

A Deeper Look into the Inner Workings and Hidden Mechanisms of FICON Performance

- David Lytle, BCAF
- Brocade Communications Inc.
- Thursday August 15, 2013 9:30am to 10:30am
- Session Number 14268

QR Code

© 2012-2013 Brocade - For Boston Summer SHARE 2013 Attendees

Legal Disclaimer

- All or some of the products detailed in this presentation may still be under development and certain specifications, including but not limited to, release dates, prices, and product features, may change. The products may not function as intended and a production version of the products may never be released. Even if a production version is released, it may be materially different from the pre-release version discussed in this presentation.
- NOTHING IN THIS PRESENTATION SHALL BE DEEMED TO CREATE A WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS WITH RESPECT TO ANY PRODUCTS AND SERVICES REFERENCED HEREIN.
- Brocade, Fabric OS, File Lifecycle Manager, MyView, and StorageX are registered trademarks and the Brocade B-wing symbol, DCX, and SAN Health are trademarks of Brocade Communications Systems, Inc. or its subsidiaries, in the United States and/or in other countries. All other brands, products, or service names are or may be trademarks or service marks of, and are used to identify, products or services of their respective owners.
- There are slides in this presentation that use IBM graphics.

Notes as part of the online handouts

I have saved the PDF files for my presentations in such a way that all of the audience notes are available as you read the PDF file that you download.

If there is a little balloon icon in the upper left hand corner of the slide then take your cursor and put it over the balloon and you will see the notes that I have made concerning the slide that you are viewing.

This will usually give you more information than just what the slide contains.

I hope this helps in your educational efforts!

A deeper look into the Inner Workings and Hidden Mechanisms of FICON Performance

This technical session goes into a fairly deep discussion on some of the design considerations of a FICON infrastructure.

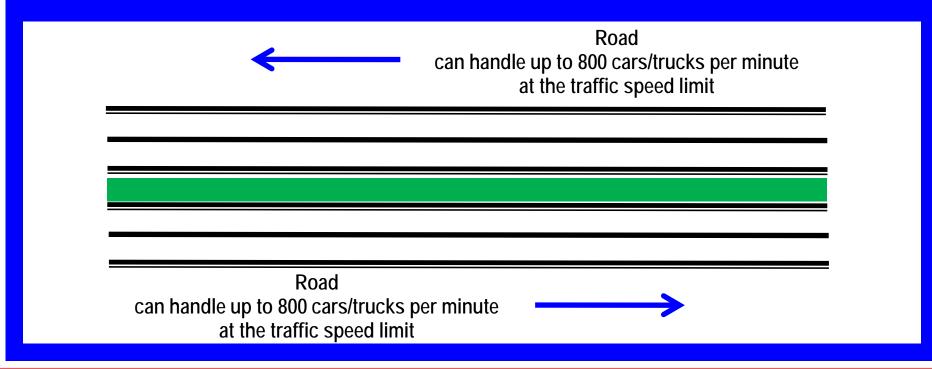
- Among the topics this session will focus on is:
 - Congestion and Backpressure in FC fabrics
 - How Buffer Credits get initialized
 - How FICON utilizes buffer credits
 - Oversubscription and Slow Draining Devices
 - Data Encoding and Forward Error Correction (FEC)
 - Virtual Channels for improved ISL Efficiency
 - Compression/Encryption on ISL links for Security and Efficiency

NOTE: Please check for the most recent copy of this presentation at the SHARE website as I make frequent updates.

