JES2 Bootcamp - Part 1 of 3
What is JES2 and what does it do

Tom Wasik
IBM Rochester, MN

Wednesday 11:00 AM
Session Number 14285
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

- IBM®
- MVS™
- Redbooks®
- RETAIN®
- z/OS®
- zSeries®

The following are trademarks or registered trademarks of other companies.

- Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
- Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
- Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
- UNIX is a registered trademark of The Open Group in the United States and other countries.
- SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.
- All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM Business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
Brief History of JES

• Original 2 versions
 • Attached Support Processor (ASP)
 • Developed in 1966 in Burbank, CA
 • S/360 follow on to the direct couple function of the 7090/7040
 • Houston Automatic Spooling Priority (HASP)
 • Developed in 1967 at Manned Spacecraft Center in Houston
 • Developed as a single system version of JES3

• Both affiliated with the US space program
Brief History of JES

- Both were field developed programs
 - Not part of the operating system – Think APPs
 - Driven by customer requests and requirements
- Both addressed the problem of slow peripheral I/O
 - Card readers, printers, and punch
- Spool was staging area for input (jobs) and output (SYSOUT)
 - Disk drivers were faster than unit record devices
 - Read cards to spool and then process from there
 - Write output to spool and then printed from there
- Made more efficient use of expensive CPU resource
History of JES

- Both were mods (or hacks) to the operating system
 - Front ended functions to intercept normal processing
- Provided functions the operating system (MVT) chose not to
- Eventually became JES2 (HASP) and JES3 (ASP)
 - JES - Job Entry Subsystem
- JES1? Came out with OS/VS1 (from dev)
 - Users hated it
 - Had too much invested in their mods to HASP and ASP
 - Convinced IBM to give them their products
 - But with new names (JES2 and JES3) and formal interfaces (the SSI)
Why do I need a JES? (What does it do?)

- JES implements spool
 - Staging area for job JCL, SYSOUT, SYSIN
- Entry portal for started tasks and TSO logons
 - Some system address spaces bypass JES
- JES manages batch
 - Gets jobs from multiple sources and places them on SPOOL
 - Schedules batch jobs to execute (manages work queues)
 - Provides interfaces to influence job scheduling
Why do I need a JES? (What does it do?)

- JES manages SYSOUT
 - Interfaces to JES printers
 - Still has support for line printers written directly by JES
 - Provides output to “FSS” printers (PSF)
 - FSS – Functional subsystem
 - Has interface for generic “print” drivers (InfoPrint, etc)
 - SAPI – SYSOUT API
- JES connects multiple MVS images
 - MAS/Complex predates SYSPLEX
 - Allows multiple systems to process single job/output queue (1975)
 - JES2 is always a MAS (Multi Access Spool) even if only one members (single member MAS)
Why do I need a JES? (What does it do?)

- JES implemented early “client server”
 - RJE/RJP – Remote Job Entry
 - Allows jobs from client computers to be run on MVT and get output back (1967)
 - Uses BSC and SNA protocols
 - Protocol still used today (though use is fading)
- JES implemented multi-node connections
 - NJE – Network Job Entry
 - Allows peer systems to interchange jobs and output for processing (1976)
 - Uses BSC, SNA, and recently added TCP/IP protocols
 - Early e-mail is TSO transmit over NJE
 - Still actively used by many installations
What makes JES special?

- Source distributed and maintained
 - Mostly assembler code (HLASM) – Some OCO parts
 - Customers/vendors look to JES for examples of how to do things
 - Lots of customer written exits to enhance functions
 - One customer has 35K lines of JES2 exit code
 - One man’s clever exit is another man’s mill stone
 - Code modifications have greatly reduced over the years
 - But they still exist in some shops
- Customer “interface” to the operating system
 - Customer use JES2 exits implement functions IBM chose not to
What makes JES special?

- Mini operating system within an operating system
 - Sub dispatches single main task TCB
 - Manages “data sets” on spool
 - Supports rich set of operator commands
 - Implements network protocols
 - BSC is at a CCW level
- Drives real devices
 - At CCW level
- Manages work queues, does scheduling
- Manages initiators that run work
 - Selects work to run in initiators (even WLM initiators)
 - Also manages JES mode initiators
What makes JES special?

