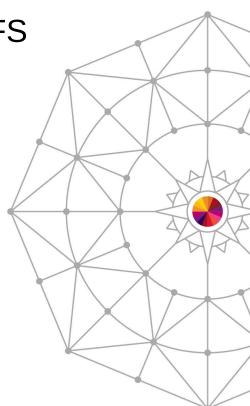


Alternatives to Solaris Containers and ZFS for Linux on System z

Cameron Seader (cs@suse.com) SUSE


Tuesday, March 11, 2014 Session Number 14540

Agenda

- Quick Overview of Solaris Containers and ZFS
- Linux Containers (LXC)
 - What is LXC?
 - Demo LXC on SLES on System z
- Butterfs (Btrfs)
 - What is Btrfs?
 - Demo Btrfs on SLES on System z

Solaris Containers

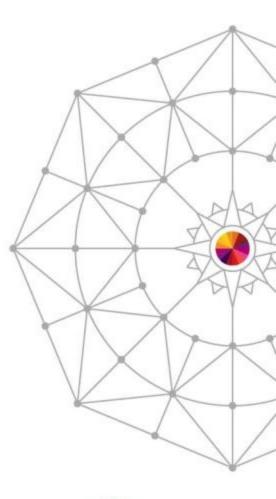
- Also known as "Zones"
 - Officially renamed to Oracle Solaris Zones¹
- Command line tools to manage zones
- Graphical tool "Oracle Enterprise Manager Ops Center" for managing zones
- Dynamically assign resources to a zone or group of zones
- Can run Solaris 8, 9, 10 and some Linux in a zone
 - Using a feature called "branded" zones

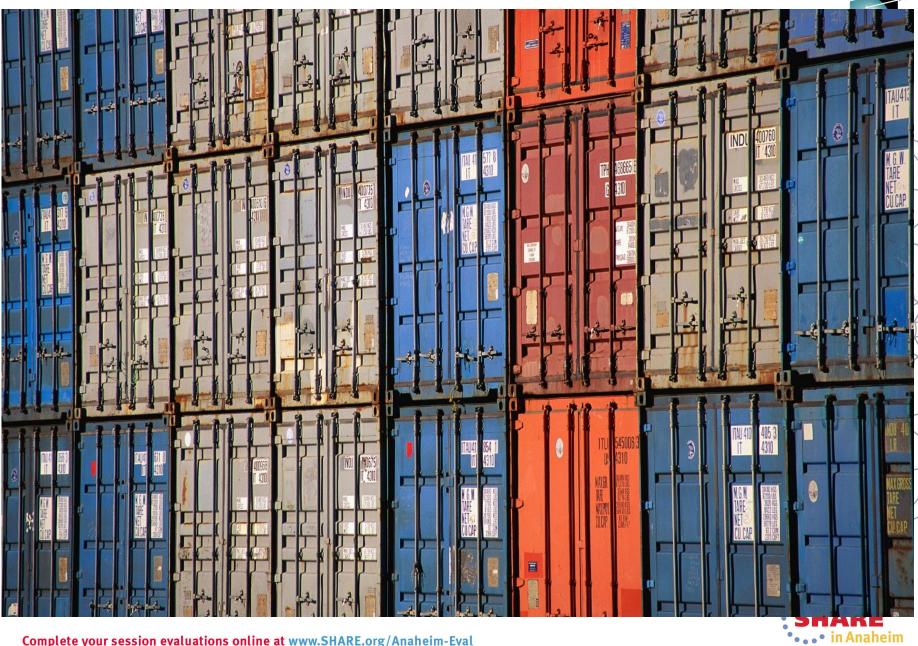
¹ "The Role of Oracle Solaris Zones and Linux Containers in a Virtualization Strategy",

ZFS

- Combined file system and logical volume manager¹
- File System
 - Journaling
 - Copy on write
 - Data and metadata verified by checksum
- Integrated Logical Volume Managment
 - Called "Storage Pools"
- Snapshots

¹ "Oracle Solaris ZFS Administration Guide",





Linux Containers (LXC)

6 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

LXC uses a Linux Kernel capability called Control Groups

Control Groups provide a mechanism for aggregating/partitioning sets of tasks, and all their future children, into hierarchical groups with specialized behavior.