This Section

Congestion and Backpressure Overview

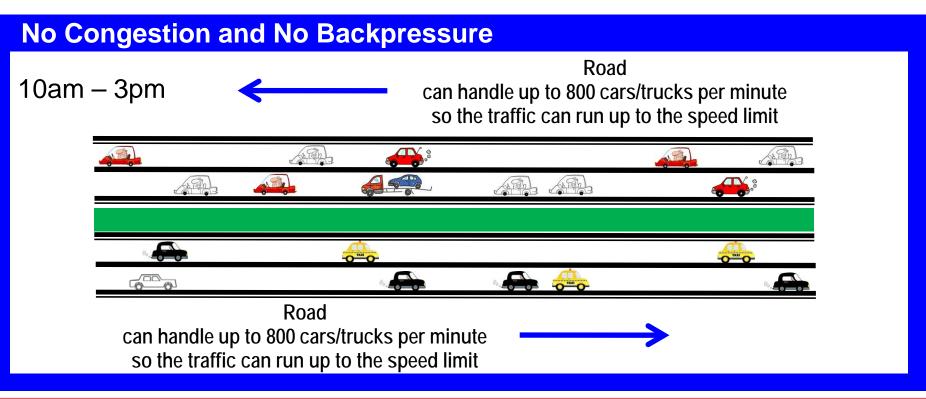
Complete your sessions evaluation online at SHARE.org/BostonEval


© 2012-2013 Brocade - For Boston Summer SHARE 2013 Attendees

Congestion and Backpressure Overview These two conditions are not the same thing

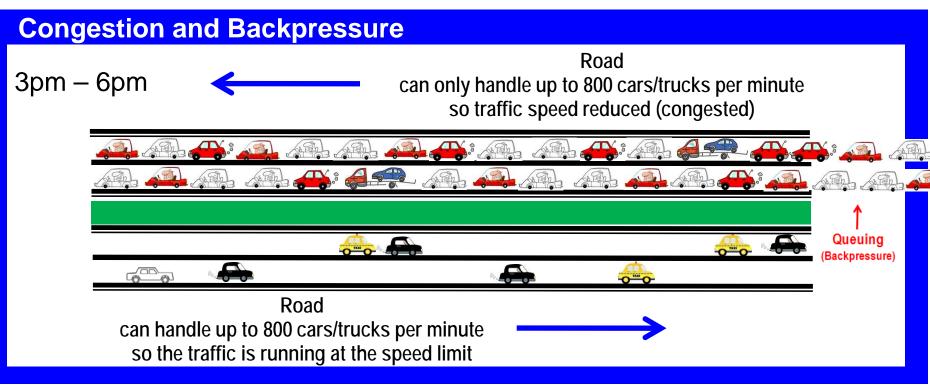
- Congestion occurs at the point of restriction
- Backpressure is the effect felt by the environment leading up to the point of restriction

I will use an Interstate highway example to demonstrate these concepts



Congestion and Backpressure Overview

- No Congestion and No Backpressure
 - The highway handles up to 800 cars/trucks per minute and less than 800 cars/trucks per min are arriving
- Time spent in queue (behind slower traffic) is minimal
 - Cut-through routing (zipping along from point A to point B) works well



Congestion and Backpressure Overview

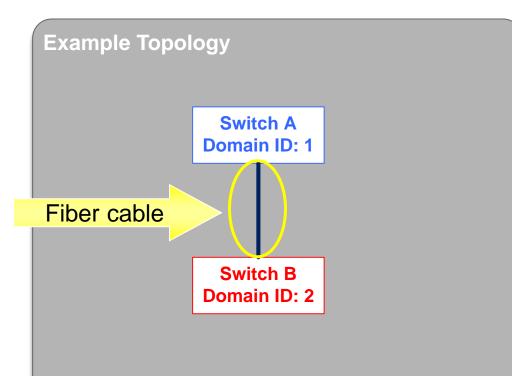
Congestion



- The highway handles up to 800 cars/trucks per minute and more than 800 cars/trucks per min are arriving
- Latency time and buffer credit space consumed increases
 - Cut-through routing cannot decrease the problem
- Backpressure is experienced by cars slowing down and queuing up

This Section

 Very basic flow for the Build Fabric process and how Buffer Credits get initialized



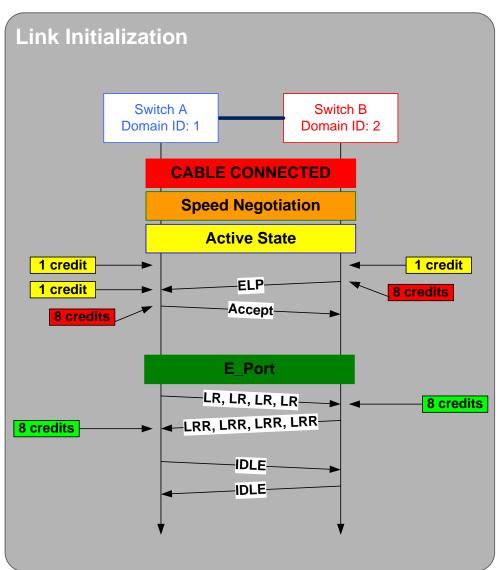
Build Fabric Process

Assume

- A fiber cable will be attached between switch A and B
- This will create an ISL (E_Port) between these two devices

to allow the port logins to occur Exchange Link Parms (ELP)

