
IBM Health Checker for z/OS – Intro
and next steps

Peter Relson

Ulrich Thiemann

IBM

August 13th, 2013

Session 14298

2

Trademarks

• See URL http://www.ibm.com/legal/copytrade.shtml for a

list of trademarks.

• The term Health Checker is used as short form of “IBM

Health Checker for z/OS” in this presentation.

• The term “health check” or just “check” is used as short

form of “health check for the IBM Health Checker for z/OS”

in this presentation.

http://www.ibm.com/legal/copytrade.shtml

3

Session Objectives

• Provide an overview of the IBM Health Checker for z/OS

• To allow you to take full advantage of this valuable tool

• To enable you to explore writing your own health checks

4

Agenda

• Part 1

• Health Checker framework

• Health checks

• Health check alerts

• Health Checker setup

• Part 2

• Basic check writing

• References

5

Health Checker in z/OS

• A component of MVS that identifies potential problems

before they impact your system’s availability or, in worst

cases, cause outages.

• Part of the “base” operating system, the BCP

• Shipped via FMID HBB77x0

• Component prefix HZS

• With a system address space, HZSPROC, as backend of

the provided services

6

What does it do?

• Inspects active z/OS and sysplex settings and definitions

• for deviations from best practices

• for getting close to critical thresholds

• for recommended and required migration actions

• Informs the system programmer via detailed messages

• Provides suggested actions and additional references

• Health Checker itself does not modify the system

7

The Health Checker advantage

• Health Checker “automates” validation of environment

• A program, not a programmer, checks for deviations

• Analysis of outages showed:

• Significant number were avoidable
• For example, bad configurations with single points of failure

• Configurations that were less than optimal
• For example, unnecessary performance bottlenecks

• Situation exacerbated by:

• Complex parallel sysplex configuration requirements

• Experienced skills are limited

• Rare failures mean less experience by operations staff

8

The Health Checker advantage –
continued

• Many options for flexibility:

• Sometimes, default values are best guesses

• Best practices may not become known until good exposure in

many environments

• Best practices are not widely known or implemented:

• Many sources of best practices

• Product pubs, WSC Flashes, White Papers, wizards, …

• Hard to determine applicability

• May be out of date

• Just providing documentation has a limited effect

9

Health Checker vs. health checks

• One “Health Checker” framework

• backed by system address space, HZSPROC

• Many health checks

• Framework “plug-ins”

• Do the actual “checking” (inspection of settings…)

• Owned by separate/independent components/products

• Not just from IBM (~200), but from ISVs and users as well

10

Health Checker framework

• Maintains a list of known/registered health checks

• Schedules and runs those health checks

• One time or on an interval schedule

• Provides consistent check message interface with

console, SYSLOG, message buffer… output

11

Health Checker framework, continued

• It's a "live" framework:

• Own address space (started task "HZSPROC")

• With live state (private storage) and worker tasks

• Not (just) static services/APIs

• Available as product in z/OS V1R7 and up

12

Health Checker Sysplex scope

• Health Checker instances run on single systems in the

Sysplex

• Only one instance of Health Checker on a single system

• “GLOBAL” checks run on only one system in a Sysplex

• Avoids running redundant copies of "Sysplex aware" checks

13

Migration checks

• An important subset of health checks help with migration

• Shipped INACTIVE by default

• Find and make ACTIVE when getting ready to migrate

• F HZSPROC,DISPLAY,CHECK(IBM*,*MIG*)

• Mostly CHECK(IBM*,ZOSMIG*), but ICSF is special

• F HZSPROC,ACTIVATE,CHECK(IBM*,*MIG*)

• Especially for migration checks look for PTFs

• Tagged via SMP/E FIXCAT IBM.Function.HealthChecker

14

How to notice Health Checker alerts

• Manually

• Action messages on the console

• “Poll” via command, for example:

• MODIFY HZSPROC,DISPLAY,CHECKS,EXCEPTION

• or, HZSPRINT job with option EXCEPTIONS

HZS0200I 11.32.59 CHECK SUMMARY FRAME 1 F E SYS=SY40

CHECK OWNER CHECK NAME STATE STATUS

IBMTSOE TSOE_USERLOGS AE EXCEPTION-LOW

IBMPDSE PDSE_SMSPDSE1 AE EXCEPTION-LOW

IBMCSV CSV_LNKLST_SPACE AE EXCEPTION-LOW

IBMCSV CSV_APF_EXISTS AE EXCEPTION-LOW

*SY40 *HZS0003E CHECK(IBMXCF,XCF_CDS_SPOF):

*IXCH0242E One or more couple data sets have a single point of failure.

