
Dynamically Provisioning Resources
to Linux Virtual Servers

Richard Young

IBM STG Lab Services

9:30 am Tuesday March 11th 2014

Session 14544

www.SHARE.org

2

Trademarks & Disclaimer

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM Trademarks,
see www.ibm.com/legal/copytrade.shtml: AS/400, DB2, e-business logo, ESCON, eServer, FICON, IBM, IBM Logo, iSeries, MVS, OS/390, pSeries, RS/6000, S/390,
System Storage, System z9, VM/ESA, VSE/ESA, WebSphere, xSeries, z/OS, zSeries, z/VM.

The following are trademarks or registered trademarks of other companies

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries. LINUX is a registered trademark of
Linux Torvalds in the United States and other countries. UNIX is a registered trademark of The Open Group in the United States and other countries. Microsoft,
Windows and Windows NT are registered trademarks of Microsoft Corporation. SET and Secure Electronic Transaction are trademarks owned by SET Secure
Electronic Transaction LLC. Intel is a registered trademark of Intel Corporation. * All other products may be trademarks or registered trademarks of their respective
companies.

NOTES: Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment.
The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply. All customer examples cited or
described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved.
Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions. This publication was produced
in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change
without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Information
about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm
the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography. References in this
document to IBM products or services do not imply that IBM intends to make them available in every country. Any proposed use of claims in this presentation outside
of the United States must be reviewed by local IBM country counsel prior to such use. The information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any time without notice. Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

3

Agenda

5 Dynamically Adjusting CPU Resources

2 Dynamically Adjusting Disk Storage Resources

1 The Value of Dynamically Provisioning and Deprovisioning Resources

3 Dynamically Adjusting Networking Resources

4 Dynamically Adjusting Memory Resources

6 Automatically Adjusting Memory and CPU Resources

4

Agenda

5 Dynamically Adjusting CPU Resources

2 Dynamically Adjusting Disk Storage Resources

1 The Value of Dynamically Provisioning and Deprovisioning Resources

3 Dynamically Adjusting Networking Resources

4 Dynamically Adjusting Memory Resources

6 Automatically Adjusting Memory and CPU Resources

5

Dynamic Resource Configuration

• Helps to avoid Linux guest restarts and
potential outage/downtime resource allocation
changes

• Accommodate unplanned increases in
application workload demands or application
“enhancements” that consume more than
expected resource

• It can allow for more efficient overall hypervisor
operation (reduced operational overhead)

• Automated policy based reconfiguration is more
responsive than manual adjustments.

• May provide assistance with upgrades by
provisioning lower levels of resources both
before a virtual server is in production and after
it is removed from production.

6

Agenda

5 Dynamically Adjusting CPU Resources

2 Dynamically Adjusting Disk Storage Resources

1 The Value of Dynamically Provisioning and Deprovisioning Resources

3 Dynamically Adjusting Networking Resources

4 Dynamically Adjusting Memory Resources

6 Automatically Adjusting Memory and CPU Resources

7

Dynamically Provisioning Resources

• All (non-PCI) IO

devices are attached

via a defined channel

• In a native LPAR

implementation you

may need to change

the channel (CHPID)

state from Linux

• Be aware that lscss

does not display the

CHPID state

• Use chchp and lschp

8

Dynamically Adding Disk Resources

• Disk Storage Resource Types

• ECKD

• Full Volume

• z/VM Minidisk

• SCSI Luns

• Via z/VM Emulated Device

• Via Dedicated FCP Device

• All types can be dynamically added

• Can be performed whether in a native LPAR

or under z/VM

• General Process

• Add resource from hypervisor

• Make new resource available

• Bring virtual device online

• Provision as usual

9

Dynamically Adding Disk Resources

• This example is from a native LPAR implementation

• A cio_ignore list was used on boot to restrict the available devices

• This list can be dynamically modified to make new devices available

• While a disk example is shown, cio_ignore applies to all IO devices

10

Dynamically Adding Disk Resources

• The cio_ignore list is shown on the kernel parameters line of the
zipl.conf

• Be sure to update it with newly (de)provisioned devices as you
change the configuration of your system

11

Dynamically Adding Disk Resources

• DIRM add minidisk disk shown
• Could be full volume or partial
volume
• Disk could be added via a
dedicate as well
• If not using dirmaint, edit user
direct and DIRECTXA

12

Dynamically Adding Disk Resources

• 201 minidisk
still not available
to Linux and not
shown from a
z/VM query
virtual

• New storage
must be
attached or
linked before it
can be brought
online

RGYLXWS8:/ # lscss
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs

--

0.0.1000 0.0.0000 1732/03 1731/03 80 80 ff c4000000 00000000

0.0.1001 0.0.0001 1732/03 1731/03 80 80 ff d1000000 00000000

0.0.1002 0.0.0002 1732/03 1731/03 yes 80 80 ff c9000000 00000000

0.0.1003 0.0.0003 1732/03 1731/03 yes 80 80 ff dd000000 00000000

0.0.0191 0.0.0004 3390/0c 3990/e9 80 80 ff ff000000 00000000

0.0.0200 0.0.0006 3390/0c 3990/e9 yes 80 80 ff ff000000 00000000

0.0.0192 0.0.0007 3390/0c 3990/e9 80 80 ff ff000000 00000000

0.0.0009 0.0.0008 0000/00 3215/00 yes 80 80 ff ff000000 00000000

0.0.0600 0.0.0009 1732/01 1731/01 yes 80 80 ff 00000000 00000000

0.0.0601 0.0.000a 1732/01 1731/01 yes 80 80 ff 00000000 00000000

0.0.0602 0.0.000b 1732/01 1731/01 yes 80 80 ff 00000000 00000000

0.0.000c 0.0.000c 0000/00 2540/00 80 80 ff ff000000 00000000

0.0.000d 0.0.000d 0000/00 2540/00 80 80 ff ff000000 00000000

0.0.000e 0.0.000e 0000/00 1403/00 80 80 ff ff000000 00000000

0.0.0190 0.0.000f 3390/0c 3990/e9 80 80 ff ff000000 00000000

0.0.019d 0.0.0010 3390/0c 3990/e9 80 80 ff ff000000 00000000

0.0.019e 0.0.0011 3390/0c 3990/e9 80 80 ff ff000000 00000000

RGYLXWS8:/ # vmcp q v dasd
DASD 0190 3390 P01RES R/O 214 CYL ON DASD 3F27 SUBCHANNEL = 000F