- Batch is still critical in many shops
 - Multiple customers run 300,000+ jobs per day
 - Some customers have 200+ SPOOL volumes
 - Full 64K track 3390s
 - Movement to 1M track data set reduced number of volumes
 - *But again growing in some shops*
OK, but why 2 JESes?

- 2 philosophies of system management:
 - JES2
 - A collection of peer systems sharing a single job/output queue
 - Each system selects the work it can processes
 - JES3
 - A single job/output queue managed on one system with work being passed from main (global) system to worker (local) system for processing
 - Centralized control of where work is sent to be processed
OK, but why 2 JESes?

- Functional differences
 - JES2
 - Simpler to use and set up
 - Changes can be made dynamically
 - No single control point to fail
 - JES3
 - More functions
 - Dependent job control
 - Resource scheduling
 - Deadline scheduling
 - Additional complexity to set up, less dynamic
OK, but why 2 JESes?

- Output processing differences
 - JES2
 - Output collected and “bundled” when job completes
 - Bundles are selected by printers
 - Predictable contents of output bundles
 - JES3
 - Output is not grouped
 - One SYSOUT selected for printing
 - Others SYSOUT added that can be processed by same writer
 - What prints depends on writer that selects output
 - Fewer output bundles
JES2

- Common set of work queues stored in its checkpoint
 - Member adds to or selects work from this common queue
 - Checkpoint is time-sliced among members
- Simple mechanisms for managing work
 - Resource management done by MVS
 - Depend on MVS (scheduling environment, etc) to determine eligibility to select jobs for execution
 - Jobs sit in initiators waiting for resources (eg DSN ENQs)
- Peer to Peer relationship between members
 - Members select work that it can process
 - Little regard to other members
 - No single point of control
 - No critical member
- Primary communication via JES2 checkpoint data set
JES2 MAS

All members perform:
- Input processing
- Spool Management
- Job Scheduling
- SYSOUT scheduling
- SSI processing
- NJE/RJE
JES2 related address spaces

JES2 Member

- JES2
 - Local JES2 requests
 - Input Converter BSC NJE SNA NJE
- JES2AUX
 - Remote buffer retrieval
 - Owns Resources
- JES2MON
 - Monitor
- JESXCF
 - XCF interface
 - Interpreter Input Extended Status
- User
 - Printer FSS
 - NETSERV
 - JES2CI
 - FSS printers
 - NJE over TCP/IP
 - Converter Interpreter
 - New in z/OS 2.1

Optional
JES2 Structure

- JES2 address space
 - Main task
 - Sub-dispatched (shared) with multiple processes
 - Subtasks to perform tasks that must MVS wait
- Auxiliary address space to own processes/objects
 - Allows JES2 address space to fail yet JES functions continue
- JESXCF services
 - Provide XCF communications between address spaces
 - Mainly used for enquiry/posting function for JES2
 - More messaging is done in recent releases
 - Manages status of JES2 address spaces
 - Notifies other members of a JES2 failure
JES2 PCEs

- JES2 Main task processing is performed by PCEs
 - Sub-dispatchable units of work running under main task
- Each job phase is processed by a PCE type
 - Conversion, Execution, Output, Purge
- JES2 functions are also implemented by PCEs
- Table pairs can be used to define and created PCEs
 - Tables are defined in modules loaded via JES2 LOADMOD initialization statement
 - Can be dynamically created using $ADD LOADMOD command
- Table pairs can be used to extend other things in JES2
 - For example commands and initialization statements
Job Phases
JES2 Input Processing

- Internal reader processing occurs in submitter address space
 - Request sent to JES2 address space to get a job number, job structure (in checkpoint), and initial SPOOL space
 - JCL is parsed, SYSIN data sets created, and SPOOLed in submitter address space
 - Passed symbols are saved on SPOOL (JES2 2.1)
- Job completes input processing when
 - ENDREQ macro is issued
 - /*EOF card submitted
 - New job card is encountered
 - INTRDR “data set” is closed
- NJE/TCP processing is similar (occurs in NETSERV address space)
- Other input processing occurs in the JES2 address space (main task)
 - BSC and SNA NJE, RJE, SPOOL Reload, and card readers
- Single submission streams are limited by ability to access the JES2 checkpoint
 - Parallel streams can submit much faster (10 parallel streams are 10x one single stream)
JES2 Conversion Processing