15

How to notice Health Checker alerts –
Continued

• Manually

• SDSF CK panel commands, for example: CK E

SDSF HEALTH CHECKER DISPLAY SY40 LINE 1-34 (34)

COMMAND INPUT ===> SCROLL ===> PAGE

NP NAME CheckOwner State Status

 ASM_LOCAL_SLOT_USAGE IBMASM ACTIVE(ENABLED) EXCEPTION-MEDIUM

 ASM_PAGE_ADD IBMASM ACTIVE(ENABLED) EXCEPTION-MEDIUM

16

How to notice Health Checker alerts -
continued

• OMEGAMON / Tivoli panels

17

How to notice Health Checker alerts -
continued

• Automatically

• Set up notifications via automation products

• Pager, e-mail, SMS, …

• Typically based on “generic” HZS message ID in first part of

check exception message

• HZS0003E for HIGH severity exceptions

• HZS0002E for MEDIUM severity

• HZS0001I for LOW severity

*SY40 *HZS0003E CHECK(IBMXCF,XCF_CDS_SPOF):

*IXCH0242E One or more couple data sets have a single point of failure.

18

What to do with check exceptions

• For each check in exception status:

• Read the content of the check message buffer

• Message buffer gives all the details needed to “fix”

• Can be viewed via SDSF CK pane + ‘S’ line command

• Or via HZSPRINT job output

19

Check message buffer example

CHECK(IBMXCF,XCF_CDS_SPOF)

SYSPLEX: PLEX1 SYSTEM: SY40

START TIME: 07/19/2013 13:37:29.677274

CHECK DATE: 20070730 CHECK SEVERITY: HIGH

…

IOSPF252I Volumes CPLPKP (0485) and CPLPKA (0487) share the

same physical control unit.

…

* High Severity Exception *

IXCH0242E One or more couple data sets have a single point of failure.

 Explanation: The couple data set configuration has one or more single

 points of failure. A failure at one of these points could result in

 loss of a couple data set, system, or even the entire sysplex.

...

 System Programmer Response: IBM recommends that for maximum

 availability, you operate with both primary and alternate couple

 data set…
…adding or relocating couple data sets using the SETXCF COUPLE

 command …

20

How to “fix” check exceptions

• “Fix for real” using the information in the message buffer

• Or, “just” adjust a threshold or other check parameter

• to meet your installation’s “best practices”

• via F HZSPROC,UPDATE,CHECK(…),PARM… command

• or SDSF CK panel overtype

• best made “permanent” by adding UPDATE POLICY

statement in a HZSPRMxx parmlib member

21

Is it fixed?

• System will re-run check automatically after PARM change

• Can also explicitly request check run

• SDSF CK panel, ‘R’ line command

• F HZSPROC,RUN,CHECK(…) command

• To validate that check reports “success” now

22

More drastic measures

• Mark individual checks INACTIVE

• If you really can’t / don’t want to fix

• Allows all other checks to continue to protect your system

• Most non-applicable checks should already be INACTIVE

or DISABLED with ENV N/A

23

Intermediate remedy

• To help with initial “rush” / high “noise” level on console

• Don’t forget to make console “scroll”

• Consider the CONTROL command, for example: K S,DEL=R

• Lower visibility and put into your HZSPRMxx, temporarily:

ADDREPLACE POLICY(HCONLY)

UPDATE CHECK(*,*)

WTOTYPE(HARDCOPY)

REASON=('STOP RED MESSAGES')

DATE=(20130408)

ACTIVATE POLICY(HCONLY)

24

How to get ready to use Health Checker

• New in z/OS V2.1: “Auto”-start at IPL

• Before: Put “START HZSPROC” into COMMNDxx…

• Both give you a working Health Checker

• Additional setup steps are described in the Health Checker

User's Guide, but majority is optional.

• Some steps are highly recommended though and a summary

is listed in the following...

25

Setup – Persistent Data

• Modify HZSPROC to specify a persistent dataset which allows health
checks to preserve analysis/comparison data across IPLs…:
//HZSPROC PROC HZSPRM='PREV'

//HZSSTEP EXEC PGM=HZSINIT,REGION=0K,TIME=NOLIMIT,

// PARM='SET PARMLIB=&HZSPRM'

//*HZSPDATA DD DSN=SYS1.&SYSNAME..HZSPDATA,DISP=OLD

// PEND

// EXEC HZSPROC

• Otherwise the system will nag you via
HZS0013A–“SPECIFY THE NAME OF AN EMPTY HZSPDATA DATA SET”

• See SYS1.SAMPLIB(HZSALLCP) for the required format
//HZSPDATA DD DSN=SYS1.system_name.HZSPDATA,DISP=(NEW,CATLG),

// SPACE=(4096,(100,400)),UNIT=SYSDA,

// DCB=(DSORG=PS,RECFM=FB,LRECL=4096)

26

Setup – Associated User ID

• Some health checks use z/OS Unix System Services

• Need an OMVS segment

• Most health checks will run OK without this

• But Health Checker will issue warning message HZS0109E

• Some health checks need special authorities

• To access system resources, including the persistent data dataset

• HZSPRMxx support needs PARMLIB permissions

• Best to associate a user ID with the HZSPROC address space.