DASD 0191 3390 VM1US1 R/O 500 CYL ON DASD 3F10 SUBCHANNEL = 0004

DASD 0192 3390 LS3F18 R/W 50 CYL ON DASD 3F18 SUBCHANNEL = 0007

DASD 019D 3390 P01RES R/O 292 CYL ON DASD 3F27 SUBCHANNEL = 0010

DASD 019E 3390 P01RES R/O 500 CYL ON DASD 3F27 SUBCHANNEL = 0011

DASD 0200 3390 LS3F52 R/W 10015 CYL ON DASD 3F52 SUBCHANNEL = 0006

RGYLXWS8:/ #

13

Dynamically Adding Disk Resources

RGYLXWS8:/ # vmcp link RGYLXWS8 201 201 MR
RGYLXWS8:/ # vmcp q v dasd

DASD 0190 3390 P01RES R/O 214 CYL ON DASD 3F27 SUBCHANNEL = 000F

DASD 0191 3390 VM1US1 R/O 500 CYL ON DASD 3F10 SUBCHANNEL = 0004

DASD 0192 3390 LS3F18 R/W 50 CYL ON DASD 3F18 SUBCHANNEL = 0007

DASD 019D 3390 P01RES R/O 292 CYL ON DASD 3F27 SUBCHANNEL = 0010

DASD 019E 3390 P01RES R/O 500 CYL ON DASD 3F27 SUBCHANNEL = 0011

DASD 0200 3390 LS3F52 R/W 10015 CYL ON DASD 3F52 SUBCHANNEL = 0006

DASD 0201 3390 LS3F18 R/W 3338 CYL ON DASD 3F18 SUBCHANNEL = 0005

RGYLXWS8:/ # lscss

Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs

--

0.0.1000 0.0.0000 1732/03 1731/03 80 80 ff c4000000 00000000

0.0.1001 0.0.0001 1732/03 1731/03 80 80 ff d1000000 00000000

0.0.1002 0.0.0002 1732/03 1731/03 yes 80 80 ff c9000000 00000000

0.0.1003 0.0.0003 1732/03 1731/03 yes 80 80 ff dd000000 00000000

0.0.0191 0.0.0004 3390/0c 3990/e9 80 80 ff ff000000 00000000

0.0.0201 0.0.0005 3390/0c 3990/e9 80 80 ff ff000000 00000000

0.0.0200 0.0.0006 3390/0c 3990/e9 yes 80 80 ff ff000000 00000000

0.0.0192 0.0.0007 3390/0c 3990/e9 80 80 ff ff000000 00000000

0.0.0009 0.0.0008 0000/00 3215/00 yes 80 80 ff ff000000 00000000

0.0.0600 0.0.0009 1732/01 1731/01 yes 80 80 ff 00000000 00000000

0.0.0601 0.0.000a 1732/01 1731/01 yes 80 80 ff 00000000 00000000

0.0.0602 0.0.000b 1732/01 1731/01 yes 80 80 ff 00000000 00000000

0.0.000c 0.0.000c 0000/00 2540/00 80 80 ff ff000000 00000000

0.0.000d 0.0.000d 0000/00 2540/00 80 80 ff ff000000 00000000

0.0.000e 0.0.000e 0000/00 1403/00 80 80 ff ff000000 00000000

0.0.0190 0.0.000f 3390/0c 3990/e9 80 80 ff ff000000 00000000

0.0.019d 0.0.0010 3390/0c 3990/e9 80 80 ff ff000000 00000000

0.0.019e 0.0.0011 3390/0c 3990/e9 80 80 ff ff000000 00000000

RGYLXWS8:/ # chccwdev -e 201
Setting device 0.0.0201 online

Done

A z/VM “link”

makes device
available.

Can be performed
from Linux via
‘vmcp”

Must still be
brought online via
“chccwdev”

14

Dynamically Adding Disk Resources

RGYLXWS8:/ # lsdasd

Bus-ID Status Name Device Type BlkSz Size Blocks

==

0.0.0200 active dasda 94:0 ECKD 4096 7041MB 1802700

0.0.0201 active dasdb 94:4 ECKD 4096 2347MB 600840

RGYLXWS8:/ # dasdfmt -b 4096 -f /dev/dasdb
Drive Geometry: 3338 Cylinders * 15 Heads = 50070 Tracks

I am going to format the device /dev/dasdb in the following way:

Device number of device : 0x201

Labelling device : yes

Disk label : VOL1

Disk identifier : 0X0201

Extent start (trk no) : 0

Extent end (trk no) : 50069

Compatible Disk Layout : yes

Blocksize : 4096

--->> ATTENTION! <<---

All data of that device will be lost.

Type "yes" to continue, no will leave the disk untouched:

15

Dynamically Adding Disk Resources

RGYLXWS8:/ # fdasd -a /dev/dasdb
reading volume label ..: VOL1

reading vtoc: ok

auto-creating one partition for the whole disk...

writing volume label...

writing VTOC...

rereading partition table...