- cgroup is another name for Control Groups
- Partition tasks (processes) into a one or many groups of tree hierarchies
- Associate a set of tasks in a group to a set subsystem parameters
- Subsystems provide the parameters that can be assigned
- Tasks are affected by the assigning parameters

Example of the Capabilities of a cgroup

Consider a large university server with various users - students, professors, system tasks etc. The resource planning for this server could be along the following lines:

CPUs

Top cpuset (20%) / \ CPUSet1 CPUSet2 | | (Profs) (Students) 60% 20%

Memory

Professors = 50% Students = 30% System = 20%

Disk I/O

Professors = 50% Students = 30% System = 20%

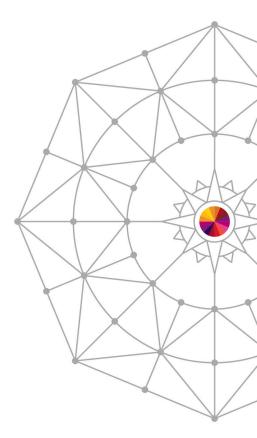
Network I/O

WWW browsing = 20%

Prof (15%) Students (5%)

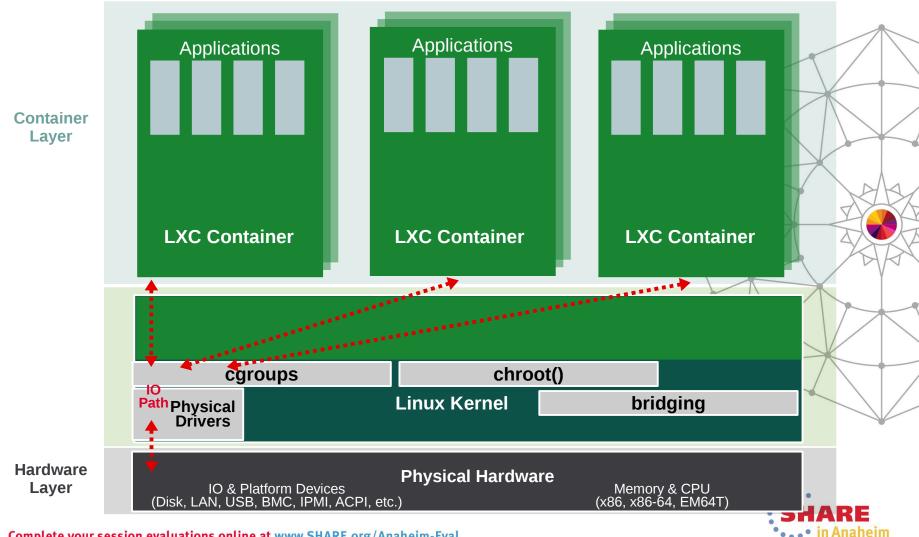
Network File System (60%)

Others (20%)


Source: /usr/src/linux/Documentation/cgroups/cgroups.txt

Control Group Subsystems

Two types of subsystems


- Isolation and special controls
 - cpuset, namespace, freezer, device, checkpoint/restart
- Resource control
 - cpu(scheduler), memory, disk i/o, network