- Converts JCL into internal format needed to run job
 - Two part process – Conversion and interpretation
- JCL interpretation can occur either
 - Before job starts execution in target address space
 - After conversion processing in the JES2CI address space
- Controlled by JOBDEF INTERPRET=JES|INIT
- In either case
 - PCE selects job and sets up environment
 - Subtask used to call z/OS converter and optionally interpreter
- Certain JCL error only detected by interpreter
- Converter parms (defaults) based on JOBCLASS settings
 - Journal, BLP, SMF exits, PROCLIB, region, SWA ABOVE, etc
Execution phase - JES2 Job Scheduling

- Device/Data set scheduling managed by MVS
 - Job starts in initiator and waits for needed resources
 - GRS ENQ at allocation performs serialization and reports contention
- Allocations managed at a STEP level
 - No issues if one step creates data sets used by later steps
 - Steps that are skipped (due to conditional JCL) do not reserve resources
- System affinity and Scheduling environment used
 - Controls what jobs can be selected for execution
- Some balancing done for WLM initiators
 - Keep same percent busy on all members
WLM – Managed Initiators

- Initiators started and managed by WLM
- Initiators associated with WLM service class
 - Only select work for a specific service class
 - Job class can influence service class assignment
- WLM starts initiators based on
 - System capacity (WLM tries to balance work across SYSPLEX)
 - Whether service class is meeting goals
 - Relative importance of the service class
- JES tells WLM on each system how many jobs are waiting
 - Based on service class, resource availability, where jobs can run
- JES decides what job to start in each initiator
- Specified by MODE=WLM on JOBCLASS statement
JES2 – Managed Initiators

- Type of initiator used based on a JOBCLASS MODE=
 - Applies to all members of the MAS
- MODE=WLM JOBCLASS uses WLM initiators
 - MODE=WLM cannot be selected by JES2 initiators
 - Work selected by service class
- MODE=JES JOBCLASS uses JES2 initiators
 - Initiators started and managed by operator commands ($SI)
 - Number of initiators defined at initialization
 - Work selected by an ordered list of job classes and/or job class groups
- Start job command, $S J(nnn), causes WLM to start an initiator to run a specific job
 - Job can be in a WLM or JES mode job class
Why WLM-managed over JES-managed?

- Fewer and simpler externals are needed to control WLM-managed initiators and to perform workload balancing.
- Managed according to the service classes and performance goals specified in the WLM policy.
- Externals reflect customer expectations typically in terms that are found in service level agreements.
- Workload balancing is automatic as the number of initiators running is based on performance goals and the importance of batch work with respect to other work.
- Dynamic, goal oriented initiator management allows the system to adapt to changing conditions and how well the work is meeting its performance goals.
JES2 Job Limits and Affinities

- JOBCLASS limits exist on a JESPLEX and member level
 - Number of concurrent jobs that can be active in JOBCLASS
 - Applies to JES and WLM mode JOBCLASSes (JOBs)
 - Limits affect number of available jobs reported to WLM
 - Impacts number of initiators WLM starts
- JOBCLASS affinity controls member where class is active
 - Lists systems that can select from the job class
 - Holding class same as null affinity list
 - Applies to JES and WLM mode JOBCLASSes
 - Affect number of available jobs reported to WLM
- Service class affinity limits where service class is active
 - Service class only registered if member in affinity list
 - WLM only starts initiators if service class is active
Execution services

- JES is involved to provide services while a job executes
 - Creation of SYSOUT data sets
 - Job submission services
 - Job message logging
 - Other JES services (SSI functions)
- One special type of SYSOUT data set is a SPIN data set
 - Allocated separate from normal job output on spool
 - Queued to JES for output processing when closed/unallocated
 - Available to print while job is still running (separate JOE)
 - Purging data set (JOE) frees spool space
OUTPUT phase – SYSOUT Grouping

• The OUTPUT phase builds output groups from SYSOUT data sets
 • A SYSOUT group is defined as the set of data sets that prints between a set of job separator pages
 • Always for the same job and security information
 • For SAPI, between group begin and group end indicators
 • For SDSF, data sets in a row on the O or H panel
• Grouping based on various characteristics
 • SYSOUT class, forms, writer name, hold type, destination, security info, etc
• Print scheduling based on output group (JOE)
 • PSO conversational support is only exception
SYSOUT Grouping