RGYLXWS8:/ #

� Disk storage has been dynamically brought online, formatted, and partitioned

� Put file system on new device

� mkfs -t ext3 -c /dev/dasdb1

� You could now add to a volume group and LVM to dynamically expand a filesystem
without bring the Linux system down

� pvcreate /dev/dasdb1

� vgextend VG00 /dev/dasdb1

� lvextend -L+1G /dev/VG00/LV01 ; add one more GB to LV

� ext2online /dev/VG00/LV01

� resize2fs /dev/VG00/LV01

16

Dynamically adding a SCSI LUN

� Dynamically making the FCP devices available to the guest virtual server

� In an NPIV configuration each device will represent a unique WWPN

� Each WWPN must be zoned to the correct storage resource

17

Dynamically adding a SCSI LUN

The new FCP devices

are available but must

be brought online to

Linux

18

Dynamically adding a SCSI LUN

• The fcp device range is brought on line with a chccwdev command

• The LUNs are defined via the zfcp_disk_configure command

• The FCP device, target storage server WWPN, LUN id, and target state are
provided

• lsluns –a confirms the defined LUN

19

Dynamically adding a SCSI LUN

• zfcp_ping & zfcp_show are new diagnostic tools when can be helpful
when need to configure FCP attached storage

• SLES 11 SP3/RHEL 6.4

• libzfcphbaapi0 package

20

Dynamically adding a SCSI LUN

• Confirm the udev entries were made so the definitions are
persistent.

• Also make sure your z/VM dedicates exist in the user directory so
the devices are available after a restart of the guest virtual server

21

Dynamically adding a SCSI LUN

• At this point you can add the device as you normally would

• Define to the multipather, partition, and place a file system on the
device or add to a logical volume

22

Agenda

5 Dynamically Adjusting CPU Resources

2 Dynamically Adjusting Disk Storage Resources

1 The Value of Dynamically Provisioning and Deprovisioning Resources

3 Dynamically Adjusting Networking Resources

4 Dynamically Adjusting Memory Resources

6 Automatically Adjusting Memory and CPU Resources

23

• Much like dynamically adding disk resources a directory alone does
not make the NIC available to Linux.

• Once the NIC is defined there are multiple ways to configure it and
some methods vary by Linux distribution.

• Care and planning should be taking when adding additional NIC.
When adding a new NIC mistakes can cause outages on existing
functioning NICs in the same guest.

Dynamically Adding Network Interfaces

24

RGYLXWS8:~ # lsqeth

Device name : eth0

card_type : GuestLAN QDIO

cdev0 : 0.0.0600

cdev1 : 0.0.0601

cdev2 : 0.0.0602

chpid : 00

online : 1

portname : NET172A

portno : 0

state : UP (LAN ONLINE)

priority_queueing : always queue 2

buffer_count : 64

layer2 : 1

isolation : none

RGYLXWS8:~ # znetconf -c

Device IDs Type Card Type CHPID Drv. Name State

--

0.0.0600,0.0.0601,0.0.0602 1731/01 GuestLAN QDIO 00 qeth eth0 online

RGYLXWS8:~ #

� This system that has only one NIC and a second NIC will be added

Dynamically Adding Network Interfaces

25

dirm for rgylxws8 NICDEF 0700 TYPE QDIO DEV 3 LAN SYSTEM NET172B

DVHXMT1191I Your NICDEF request has been sent for processing to DIRMAINT

DVHXMT1191I at POKLBS1.

Ready; T=0.01/0.02 01:43:35

DVHREQ2288I Your NICDEF request for RGYLXWS8 at * has been accepted.

DVHBIU3450I The source for directory entry RGYLXWS8 has been updated.

DVHBIU3424I The next ONLINE will take place immediately.

DVHDRC3451I The next ONLINE will take place via delta object directory.

DVHRLA3891I Your DSATCTL request has been relayed for processing.

DVHBIU3428I Changes made to directory entry RGYLXWS8 have been placed

DVHBIU3428I online.

DVHREQ2289I Your NICDEF request for RGYLXWS8 at * has completed; with RC

DVHREQ2289I = 0.

DVHREQ2288I Your DSATCTL request for DIRMAINT at

DVHREQ2288I * has been accepted.

DVHREQ2289I Your DSATCTL request for DIRMAINT at

DVHREQ2289I * has completed; with RC = 0.

• New NIC added to the zVM user directory
• Virtual device 700

• Type QDIO

• VSWITCH NET172B

Dynamically Adding Network Interfaces

26

Dynamically Adding Network Interfaces

RGYLXWS8:~ # vmcp define nic 0700 TYPE QDIO DEV 3

NIC 0700 is created; devices 0700-0702 defined

RGYLXWS8:~ # vmcp couple 700 to system net172b

HCPCPL2788E NIC 0700 not connected; already connected to VSWITCH SYSTEM NET172B

Error: non-zero CP response for command 'COUPLE 700 TO SYSTEM NET172B': #2788

RGYLXWS8:~ # znetconf -u

Scanning for network devices...

Device IDs Type Card Type CHPID Drv.

--

0.0.0700,0.0.0701,0.0.0702 1731/01 OSA (QDIO) 01 qeth

RGYLXWS8:~ # znetconf -c

Device IDs Type Card Type CHPID Drv. Name State

0.0.0600,0.0.0601,0.0.0602 1731/01 GuestLAN QDIO 00 qeth eth0 online

RGYLXWS8:~ #

• “DEFINE NIC” issued to make the new virtual NIC available
to the guest

• Since it was already defined in the user directory it
automatically coupled to its virtual switch

• znetconf now shows the new virtual NIC

• Since the NIC is yet unconfigured, it is still offline

27

Dynamically Adding Network Interfaces

• We could use tools such as Yast, netconfig, or redhat-
config-network to configure the interface, but we will use

znetconf from s390-tools

• znetconf allows you to configure many different possible

attributes of the QDIO device

• Note: znetconf does not create a udev entry

• After executing znetconf the device (not the interface)

will be online
RGYLXWS8:~ # znetconf -a 0700 -o layer2=1

Scanning for network devices...

Successfully configured device 0.0.0700 (eth1)

28

Dynamically Adding Network Interfaces

• To bring the network interface online you need an ifcfg-ethx script

• If you copy an existing file (such as ifcfg-eth0) you should have only a few

changes to make

• IPADDR, NETMASK, NETWORK

• _nm_name, BROADCAST

• It is highly recommended to put a udev entry in place (/etc/udev/rules.d) so you

have a persistent configuration across reboots

BOOTPROTO="static"

UNIQUE=""

STARTMODE="onboot"

IPADDR="172.110.100.38“

NETMASK="255.255.255.0"

NETWORK="172.110.100.0"

BROADCAST="172.110.100.255"

_nm_name='qeth-bus-ccw-0.0.0700‘

29

Dynamically Adding Network Interfaces

• You can activate your new configuration with rcnetwork restart

• If your new interface configuration breaks your existing network, logon to

the 3270 console for the guest and move the ifcfg-ethx script to another
directory and reissue your rcnetwork restart command.

