost>

Enabling the IHS – SSLVirtual Host

Required

Enabling the IBM HTTP Server

usermod -G nobody,nogroup,pkcs11 nobody

usermod: `nobody' is primary group name.

Add appropriate libcrypto.so to the bottom of the httpd.conf

• LoadFile /usr/lib64/libcrypto.so.0.9.8

• Restart Apache

• /opt/IBM/HTTPServer/bin/apachectl restart

• Test https:// with your favorite browser

Enabling the IBM HTTP Server

• "Cryptographic token initialization failed.

Cryptographic token support will not be available.“

• Several possible causes

• pkcsconf –t does not show flag 0x44D

• For V7, using 32 bit gsk7cmd with 64bit PKCS11_API.so64 ?

• Pointing to a token label other than the one you initialized (the examples

here use rgylxws8)

• [crit] Error 430 initializing SSL environment, aborting

startup

• [error] SSL0153E: Initialization error, The PKCS#11

driver failed to find the token specified by the caller.

Configuration Failed

• Incorrect token/label in httpd.conf

• Missing Loadfile for libcrypto.so.xxx in httpd.conf

Enabling the IBM HTTP Server

tail ../logs/error_log

[Tue Sep 13 10:48:45 2011] [error] [client 172.110.101.6]

[5e0440] [23788] SSL0209E: SSL Handshake Failed, ERROR

processing cryptography. [172.110.101.6:50480 ->

172.110.100.15:443] [10:48:45.000019752]

[Tue Sep 13 10:48:45 2011] [error] [client 172.110.101.6]

[5e0440] [23788] SSL0209E: SSL Handshake Failed, ERROR

processing cryptography. [172.110.101.6:50481 ->

172.110.100.15:443] [10:48:45.000674329]

• Could mean the userid IHS is running under is not part of the
PKCS11 group

Enabling the IHS - Success

Enabling the IHS

• Confirming the usage

of the certificate

generated from
gskcmd

Enabling the IBM HTTP Server

RGYLXWS8:/opt/IBM/HTTPServer/conf # icastats
function | # hardware | # software
----------+------------+------------

SHA-1 | 59 | 0
SHA-224 | 0 | 0
SHA-256 | 0 | 0
SHA-384 | 0 | 0
SHA-512 | 0 | 0
RANDOM | 155 | 0

MOD EXPO | 12 | 1
RSA CRT | 32 | 0
DES ENC | 0 | 0
DES DEC | 0 | 0
3DES ENC | 141 | 0
3DES DEC | 63 | 0
AES ENC | 37 | 0
AES DEC | 22 | 0
CMAC GEN | 0 | 0
CMAC VER | 0 | 0

• icastats
reporting crypto
operations in
hardware and
no new
software
operations

RGYLXWS8:/opt/IBM/HTTPServer/conf # cat /proc/driver/z90crypt

zcrypt version: 2.1.1

Cryptographic domain: 15

Total device count: 1

PCICA count: 0

PCICC count: 0

PCIXCC MCL2 count: 0

PCIXCC MCL3 count: 0

CEX2C count: 0

CEX2A count: 0

CEX3C count: 0

CEX3A count: 1

requestq count: 0

pendingq count: 0

Total open handles: 4

Online devices: 1=PCICA 2=PCICC 3=PCIXCC(MCL2) 4=PCIXCC(MCL3) 5=CEX2C 6=CEX2A 7=CEX3C 8=CEX3A

0000000000000000 0000000000000000 0000800000000000 0000000000000000

Enabling the IBM HTTP Server

Online devices: 1=PCICA 2=PCICC 3=PCIXCC(MCL2) 4=PCIXCC(MCL3) 5=CEX2C 6=CEX2A 7=CEX3C 8=CEX3A

0000000000000000 0000000000000000 0000800000000000 0000000000000000

Waiting work element counts

0000000000000000 0000000000000000 0000000000000000 0000000000000000

Per-device successfully completed request counts

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 0000002D 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Enabling the IBM HTTP Server