- SPIN data sets are never grouped with other data sets
- Can influence (prevent) grouping using JCL (GROUPID=)
- Re-grouping only done with SAPI
 - PSO for certain held data sets
- SYSOUT cloning can create multiple copies
 - /*JOBPARM COPIES=
 - Allows multiple copies of entire job output
 - ABC – ABC vs AABBCC
 - Cannot be re-grouped
 - Problem for SAPI/PSO
Hardcopy phase

- Parking place for job that have run and are waiting to print
 - No real actions taken on the job level
 - Processing is based on the output groups (JOEs)
- Once output for the job has been processed, job complete
 - Job queued to purge processing
Functional Subsystems (FSS)

- Interface to offload function to separate address spaces
 - Reduces workload on JES main task
 - Used in JES2 for printer support
 - Removes printer “driver” knowledge from JES2
 - Associates them with FSS software
- JES managed interface
 - Controlled by JES commands
SYSOUT API (SAPI)

- A general purpose API to process output groups (JOEs)
 - Another way to implement a “printer”
 - Application manages the device
 - No JES2 definition or control for the device
 - Local/RJE destined output (no NJE data passed)
- Can also be used as a logical interface to manage output
 - Can chance certain characteristics at a data set level
 - Results in JOEs being re-grouped
 - Only SAPI can regroup any JOE’s data sets
 - PSO (an older API) can regroup certain held JOEs
- Very common SYSOUT interface (use growing)
Purge phase

- Frees spool space and deletes jobs and output groups
 - Both job and JOEs can be queued to purge
- Job purge processing
 - Jobs enter purge when all JOEs are processed (gone)
 - All track groups returned and control blocks frees
- Output group (JOE) purge processing
 - Used for SPIN data sets (JOEs)
 - Used to perform cleanup for data set purge
 - If appropriate, frees spool space
 - Control blocks are then freed
Is it JES or MVS?

- JCL processing:
 - JES processes
 - /* (JES2) and //* (JES3) JECL cards
 - //XMIT cards
 - Instream (SYSIN) DD data
 - *Except in PROCs and INCLUDES*
 - Some keywords on JOB, DD, and JCLLIB cards
 - MVS converter process
 - All other JCL cards
 - SJF is an MVS service that defines and processes JCL
 - PROCLIBs defined and OPENed by JES2
 - Read and processed by MVS converter
Is it JES or MVS?

- **SYSLOG**
 - MVS writes to SYSLOG data set
 - JES stores data on spool
- **JOBLOG data set (1st data set in output)**
 - JES captures messages to place in JOBLOG
- **System messages data set (3rd data set)**
 - MVS writes messages to the data set
- **TSO TRANSMIT/RECEIVE**
 - TSO formats data and writes it to spool
 - JES sends data to correct system
Is it JES or MVS?

- RACF checking for new work
 - Started tasks and TSO logon is verified by MVS/TSO
 - Batch jobs are verified (VERIFYX) by JES
- TSO SUBMIT
 - Submit pre-processes JCL and submits it to JES
- DD SYSOUT=(A,INTRDR)
 - Each record written is processed by JES directly
JES Trivia

- JES2’s color is orange and JES3 is blue
- Garfield the Cat is associated with JES2
- An asp snake is associated with JES3
- Customers at SHARE used to have a sing along on Thursday night sponsored by the JES2 project (Esprit de Corps)
- More customers run JES2 than JES3
- JES does own and use in testing a real RJE device (with a card punch and reader)
- You can still buy punch cards (at least you could a few years ago)
- JES was developed for a time in a burned out A&P storefront in Saugerties, NY
System z Social Media

- System z official Twitter handle:
 - @ibm_system_z

- Top Facebook pages related to System z:
 - Systemz Mainframe
 - IBM System z on Campus
 - IBM Mainframe Professionals
 - Millennial Mainframer

- Top LinkedIn Groups related to System z:
 - Mainframe Experts Network
 - Mainframe
 - IBM Mainframe
 - System z Advocates
 - Cloud Mainframe Computing

- Leading Blogs related to System z:
 - Evangelizing Mainframe (Destination z blog)
 - Mainframe Performance Topics
 - Common Sense
 - Enterprise Class Innovation: System z perspectives
 - Mainframe
 - MainframeZone
 - Smarter Computing Blog
 - Millennial Mainframer

- YouTube
 - IBM System z
Questions?

Questions?

Session 14285