30

Modifying Attributes of an OSA Network Interface

• Can be performed without restarting the server

• Network interface must be taken offline in many cases

• Don’t take offline with chccwdev

• Utilize /sys filesystem interface to take offline/online

• Details documented in the Linux Device Drivers, Features, and
Commands manual on DeveloperWorks (See link at end of
presentation)

31

rgylxsp2:~ # lsqeth

Device name : eth0

card_type : GuestLAN QDIO

cdev0 : 0.0.0600

cdev1 : 0.0.0601

cdev2 : 0.0.0602

chpid : 00

online : 1

portname : dontcare

portno : 0

state : UP (LAN ONLINE)

priority_queueing : always queue 2

buffer_count : 64

layer2 : 1

isolation : none

Device name : eth1

card_type : GuestLAN QDIO

cdev0 : 0.0.0700

cdev1 : 0.0.0701

cdev2 : 0.0.0702

chpid : 01

online : 1

portname : 0

portno : 0

state : UP (LAN ONLINE)

priority_queueing : always queue 2

buffer_count : 64

layer2 : 1

isolation : none

• This system has two

network interfaces

• The buffer count on one

of them will be

increased

• The system will not be

brought down

• Only the interface being

changed will be

stopped

Modifying Attributes

32

rgylxsp2:~ # cd /sys/bus/ccwgroup/drivers/qeth/

rgylxsp2:/qeth # cd 0.0.0700/

rgylxsp2:/0.0.0700 # cat buffer_count

64

rgylxsp2:/0.0.0700 # ifconfig eth1 down

rgylxsp2:/0.0.0700 # chccwdev -d 700

Setting device 0.0.0700 offline

Failed (Invalid argument)

• The specific device is found under /sys/bus./ccwgroup/drivers/qeth

• The eth1 interface is stopped

• The attempt to take device 700 offline fails because it must be done via

the /sys filesystem

Modifying Attributes

33

rgylxsp2:/0.0.0700 # echo 128 > buffer_count

-bash: echo: write error: Operation not permitted

rgylxsp2:/0.0.0700 # ls

blkt cdev0 chpid if_name layer2 performance_stats

power state ungroup

buffer_count cdev1 driver inbuf_size net portname

priority_queueing subsystem

card_type cdev2 hw_trap isolation online portno

recover uevent

rgylxsp2:/0.0.0700 # echo 0 > online

rgylxsp2:/0.0.0700 # echo 128 > buffer_count

rgylxsp2:/0.0.0700 # echo 1 > online

• At the top you can see the buffer_count can not be changed while the device is

online

• “echo” a 1 or 0 in the “online” file to control the device state

• This same process can be used to change other attribute, but some such as

layer2, may need changes to the udev configuration to be made permanent

Modifying Attributes

34

• Only device 0700

shown, device 0600

omitted for

readability

• buffer_count has

been changed to the

maximum

• At this point the

“interface” eth1 just

needs to be brought

up

rgylxsp2:/0.0.0700 # cat buffer_count

128

rgylxsp2:/0.0.0700 # lsqeth

Device name : eth1

card_type : GuestLAN QDIO

cdev0 : 0.0.0700

cdev1 : 0.0.0701

cdev2 : 0.0.0702

chpid : 01

online : 1

portname : 0

portno : 0

state : SOFTSETUP

priority_queueing : always queue 2

buffer_count : 128

layer2 : 1

isolation : none

Modifying Attributes

35

• “ethtool” can

dynamically set or

query ethernet

interface attributes and

statistics

• It can be used to set

generic receive offload

(GRO), TCP

segmentation offload

(TSO), checksum

operations and other

options...

• ethtool –k queries

“offload” settings

Modifying Attributes - ethtool

36

• ethtool –K can set

offload options

• TCP segmentation

offload (TSO) applies

only to Layer 3

interfaces

• It can be set

dynamically as shown

• GRO can also be

controlled but as of

kernel 2.6.39 GRO and

rx-checksumming are

on by default

Modifying Attributes - ethtool

37

• Methods by which

ethtool changes are

made permanent vary

by distribution and

code levels

• For example, Yast has

a place to code ethtool

options, but only for

ethtool –s and NOT

the “-K” offload

commands

• ethtool “offload”

commands could be

made permanent in

other ways..

• /etc/init.d/ scripts

Modifying Attributes - ethtool

38

• Attempting to code
the ethtool offload
commands results
in an error during
interface activation

• Only ethtool –s
options should be
coded here

Modifying Attributes - ethtool

39

Agenda

5 Dynamically Adjusting CPU Resources

2 Dynamically Adjusting Disk Storage Resources

1 The Value of Dynamically Provisioning and Deprovisioning Resources

3 Dynamically Adjusting Networking Resources

4 Dynamically Adjusting Memory Resources

6 Automatically Adjusting Memory and CPU Resources

40

• You can dynamically adjust memory for your running Linux system
making your penguins elastic

• To make memory available you must define it to the LPAR or z/VM
before you IPL Linux

• Dynamically addable memory is termed hot plug memory

• Hotplug memory is support was provided by APAR VM64524

Dynamically Provisioning Memory Resources

41

Dynamically Provisioning Memory Resources

� Defining “Reserved” storage to the LPAR will allow you to dynamically add

memory to a running Linux server running natively in a partition

42

Dynamically Provisioning Memory Resources

• This z/VM guest has a user directory entry with 1GB of initial memory and 2 GB of

maximum memory

• In z/VM, changing the memory size or configuration of a guest causes a storage reset

(all storage is cleared)

• If you are running Linux natively in an LPAR without z/VM, you would use reserved

storage in the LPAR definition to set aside potential additional memory

• In z/VM, define the memory to be dynamically enabled as “standby” storage

43

Dynamically Provisioning Memory Resources

• “DEFINE STORAGE 1G STANDBY 1G” issued for this guest

• Issuing a DEFINE STORAGE command causes storage to be cleared

• Anything running at the time of the reset will be immediately terminated without

running any shutdown procedures

• This means if you issued this command from a CMS EXEC, CMS is no longer

running because storage has been cleared.