One credit is granted by default


Link Speed Auto-Negotiation

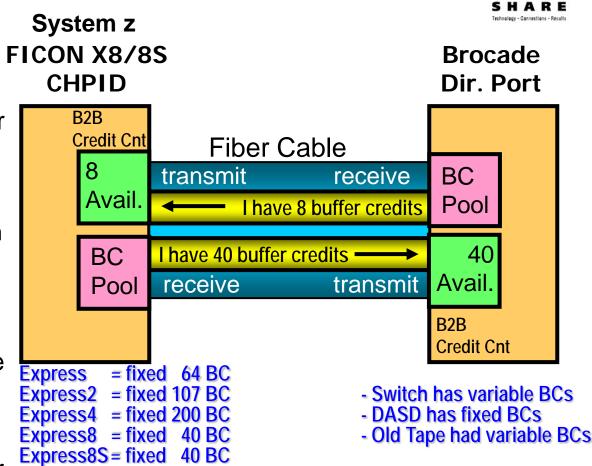
Link is now in an Active state

- Contains the "requested" buffer credit information for the sender
- Assume 8 credits are being granted for this example

Responder Accepts – then does its own ELP

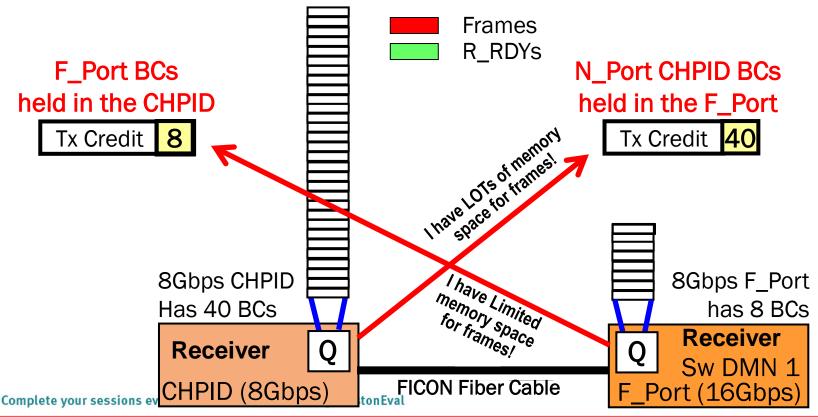
- Contains the "requested" buffer credit information for the responder
- Assume 8 credits are being granted for this example
- Link becomes an E_Port
- Send Link Resets (LR)
 - Initializes Sender credit values
- Link Reset Response (LRR)
 - Initializes Responder credit values
- Ready for I/O to start flowing

This Section


- How FICON uses Buffer-to-Buffer Credits
- Determining Buffer Credits Required
- RMF Reports for Switched-FICON
- Brocade's Buffer Credit Calculation Spreadsheet