• RDEFINE STARTED HZSPROC.* STDATA(USER(hcid)

GROUP(OMVSGRP))

27

Setup – Associated User ID, continued

• In particular ensure that this user ID

• Has an OMVS segment with UID(0) or BPX.SUPERUSER

permissions.
• ADDUSER hcid OMVS(UID(yy) HOME('/')

PROGRAM('/bin/sh')) NOPASSWORD

• ADDGROUP OMVSGRP OMVS(GID(xx))

• CONNECT hcid GROUP(OMVSGRP)

• PERMIT BPX.SUPERUSER CLASS(FACILITY) ID(hcid)

ACCESS(READ)

• Has access to your persistent dataset and PARMLIB

• optionally to other resources (see the Health Checker User's

Guide)

28

Setup – Compiled REXX checks

• In particular many migration checks use System REXX

• Comes with extra requirements when compiled REXX is

used

• either the SEAGALT or SEAGLPA library must be in the

system search order.

• SEAGALT is provided in z/OS V1R9 and higher

• SEAGLPA is provided in the IBM Library for REXX on zSeries

product

• see IBM Compiler and Library for REXX on System z: User's

Guide and Reference.

29

Customization – HZSPRMxx

• Put any (optional) Health Checker customization into HZSPRMxx

parmlib members

• health check POLICYs

• LOGSTREAM connects (for deeper check result history)…

• Set system parameter HZS to list of those HZSPRMxx suffixes

• HZS=(aa,...,zz) in IEASYSxx – V2.1 only

• Before V2.1: Update HZSPRM parameter of HZSPROC

• Parameter HZSPRM of procedure HZSPROC by default references

this HZS system parameter, via HZSPRM=PREV (V2.1 only)

30

Other check customization

• PARM string is most common to be updated, but also

• Check SEVERITY (HIGH, MEDIUM, LOW)

• Check INTERVAL (scheduling frequency)

• Check SYNCHVAL

• schedule more precisely, e.g. to only run during batch hours

31

Part 2 – Check writing basics

[Real basic information here - More details via session 14232]

• You provide the “inspection” code

• The “check routine”

• You tell Health Checker where to find it

• “ADD CHECK”

• Health Checker takes care of the rest

• Runs check on schedule

• Reports check messages

32

Types of checks – “Locale”

• ...in terms of how and where the check routine is provided

to Health Checker and finally executed

• Local checks

• Check runs in HZSPROC worker task

• Remote checks

• Check runs in task of non-HZSPROC, remote address spaces

• “Hybrid”: System REXX checks

• Check runs in System REXX (AXR…) address space

• Transparent to users, but important check writer choice

• For simplicity we will choose REXX in the following

33

REXX checks

• Check routine is provided as System REXX exec in a

System REXX library

• Special type of remote check

• Runs authorized

• Can use TSO services

34

REXX check routine outline

• Establish handshake with Health Checker

• Interpret current check PARM value(s)

• Inspect check specific configuration setting

• Report findings

• Final handshake with Health Checker

35

Check routine – Handshake with Health
Checker

• At check start

• HZSLSTRT_RC = HZSLSTRT()

• Notifies Health Checker that check routine received control

• Health Checker provides set of useful HZS* variables

• At check exit

• HZSLSTOP_RC = HZSLSTOP()

• Let’s Health Checker update status and…

• …flush and save data used across single check runs

36

Check routine – Look at parameters

• Use provided HZS* variables to

• Check for parameter changes (or on first check run)

• Parse parameter, as needed

• Store found value(s) for later check runs

IF HZS_PQE_LOOKATPARMS = 1 THEN

 DO

 PARSE UPPER VAR

 HZS_PQE_PARMAREA,"LIMIT("Limit_Value")"

 HZS_PQE_CHKWORK = Limit_Value

 END

ELSE Limit_Value = HZS_PQE_CHKWORK

37

Check routine – Inspect settings

• Many REXX services available to inspect storage, system settings, …

• Decide on success or exception

IF HZS_PQE_FUNCTION_CODE = "INITRUN" | ,

 HZS_PQE_FUNCTION_CODE = "RUN"

THEN

 DO

 /* Any real checking goes here, for example comparing
 the current LIMIT parameter value against a system
 value. In this sample we just report success every
 other check run and an exception in between... */

 IF (HZS_PQE_CHECK_COUNT // 2) = 1

 THEN /* Report success */

 ELSE /* Report exception */

 END

38

Check routine – Report Success

• “All is good” confirmation

HZSLFMSG_REQUEST = "DIRECTMSG"