44

Dynamically Provisioning Memory Resources

• Example COMMAND statement in User Directory

USER RGYLX0E1 RGYLX0E1 3G 8G G

INCLUDE LINDFLT

COMMAND DEFINE STORAGE 2G STANDBY 2G

CPU 00

CRYPTO APVIRTUAL

IUCV ANY

OPTION MAXCONN 128

LINK RGYLXMNT 0191 0191 RR

MDISK 0200 3390 1 END LS20C8 MR READ WRITE MULTIPLE

45

Dynamically Provisioning Memory Resources

ICH70001I RGYLX0E1 LAST ACCESS AT 20:23:51 ON
THURSDAY, SEPTEMBER 22, 2011

00: NIC 0600 is created; devices 0600-0602
defined

00: z/VM Version 6 Release 1.0, Service Level
1002 (64-bit),

00: built on IBM Virtualization Technology

00: There is no logmsg data

00: FILES: 0001 RDR, NO PRT, NO PUN

00: LOGON AT 20:26:20 EDT THURSDAY 09/22/11

00: STORAGE = 2G MAX = 8G INC = 4M STANDBY = 2G
RESERVED = 0

00: Storage cleared - system reset.

z/VM V6.1.0 2010-10-15 11:49

DMSACP723I A (191) R/O

20:26:20 DIAG swap disk defined at virtual

46

rgylx0e4:~ # cat /proc/meminfo

MemTotal: 2051920 kB

MemFree: 1877596 kB

Buffers: 10304 kB

Cached: 51160 kB

SwapCached: 0 kB

Active: 29788 kB

Inactive: 54872 kB

Active(anon): 23212 kB

Inactive(anon): 120 kB

Active(file): 6576 kB

Inactive(file): 54752 kB

Unevictable: 0 kB

Mlocked: 0 kB

SwapTotal: 0 kB

Dynamically Provisioning Memory Resources

• After IPLing Linux in this guest,

observe via /proc/meminfo that

approximately 2GB of memory is

available

• The “standby” memory is not reported

by /proc/meminfo

• The /sys file system however has an

awareness of this “standby” or “hot

plug” memory

• With s390-tools, lsmem can be used

to report this information and chmem
to bring storage elements online or

offline

47

rgylx0e4:~ # lsmem

Address Range Size (MB) State Removable Device

===

0x0000000000000000-0x000000000fffffff 256 online no 0-63

0x0000000010000000-0x000000006fffffff 1536 online yes 64-447

0x0000000070000000-0x000000007fffffff 256 online no 448-511

0x0000000080000000-0x00000000ffffffff 2048 offline - 512-1023

Memory device size : 4 MB

Memory block size : 256 MB

Total online memory : 2048 MB

Total offline memory: 2048 MB

Core Memory

Hotplug Memory

Dynamically Provisioning Memory Resources…

� The lsmem command is an easy way to view core and hotplug memory status

� The display looks and works the same whether running under z/VM or running natively

48

Dynamically Provisioning Memory Resources

rgylx0e4:~ # chmem -e 2g

rgylx0e4:~ # lsmem

Address Range Size (MB) State Removable Device

===

0x0000000000000000-0x000000000fffffff 256 online no 0-63

0x0000000010000000-0x000000006fffffff 1536 online yes 64-447

0x0000000070000000-0x000000007fffffff 256 online no 448-511

0x0000000080000000-0x00000000ffffffff 2048 online yes 512-1023

Memory device size : 4 MB

Memory block size : 256 MB

Total online memory : 4096 MB

Total offline memory: 0 MB

� An additional 2GB of memory now available for use

� The change is temporary, when Linux is restarted, hotplug memory will be offline.

� Remember to make permanent changes for the dynamic resource changes.

49

Dynamically Provisioning Memory Resources

rgylx0e4:~ # chmem -d 2g

rgylx0e4:~ # lsmem

Address Range Size (MB) State Removable Device

===

0x0000000000000000-0x000000000fffffff 256 online no 0-63

0x0000000010000000-0x000000006fffffff 1536 online yes 64-447

0x0000000070000000-0x000000007fffffff 256 online no 448-511

0x0000000080000000-0x00000000ffffffff 2048 offline - 512-1023

Memory device size : 4 MB

Memory block size : 256 MB

Total online memory : 2048 MB

Total offline memory: 2048 MB

� Storage no longer needed can also be removed to ensure efficient operation

50

Dynamically Provisioning Memory Resources

• The process and

results are the

same when

running in a

native LPAR as

shown

• Attempts to take

more memory

offline than

possible will

result in only the

removable

memory being

taken offline

51

• Large pages can be added permanently via
hugepages=<npages> in the kernel parameter line of

zipl.conf

• Huge page information can be queried via /proc/meminfo
HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 1024 kB

• Also queried via /proc/sys/vm/nr_hugepages

• Can be set dynamically via echo xxx >

/proc/sys/vm/nr_hugepages

• Hotplug memory allocated as moveable and can only be

used by movable resources.

• By default Large Pages are not allocated as movable

resource but can be made to allocate from movable

hotplug memory with:

echo 1 >

Dynamically Provisioning Memory – Large Pages

52

• Don’t forget to make

dynamic changes

permanent in

zipl.conf kernel

parameter

• Allocate your large

pages as soon as

possible to avoid

fragmentation issues

Dynamically Provisioning Memory – Large Pages

53

• Storage-class memory is a class of data storage devices that combines
properties of both storage and memory.