Enabling Apache for Crypto

Enabling Apache for Crypto

Enabling Apache for Crypto

Enabling Apache for Crypto

• /etc/apache2/ssl-global.conf

• Add the SSLCryptoDevice ibmca directive

• Enables crypto express exploitation

Enabling Apache for Crypto

Enabling Apache for Crypto

Agenda

5 Configuring the IBM HTTP Server to use the Crypto Hardware

2 Making the Cryptographic Hardware Available to Linux

1 zEnterprise Crypto Hardware Background

3 Enabling Linux to use the Hardware

4 Enabling Java and WebSphere to Exploit the Crypto Hardware

6 Enabling the WAS Plugin to Use the Crypto Hardware

7 openSSL and openSSH

8 In Kernel Crypto and DM-Crypt

Enabling the IHS Plugin

• PK96110 enables use of calls for CPACF

• Requires two custom properties in the plugin

• SSLPKCSDriver

• SSLPKCSPassword

• Web Servers > xxxxx > Plug- in Properties > Custom
Properties

• Ensure PK82147 is applied

Enabling the IHS Plugin

Enabling the IHS Plugin

• plugin-cfg.xml in /opt/IBM/WebSphere/Plugins/config/webserver1

• Properties reside in the “Config” section of plugin-cfg.xml

Enabling the IHS Plugin

Enabling the IHS and the Plugin

• Summary

�Try gskit commands instead of ikeyman. Scripting provides a more
repeatable consistent process.

� IHS 6 can utilize CEX

IHS V6.1 has added support for using the CPACF hardware in APAR
PK93112

�With GSKIT 8, you do NOT remove the JAR like previous releases

Agenda

5 Configuring the IBM HTTP Server to use the Crypto Hardware

2 Making the Cryptographic Hardware Available to Linux

1 zEnterprise Crypto Hardware Background

3 Enabling Linux to use the Hardware

4 Enabling Java and WebSphere to Exploit the Crypto Hardware

6 Enabling the WAS Plugin to Use the Crypto Hardware

7 openSSL and openSSH

8 In Kernel Crypto and DM-Crypt

Linux on System z Crypto Stack

openssl

Ibmca engine

Opencryptoki pkcs11

ica token cca token

ica library cca library

openssh

ssh, sftp, scp

Apache

(mod_ssl)

Apache

(mod_nssl)

nss

IBM c/c++

sw

GSKIT

WAS
Cust c/c++

PKCS11

JCA/JCE

IBMPKCS11Impl

Customer

Java JCE

zcrypt device driver
ipsec dm-crypt

Kernel crypto framework

System z backend

Accelerator
rsa

Co-processor
rsa,rng,ecc

CPACF
des,3des,aes,sha,rng

Hardware

Operating
System

System z HW
crypto Libraries

Standard
Crypto
Interfaces

Application
Customer

CCA

icc

Clear SecureyProtected

The value of Open SSL and Hardware Crypto

•Compressing the data to save cryptographic effort was the default for a while

•Counter-productive as CPACF/CEX is so fast (and CEX account as off-loaded)

•Now it is possible to deactivate compression via an Environment variable
OPENSSL_NO_DEFAULT_ZLIB=Y

•1000k payload cases w/CPACF and cards x3.8 faster now, still x2.3 without CEX cards
•Even 40b payload cases still show 15% throughput improvement
•Additionally depending on the setup 50% to 80% less cpu per transferred kilobyte

Enabling openssl & openssh use of Hardware Crypto

• ssh, sftp, and scp can benefit from the acceleration

Increased speed and reduced CPU consumption

• Consider configuring on your Linux master images for all guests

• Implementation steps are simple

Step 1 – Ensure machine has the CPACF feature code enabled

Step 2 – Install openssl-ibmca

zypper in openssl-ibmca

Step 3 – Update /etc/ssl/openssl.cnf

(next page)

Enabling openssl & openssh use of Hardware Crypto

RGYLXWS8:/etc/ssl # rpm -ql openssl-ibmca

/usr/lib64/engines/libibmca.so

/usr/share/doc/packages/openssl-ibmca

/usr/share/doc/packages/openssl-ibmca/README

/usr/share/doc/packages/openssl-ibmca/openssl.cnf.sample

• The openssl.cnf.sample gets appended to the /etc/ssl/openssl.cnf

• The first line of the sample file is added to the top of openssl.cnf

• The rest is added to the bottom of openssl.cnf

• When completed, validate it is now active

RGYLXWS8:/etc/ssl # openssl engine

(dynamic) Dynamic engine loading support

(ibmca) Ibmca hardware engine support

Immediately start exploiting the crypto hardware

RGYLXWS8:~ # sftp ryoung1@172.110.101.22

Connecting to 172.110.101.22...

Password:

sftp> put testfile

RGYLXWS8:~ # icastats

function | # hardware | # software

----------+------------+------------

SHA-1 | 3618 | 0

SHA-224 | 0 | 0

SHA-256 | 60 | 0

SHA-384 | 0 | 0

SHA-512 | 0 | 0

RANDOM | 9 | 0

MOD EXPO | 3 | 6

RSA CRT | 2 | 0

DES ENC | 0 | 0

DES DEC | 0 | 0

3DES ENC | 0 | 0

3DES DEC | 0 | 0

AES ENC | 163452 | 0

AES DEC | 399796 | 0

CMAC GEN | 0 | 0

CMAC VER | 0 | 0

Agenda

5 Configuring the IBM HTTP Server to use the Crypto Hardware

2 Making the Cryptographic Hardware Available to Linux

1 zEnterprise Crypto Hardware Background

3 Enabling Linux to use the Hardware

4 Enabling Java and WebSphere to Exploit the Crypto Hardware

6 Enabling the WAS Plugin to Use the Crypto Hardware

7 openSSL and openSSH

8 In Kernel Crypto and DM-Crypt

Linux on System z Crypto Stack

openssl

Ibmca engine

Opencryptoki pkcs11

ica token cca token

ica library cca library

openssh

ssh, sftp, scp

Apache

(mod_ssl)