HZSLFMSG_REASON = "CHECKINFO"

HZSLFMSG_DIRECTMSG_ID = "XYZH0001I"

HZSLFMSG_DIRECTMSG_TEXT = "All is well with

limit xyz"

HZSLFMSG_RC = HZSLFMSG()

• Note the use of “embedded” message text
• DIRECTMSG available since z/OS V1R12

39

Check routine – Report Exception

• Deviation found, approaching limit, …

HZSLFMSG_REQUEST = "DIRECTMSG"

HZSLFMSG_REASON = "CHECKEXCEPTION"

HZSLFMSG_DIRECTMSG_ID = "XYZH0002E"

HZSLFMSG_DIRECTMSG_TEXT = "Bad limit xyz."

HZSLFMSG_DIRECTMSG.EXPL = "Limit xys has been reached..."

HZSLFMSG_DIRECTMSG.SYSACT = "The system continues processing."

HZSLFMSG_DIRECTMSG.ORESP = "Report this error to the System Programmer."

HZSLFMSG_DIRECTMSG.SPRESP = "Make more xyz available...."

HZSLFMSG_DIRECTMSG.PROBD = "For problem determination,"

HZSLFMSG_DIRECTMSG.SOURCE = "<owning product>"

HZSLFMSG_DIRECTMSG.REFDOC = "Look at the following manuals",

 "to explain the error message further or help diagnose",

 "and correct the problem reported...."

HZSLFMSG_RC = HZSLFMSG()

40

Register the health check

• Have HZSPRMxx parmlib member with ADD

ADDREP CHECK(MYPROD,PROD_LIMIT_CHECK)

 EXEC(PRDLIMCK)

 REXXHLQ(IBMUSER)

 MSGTBL(*NONE)

 PARMS('LIMIT(47)')

 SEVERITY(MEDIUM)

 INTERVAL(0:30)

 DATE(20130630)

 REASON('Check PROD LIMIT')

• Tell Health Checker about it

• MODIFY HZSPROC,ADD,PARMLIB=xx

Your REXX exec member in e.g.

SYS1. SAXREXEC

41

See the results of the check run

SY39 HZS0002E CHECK(MYPROD,PROD_LIMIT_CHECK):

XYZH0002E Bad limit xyz.

SDSF HEALTH CHECKER DISPLAY SY39 LINE 57-112 (159)

COMMAND INPUT ===> SCROLL ===> PAGE

NP NAME CheckOwner State Status

 IXGLOGR_ENTRYTHRESHOLD IBMIXGLOGR INACTIVE(ENABLED) INACTIVE

 IXGLOGR_STAGINGDSFULL IBMIXGLOGR ACTIVE(ENABLED) SUCCESSFUL

 IXGLOGR_STRUCTUREFULL IBMIXGLOGR ACTIVE(ENABLED) SUCCESSFUL

 JES2_Z11_UPGRADE_CK_JES2 IBMJES2 ACTIVE(ENABLED) SUCCESSFUL

 OCE_XTIOT_CHECK IBMOCE ACTIVE(ENABLED) EXCEPTION-LOW

 PDSE_SMSPDSE1 IBMPDSE ACTIVE(ENABLED) EXCEPTION-LOW

 PROD_LIMIT_CHECK MYPROD ACTIVE(ENABLED) EXCEPTION-MEDIUM

• On the console

• On the SDSF CK panel

42

See the results of the check run –
continued

CHECK(MYPROD,PROD_LIMIT_CHECK)

SYSPLEX: PLEX1 SYSTEM: SY39

START TIME: 07/20/2013 13:22:59.792932

CHECK DATE: 20130630 CHECK SEVERITY: MEDIUM

CHECK PARM: LIMIT(47)

* Medium Severity Exception *

XYZH0002E Bad limit xyz.

 Explanation: Limit xys has been reached...

• In the message buffer

• Line command ‘S’ (Browse Status) on the SDSF CK panel

43

More about REXX checks, check
writing…

• Check out SYS1.SAMPLIB(HZS*)

• HZSSXCHN and HZSSXCHK are REXX sample checks

• Session 14232 covers check writing in more depth

44

References

• SHARE Boston 2013 – Session 14232

• “IBM Health Checker for z/OS
- V2R1 Updates
- Check writing details and comparisons”

• “IBM Health Checker for z/OS User's Guide” (SC23-6843)

• Guide and Reference

• Includes an inventory of IBM supplied health checks

• “Exploiting the Health Checker for z/OS infrastructure”

• Health Checker “hands-on” Redpaper 4590

• Health Checker framework contact and to direct questions about individual
health checks:

• Ulrich Thiemann (thiemanu@us.ibm.com)