• Storage-class memory(SCM) is represented as a block device. Therefore it
could be utilized as swap device or as part of a filesystem, even in a LVM

• A SCM device can be partitioned in to 7 unique partitions

• Requires kernel 3.6 or 3.7 and above, defined to the LPAR, and the
scm_block module loaded

• Use lsblk and lsscm to view resource

• Can use storage commands such as fdisk, mkswap, mkfs, mount with the
devices

zlnx:~ # lsscm

SCM Increment Size Name Rank D_state O_state Pers ResID

--

0000000000000000 16384MB scma 1 2 1 2 1

0000000400000000 16384MB scmb 1 2 1 2 1

Dynamically Provisioning Memory – SCM

54

SCM storage add to LPAR

dynamically

Dynamically Provisioning Memory – SCM

55

• Load Module – modprobe scm_block

• List block devices

• Make node in /dev filesystem

• Use as needed…

Dynamically Provisioning Memory – SCM

56

• Block Device = No Partition • Filesystem for
transient work
data

• Swap device

Dynamically Provisioning Memory – SCM

57

Dynamic Memory - Considerations

• To add and remove memory takes some small advanced
planning. Develop a standard policy around how you will
handle memory needs.

• Memory can be added or removed whether you are running
under z/VM or in a native LPAR

• zVM User Directory COMMAND statement provides an effective
way to issue the DEFINE STORAGE command in an non-

disruptive manner.

• Remember not all memory sections will be removable, and
the removable state can change over time

• Hot plugged memory is NOT currently managed by cpuplugd
memory management (cmm)

58

� Basic memory hotplug requirements:

� VM64524 support

� DEFINE STORAGE STANDBY issued before Linux is IPLed

� For native LPAR, RESERVED STORAGE must be defined before the

LPAR is activated

� SLES 11 / RHEL 6 provide support in Linux

� Suspend/Resume restriction: The Linux instance must not have used any

hotplug memory since it was last booted. (Has worked if freed in advance)

� You may not be able to disable hotplug memory that has been enabled

� Can be very helpful when exact future memory need is unknown, without

over allocating online memory from the start.

� After a Linux reboot core memory is made available again and hotplug

memory is freed

Summary of Memory Hotplug

59

Agenda

5 Dynamically Adjusting CPU Resources

2 Dynamically Adjusting Disk Storage Resources

1 The Value of Dynamically Provisioning and Deprovisioning Resources

3 Dynamically Adjusting Networking Resources

4 Dynamically Adjusting Memory Resources

6 Automatically Adjusting Memory and CPU Resources

60

• Multithreaded application or multiple applications in a single
virtual server could potentially benefit from additional virtual

CPs

• Conversely too many virtual CPs could be counter

productive from a performance perspective. If you are over

provisioned you can dynamically remove processor
resource.

• Adding or removing virtual CPs could impact monitoring
applications or middleware that might query the number of

processors on startup (ie the Java Virtual Machine)

• z/VM “DEFINE CPU” is a Class G command

• (R.O.T.) Don’t add unnecessary virtual CPs and never more
virtual CPs than logical processors available.

• Remember adding virtual CPs does not add physical

capacity to the machine

Dynamically Provisioning CPU Resources

61

Dynamically Managing Virtual CPs

� The directory entry shows two initial virtual CPs

� The maximum potential virtual CPs shown is four

� z/VM does not make the additional potential virtual CPs available for Linux
to enable on its own

� The additional potential virtual CPs must first be defined in the z/VM guest
before dynamically enabling on Linux

62

Dynamically Managing Virtual CPs

� The current z/VM guests virtual resources are displayed from within
Linux

� The two initial and active virtual CPs are shown

� Notice there is no information displayed about the potential
additional virtual CPs

63

Dynamically Managing Virtual CPs

� Note the mpstat output from before defining the additional virtual
CPs

� Observe the even distribution of idle time and usage

64

Dynamically Managing Virtual CPs

� The Linux sysfs file system can access information about the two active virtual
CPs

� The kernel has a maximum potential of 64 processors

� No information about the two potential additional virtual CPs is shown yet

65

Dynamically Managing Virtual CPs

� Using the vmcp command we pass the zVM CP DEFINE CPU
commands on to our z/VM guest.

� Remember this is a class G guest enabling the additional resources
previously defined in the user directory

� After defining the additional virtual CPs in z/VM we still do not see
them in the Linux /sys filesystem.

66

Dynamically Managing Virtual CPs

• By using the z/VM QUERY VIRTUAL command we can see the additional virtual CPs

have been defined to the guest

• The new virtual CPs are in a “stopped” state

67

Dynamically Managing Virtual CPs

� mpstat is only reporting two CPUs

� The rescan operation is used to search for new CPUs in the guest.

� After rescan, additional /sysfs entries exist

68

Dynamically Managing Virtual CPs

� mpstat reports 0% use and 0% idle for the new CPUs. This is because
they are stopped and offline

� The new CPUs must still be brought online to Linux

69

Dynamically Managing Virtual CPs

� Bring the new CPUs online to Linux by echoing 1 in to the “online”
file for the given CPU

70

� On a idle system, the new CPUs momentarily show 100% idle after
being brought online

� Once a little bit of workload hits the system, this quickly changes

Dynamically Managing Virtual CPs

71

�You can take dynamically added CPUs offline again

�You can take offline CPUs that were initially online as well

Dynamically Managing Virtual CPs

72

• The latest levels of s390-tools has two new commands

• lscpu

• chcpu

Dynamically Managing Virtual CPs

73

Rescan CPs

Enable CP 1

Disable CP 1

Dynamically Managing Virtual CPs

74

� Polarization – Configures dispatching in a Hiperdispatch like manner

� Function applies to native LPAR deployments

� Horizontal (default) – spread even across all logical process

� Vertical – dispatch across as few as possible

Dynamically Managing Virtual CPs

75

Agenda

5 Dynamically Adjusting CPU Resources

2 Dynamically Adjusting Disk Storage Resources

1 Value of Dynamic Resource Configuration

3 Dynamically Adjusting Networking Resources

4 Dynamically Adjusting Memory Resources

6 Automatically Adjusting Memory and CPU Resources

76

What is cpuplugd and why is it important

� Manually adjusting the quantity of CPU and memory configured to virtual guests
is not the most effective approach, especially when managing thousands of
virtual servers.