Linux Containers

10 Complete your session evaluations online at www.SHARE.org/Anaheim-Eval

Linux Containers – Virtualization

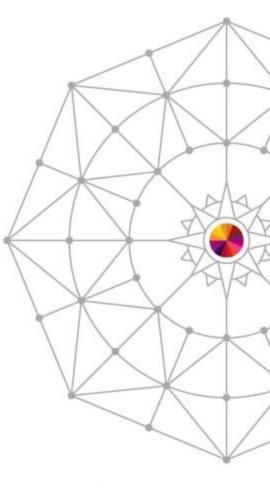
- OS Level Virtualization i.e. virtualization without a hypervisor (also known as "Lightweight virtualization")
- Similar technologies include: Solaris Zones, BSD Jails, Virtuozzo or OpenVZ
- Advantages of OS Level Virtualization
 - Minor I/O overhead
 - Storage advantages
 - Dynamic changes to parameters without reboot
 - Combining virtualization technologies
- Disadvantages
 - Higher impact of a crash, especially in the kernel area
 - Unable run another OS that cannot use the host's kernel

Linux Containers – Feature Overview

- Supported in SUSE_® Linux Enterprise Server 11 SP3:
 - Support for system containers
 - A full SUSE Linux Enterprise Server 11 SP2 installation into a chroot directory structure
 - Bridged networking required
 - Only SUSE Linux Enterprise Server11 SP3 supported in container
 - Easy application containers creation and management
 - Support for AppArmor and LXC integration
- Planned for future SUSE Linux Enterprise Server:
 - Filesystem copy-on-write (btrfs integration)
 - Partial support in SLES11 SP2 LXC update
 - Application containers support
 - Just the application being started within the container

Several Ideas for using LXC on SLES on System z

- Test installation and configuration of an application
- Give developers their "own" system without having to manage separate z/VM guests
- Run multiple applications on a single guest
 - With different IPs per LXC container
 - Limit any combination of CPU, memory and disk resource per LXC container
- Control an application that becomes a resource hog


Demo LXC on SLES on System z

Butterfs (Btrfs)

Why Another Linux filesystem?

- Solve Storage Challenges
 - Scalability
 - Data Integrity
 - Dynamic Resources (expand and shrink)
 - Storage Management
 - Server, Cloud Desktop, Mobile
- Compete with and exceed the filesystem capabilities of other Operating Systems

What People Say About Btrfs...

Chris Mason (lead developer Btrfs)

- General purpose filesystem that scales to very large storage
- Focused on features that no other Linux filesystems have
- Easy administration and fault tolerant operation

Ted Tso (lead developer Ext4)

• (Btrfs is) "... the way forward"

Others:

- "Next generation Linux filesystem"
- "Btrfs is the Linux answer to ZFS"

A Few Btrfs Concepts

- B-Tree
 - Index data structure
 - Fast search, insert, delete
- Subvolume
 - Filesystem inside the filesystem
 - Independent B-Tree linked to some directory of the root subvolume

- Metadata
 - "normal" metadata: size, Inode, atime, mtime, etc...
 - B-Tree structures
- Raw data
 - Actual content of files

Btrfs Specs

- Max volume size
- Max file size
- Max file name size
- Characters in file name
- Directory lookup algorithm : B-Tree
- Filesystem check
- Compatibility
 - POSIX file owner/permission Access Control Lists (ACLs) (xattrs), Asynchronous and Direct I/O

Hard- and symbolic links, Extended Attributes

: 16 EB (2^64 byte)