Apache

(mod_nssl)

nss

IBM c/c++

sw

GSKIT

WAS
Cust c/c++

PKCS11

JCA/JCE

IBMPKCS11Impl

Customer

Java JCE

zcrypt device driver
ipsec dm-crypt

Kernel crypto framework

System z backend

Accelerator
rsa

Co-processor
rsa,rng,ecc

CPACF
des,3des,aes,sha,rng

Hardware

Operating
System

System z HW
crypto Libraries

Standard
Crypto
Interfaces

Application
Customer

CCA

icc

Clear SecureyProtected

Encrypting Filesystems

• Utilizes “In Kernel Crypto”

• Load required kernel modules for hardware based encryption

modprobe des_s390

modprobe sha1_s390

modprobe sha256_s390

modprobe aes_s390

modprobe sha512_s390

• Setup dmcrypt as normal

Encrypting Filesystems

RGYLXWS8:~ # cryptsetup luksFormat /dev/SYSTEM/LVCRYPT
WARNING!

========

This will overwrite data on /dev/SYSTEM/LVCRYPT irrevocably.

Are you sure? (Type uppercase yes): YES
Note: make sure keyboard layout and encoding here matches

the intended environment for unlocking the volume

Enter LUKS passphrase:

Verify passphrase:

Command successful.

RGYLXWS8:~ # cryptsetup luksOpen /dev/SYSTEM/LVCRYPT lvcryptfs
Enter LUKS passphrase:

key slot 0 unlocked.

Command successful.

RGYLXWS8:~ # mkfs -t ext3 /dev/mapper/lvcryptfs
RGYLXWS8:~ # mount /dev/mapper/lvcryptfs /mnt
RGYLXWS8:~ # cryptsetup status lvcryptfs
/dev/mapper/lvcryptfs is active:

cipher: aes-cbc-essiv:sha256

keysize: 128 bits

device: /dev/dm-4

offset: 1032 sectors

size: 2096120 sectors

mode: read/write

Encrypting Filesystems – Enable Automatic Mount

RGYLXWS8:~ # cat /etc/crypttab
<target device> <source device> <key file>

lvcryptfs /dev/SYSTEM/LVCRYPT /etc/keyfile.key luks

RGYLXWS8:~ # cat /etc/fstab

/dev/disk/by-path/ccw-0.0.0200-part1 / ext3 acl,user_xattr 1 1

proc /proc proc defaults 0 0

sysfs /sys sysfs noauto 0 0

debugfs /sys/kernel/debug debugfs noauto 0 0

devpts /dev/pts devpts mode=0620,gid=5 0 0

/dev/SYSTEM/LVOPT /opt ext3 acl,user_xattr 1 2

/dev/SYSTEM/LVVAR /var ext3 acl,user_xattr 1 2

/dev/mapper/lvcryptfs /opt/crypt ext3 auto 1 2

RGYLXWS8:~ # echo -n ‘topsecret' > /etc/keyfile.key

RGYLXWS8:~ # chkconfig boot.crypto-early on

RGYLXWS8:~ # chkconfig boot.crypto on

References

• Linux on System z Device Drivers,
Features, and Commands

SC33-8411-18
http://www.ibm.com/developerworks/linux/linux390/docum
entation_dev.html

• IBM WebSphere Application Server
Version 8 for Linux IBM System z - SSL
Setup and Performance Study

ZSW03250-USEN-00
http://www-
03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP1
02274

References

• z/VM CP Commands and
Utilities Reference

SC24-6175-01

• Security for Linux on System z

SG24-7728

• Developerworks - Linux on System z Cryptographic Support

• ikeyman & gsk7cmd "Must Gather"

• IHSDIAG Crypto Hardware FAQ

• WAS Techdoc - Enabling and Configuring Cryptographic Technology

References

Please remember to fill out your session evaluations

Thank you for attending

Richard G. Young

Executive I.T. Specialist

IBM STG Lab Services

Virtualization & Linux on

zEnterprise Team Lead

IBM
777 East Wisconsin Ave

Milwaukee, WI 53202

Tel 262 893 8662

Email: ryoung1@us.ibm.com