� Rules based Linux automation for adding and removing memory and processor
resources

� The daemon checks the system at user configurable intervals

� You must configure the rules for it to operate

� You must activate the cpuplug daemon to use it, by default it is inactive

� New capabilities have recently been added to cpuplugd with s390-tools 1.15
(RHEL 6.2 & SLES 11 SP2)

77

cpuplugd – Planning

• The default rules are NOT recommendations, they are syntax examples.

• You should customize the configuration to fit your environment. Each virtual

server may have different needs based on workload, middleware, and other

factors.

• cpuplugd -V -f -c /etc/sysconfig/cpuplugd - This invokes cpuplugd

in the foreground with verbose messaging to help you understand its operation. It

is highly recommend you use this to understand how cpuplugd is functioning

• Send to logfile: cpuplugd -c <config file> -f -V>&<logname> &

• When building rules for cpuplugd, it is important to understand what state you will

be in after you execute a “plug” or “unplug” operation when writing the rules.

• Suggested Reading:

• May 2012 Paper ZSW03228 “Using the Linux cpuplugd Daemon to
manage CPU and memory resources from z/VM Linux guests”

78

cpuplugd – Planning

• Remember some middleware such as DB2 and Oracle have memory
managers and resource optimizing code of their own

• The purpose and operation of these are different than cpuplugd

• With that said any CPUs or memory brought online dynamically would
immediately be available for use

79

cpuplugd – Rule Considerations

• Ensure you can grow CPU capacity to what the application requires to
perform well (don’t artificially limit). Use other mechanisms to throttle
MIP usage based on shares/priorities.

• Rules based on the last couple of sample intervals are more
responsive than ones based on averages over minutes. Slower
responses to change can mean lower throughput for your applications

• Keep in mind you can only add/remove a full virtual CP of capacity.

• Avoid rules that plug and immediately unplug CPUs continuously

• Plug = idle < 50

• Unplug = idle > 50

• This means at times you might have > 1 virtual CPs of idle capacity as
an acceptable state.

80

cpuplugd - What if I run with default rules?

• CPU_MIN= 1 and CPU_MAX= 0 (maximum available)

• UPDATE= 5

• HOTPLUG="(loadavg > onumcpus + 0.75) & (idle < 10.0)“

• HOTUNPLUG="(loadavg < onumcpus - 0.25) | (idle > 50)“

• Basic variables can be defined as:

• loadavg: The load average over the past minute

• onumcpus: The number of cpus which are online now

• runable_proc: The current quantity of runable processes

• idle: The current idle percentage

• Unplug at 51% idle? After unplug, what is my cpu busy?

• Plug only at 91% busy? What if my runable processes are growing high?

81

• idle: Current idle – Where 1 idle processor = 100 and 4 idle processors
= 400 (/proc/stat 4th value). Idle does NOT stop at 100!

• loadavg: The current load average – The first /proc/loadavg value. The
average number of runnable process. Not average CPU utilization! One
looping process on a system would cause this to approach 1.0 Five
looping processes on a single CPU system would cause this to approach
5.0

• onumcpus: The actual number of cpus which are online
(Via: /sys/devices/system/cpu/cpu%d/online)

• runable_proc: The current quantity of runnable processes (The 4th

/proc/loadavg value)

cpuplugd – What the variables represent

82

• New predefined keywords
• user - the current CPU user percentage

• nice - the current CPU nice percentage

• system - the current CPU system percentage

• idle - the current CPU idle percentage

• iowait - the current CPU iowait percentage

• irq - the current CPU irq percentage

• softirq - the current CPU softirq percentage

• steal - the current CPU steal percentage

• guest - the current CPU guest percentage

• guest_nice - the current CPU guest_nice percentage

• cpustat.<name> - data from /proc/stat and /proc/loadavg

• time - floating point timestamp in "seconds.microseconds" since Unix Epoch

• Historical function available and extremely useful

• 0 is current interval
• cpustat.idle[0] …. cpustat.idle[99]

• User Defined Variables Now Supported (See examples next slide)

11.2

 6 .2

11.2

 6 .2

11 .2

 6 .2

cpuplugd – Variables and rule capabilities for CPU

83

User defined variables example for CPU

• user_0="(cpustat.user[0] - cpustat.user[1])"

• nice_0="(cpustat.nice[0] - cpustat.nice[1])"

• system_0="(cpustat.system[0] - cpustat.system[1])"

• user_2="(cpustat.user[2] - cpustat.user[3])"

• nice_2="(cpustat.nice[2] - cpustat.nice[3])"

• system_2="(cpustat.system[2] - cpustat.system[3])"

• CP_Active0="(user_0 + nice_0 + system_0)/ (cpustat.total_ticks[0] -
cpustat.total_ticks[1])"

• CP_Active2="(user_2 + nice_2 + system_2)/ (cpustat.total_ticks[2] -
cpustat.total_ticks[3])"

• CP_ActiveAVG="(CP_Active0+CP_Active2) / 2“

• idle_0="(cpustat.idle[0] - cpustat.idle[1])"

• iowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"

• idle_2="(cpustat.idle[2] - cpustat.idle[3])"

• iowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"

• CP_idle0="(idle_0 + iowait_0)/ (cpustat.total_ticks[0] - cpustat.total_ticks[1])"

• CP_idle2="(idle_2 + iowait_2)/ (cpustat.total_ticks[2] - cpustat.total_ticks[3])"

• CP_idleAVG="(CP_idle0 + CP_idle2) / 2"

84

cpuplugd memory management features

85

Why do we care about dynamic adjustments to
memory?

• Too little free memory

• Can’t start new programs/processes

• Swapping degrades performance

• OOM killer kills your middleware server process to “save” the system

• Too much free memory

• Excessive use of page cache, that may get paged out at hypervisor layer

• Cause stealing of memory pages from other guest with legitimate need

• More memory stress and paging at the hypervisor layer

• Degrades overall performance

• Unlike physical only environments, over allocating memory in virtual environments

can be very counter productive. This is not just true for z/VM.