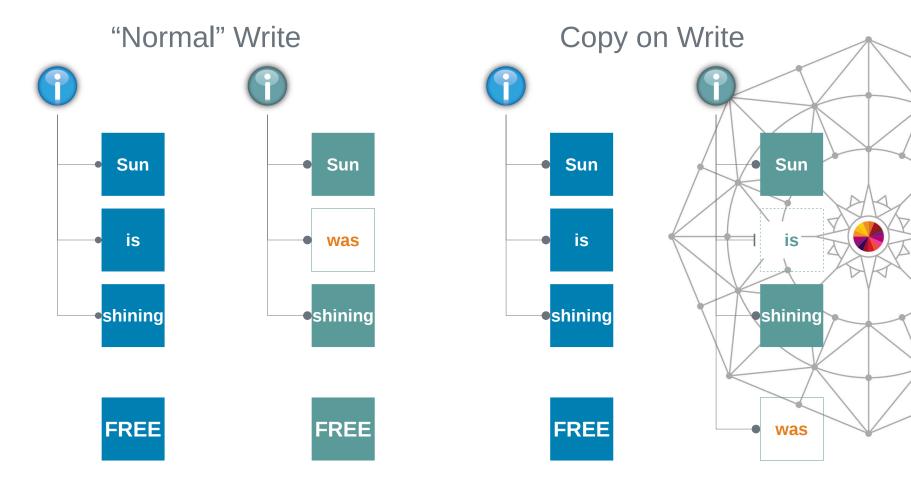
: 16 EB

: 255 bytes

: on- and off-line

: any, except 0x00

Btrfs Feature Summary


- Extents
 - Use only what's needed
 - Contiguous runs of disk blocks
- Copy-on-write
 - Never overwrite data!
 - Similar to CoW in VMM
- Snapshots
 - Light weight
 - At file system level
 - RO / RW

- Multi-device Management
 - mixed size and speed
 - on-line add and remove devs
- Object level RAID:
 - 0, 1, 10
- Efficient small file storage
- SSD support (optimizations, trim)

Copy on Write explained

Btrfs Feature Summary (cont.)

- Checksums on data and meta data
- On-line:
 - Balancing
 - Grow and shrink
 - Scrub
 - Defragmentation
- Transparent compression (gzip, Izo)
- In-place conversion from Ext[34] to Btrfs

- Send/Receive
 - Similar to ZFS' send/receive function
- Seed devices
 - Overlay a RW file system on top of an RO
- btrfsck
 - Offline FS repair
- Sub-volume Quota support

Btrfs Planned Features

- Object-level RAID 5, 6
- Data de-duplication:
 - On-line de-dup during writes
 - Background de-dup process
- Tiered storage
 - Frequently used data on SDD(s)
 - "Archive" on HDD(s)

Btrfs integration in SLE 11 SP3

Basic integration into

- Installer
 - Btrfs as root file system
 - Recommendation for subvolume layout
- Partitioner
 - Create Btrfs
 - Create subvolumes

Tools

- Snapper
 - Manage snapshots
 - Automatically create snapshots
 - Display differences between snapshots
 - Faster snapshot comparison
 - Roll-back
 - Snapshot creation as nonroot user

Snapshot management with Snapper

Functions

- Automatic snapshots
- Integration with YaST and Zypp
- Rollback
- Integration points

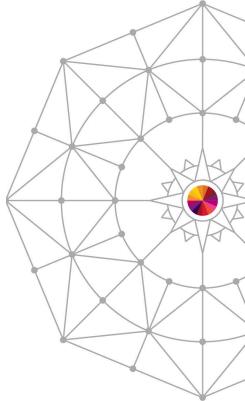
Selected Snapshot Overvie ^{2·3}	yast users	
etc group group.YaST2save passwd passwd passwd shadow shadow.YaST2save shadow.YaST2save sysconfig	Time of taking the first snapshot: Time of taking the second snapshot: Show the difference between first and second snapshot Show the difference between first snapshot and current sys Show the difference between second snapshot and current File content was modified. File content was modified. 	943000001 +0200 8.916000003 +0200
	R <u>e</u> store Fro	m First Restore From Second

Btrfs integration in SLE Future Plans

- Built-in multi-volume handling and RAID
- Transparent compression
- Transparent compression
- Bootloader support for /boot on btrfs

Several Ideas for using Btrfs on SLES on System z

- Testing a patch on a system
- Rollback after patching a system
 - Rollback of kernel patches with Btrfs not possible due to /boot not being btrfs
- Quickly reset training systems for next class
- Easily fast forward and backward in a demo


Demo Btrfs on SLES on System z

Thank You!!