• Manual adjustments don’t happen fast enough

86

Automated adjustments of memory

• Problems stemming from over/undersized memory allocations of guests in

virtualized environments are not unique to Linux on System z

• Even the most accurate sizing is irrelevant as soon as the requirements change

• The cpuplug daemon determines how much memory to add or remove based

upon the rules you put in place

• It is based on the same configurable interval you set for CPU rules

• The memory increment added or removed is configurable (and you should)

• Separate plug and unplug rules are used for memory management

• There are NO default memory plug and unplug rules

• If you start cpuplugd without any configuration changes it will manage CPUs but

NOT memory.

• Be sure to have the following z/VM PTFs on:

• APAR VM65060 REQUIRED!
• 540 UM33537

• 620 UM33539

87

Automated adjustments of memory

• cpuplugd uses CMM (or cmm1) to return unused pages of memory to the

hypervisor via a diagnose call. This memory must be actually free and not used

as cache. The decision as to how many pages to return is controlled by the rules

you write for cpuplugd

• The cmm module must be loaded

• Don’t mix cpuplugd and VMRM management of CMM.

• CMMA (or cmm2) is an alterative mechanism to return pages of memory to the

hypervisor by checking a bit on the page. It will only operate on free pages and

z/VM has to perform a scan for memory before the pages are actually reclaimed

from a guest.

• Linux pagecache can be the large consumer of free memory. If you guest idles

while holding page cache z/VM could page this memory out causing long delays

when activity resumes. (Example: slow ssh logins first thing in the morning)

• Understand that manually freeing pagecache alone, does not return the formerly

used pages to z/VM. One of the two above CMM mechanisms must be used to

return the pages.

• If the pages are not returned to z/VM, they will likely be paged out because they

are idle as Linux is not using them. The next time Linux allocates something to

that page, it would have to be paged in causing unnecessary delays

88

Linux memory management at a high level

• Understanding Linux memory management effects how you might write your

plugd rules

• Application requests for memory are managed as follows:

�With sufficient free pages, the request is fulfilled immediately

� If that causes the amount of free memory to fall below a high water mark,

an asynchronous page scan by kswapd is triggered in the background.

� If serving the request would cause the amount of free memory to fall below

a low water mark, a so called direct scan is triggered, and the application

waits until this scan provides the required pages.

� The system may decide to mark anonymous pages (pages that are not

related with files on disks) for swapping and initiate that these pages be

written to swap asynchronously.

• The async page scan is in an early indicator of a memory shortage

• Direct scans are more costly in terms of application performance

• Writing rules based on the scans can be more responsive than waiting until

some paging activity occurs.

89

• Basic variables for writing memory plug and unplug rules

� apcr: the amount of page cache reads listed in vmstat bi/bo

� Freemem: the amount of free memory (in megabyte)

� swaprate the number of swapin & swapout operations

� cpustat.<name> - from /proc/stat and /proc/loadavg

� meminfo.<name> - any value from /proc/meminfo

� vmstat.<name> - any value from /proc/vmstat

� time - floating point timestamp in "seconds.microseconds"

• CMM pool size and increment

� CMM_MIN min size of static page pool (default 0)

� CMM_MAX max size of static page pool

� default 512MB

� CMM_INC amount for memunplug only (previously for plug and unplug)

� 10% of free memory + cache, in pages

� CMM_DEC amount for memplug operation

� default 10% of total memory in pages

• With heavier IO rates you may want to allow the system to utilize more memory to help

improve performance. This memory would get utilized by pagecache.

• Looking at “cache” for free memory might be skewed if you have a lot of shared memory

(databases or java for example)

Automated adjustments of memory

90

User defined variable example for memory

• The page scan rate can be calculated as the sum of:

• vmstat.pgscan_kswapd_dma

• vmstat.pgscan_kswapd_normal

• vmstat.pgscan_kswapd_movable
• pgscan_k="vmstat.pgscan_kswapd_dma[0] + vmstat.pgscan_kswapd_normal[0] +

vmstat.pgscan_kswapd_movable[0]“

• The direct page scan rate can be calculated as the sum of:

• vmstat.pgscan_direct_dma

• vmstat.pgscan_direct_normal

• vmstat.pgscan_direct_movable
• pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct_normal[0] +

vmstat.pgscan_direct_movable[0]“

• The available part of the cache that could be freed can be calculated as the:

• meminfo.Cached -meminfo.Shmem
• avail_cache="meminfo.Cached -meminfo.Shmem"

91

• CPU Hotplug memory management will NOT release page cache memory

• The CMM module needs to be loaded before starting cpuplugd

• Understand how much memory you want to allow CMM to reclaim and the rate at

which you will return memory. The last thing you want is a failing memory allocation,

or adverse performance impact.

• Under heavier IO load you may want more free memory available to Linux

• The goal is for Linux to dynamically return pages of memory to z/VM when not in use,

and to allow the entire system to operate more efficiently

• The amount of memory required an application to run is a function of the application

program code, the workload volume, and any other software added to monitor or

manage the environment.

• cpuplugd does NOT plug and unplug memory (chmem), it only uses CMM

• cpuplugd does NOT add more CPUs than what you have active at boot time

cpuplugd summary

92

References

� Linux on System z Device Drivers,

Features, and Commands

SC33-8411-22

http://www.ibm.com/developerworks/linux/li
nux390/documentation_dev.html

� Using the Linux cpuplugd Daemon to
manage CPU and memory resources from
z/VM Linux guests

ZSW03228-USEN-00

http://www.ibm.com/developerworks/linux/li
nux390/perf/tuning_cpuhotplug.html#cpuplu
gd

93

References
http://www.vm.ibm.com/library

• z/VM CP Commands and Utilities

Reference
SC24-6175-01

• z/VM Directory Maintenance Facility

Commands Reference
SC24-6188-03

94

Richard G. Young

Executive I.T. Specialist

IBM STG Lab Services

Virtualization & Linux on

System z

IBM
777 East Wisconsin Ave

Milwaukee, WI 53202

Tel 262 893 8662

Email: ryoung1@us.ibm.com

Thank you for attending!

Please remember to fill out your session
evaluation