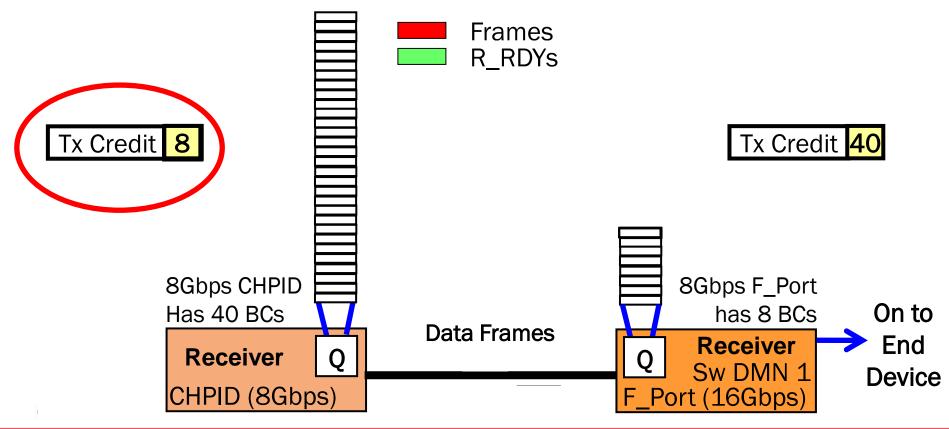
How Buffer Credits Work

- A Fiber channel link is a PAIR of paths
- A path from "this" transmitter to the "other" receiver and a path from the "other" transmitter to "this" receiver
- The "buffer" resides on each receiver, and that receiver tells the linked transmitter how many BB_Credits are available
- Sending a frame through the transmitter decrements the B2B Credit Counter
- Receiving an R-Rdy or VC-Rdy through the receiver increments the B2B Credit Counter
- DCX family has a buffer credit recovery capability

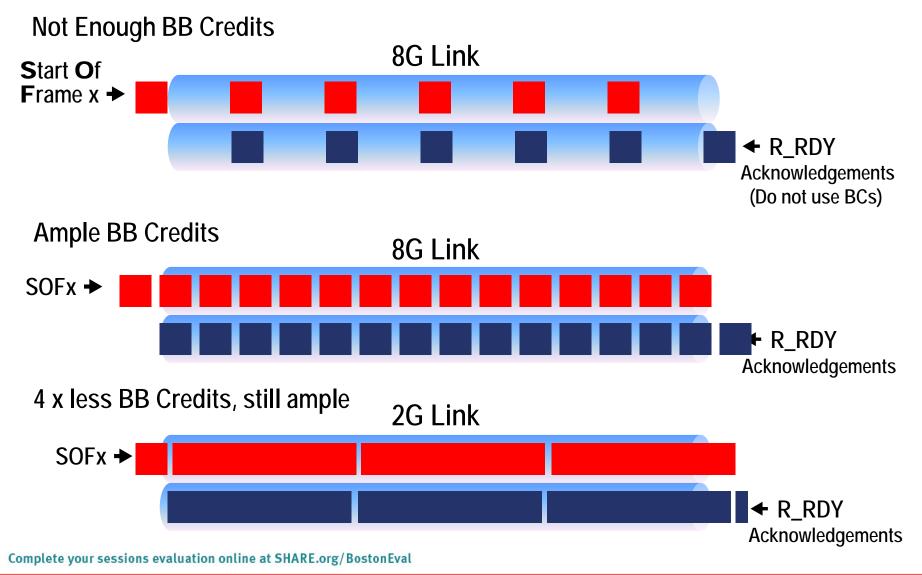

Each receiver on the fiber cable can state a different value!

Once established, it is transmit (write) connections that will typically run out of buffer credits

Buffer-to-Buffer Credits Buffer-to-Buffer flow control


- After initialization, each port knows how many buffers are available in the queue <u>at the other end of the link</u>
 - This value is known as Transmit (Tx) Credit

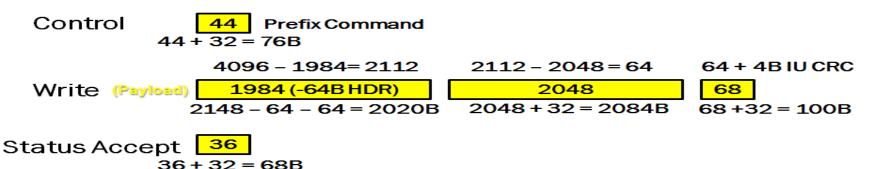
Buffer-to-Buffer Credits Buffer-to-Buffer flow control Example


- Tx Credit is decremented by one for every frame sent from the CHPID
- No frames may be transmitted after Tx Credit reaches zero
- Tx Credit is **incremented** by one for each R_RDY received from F_Port

BB Credit Droop

© 2012-2013 Brocade - For Boston Summer SHARE 2013 Attendees

This Section


- Determining Buffer Credits Required
- RMF Reports for Switched-FICON
- Brocade's Buffer Credit Calculation Spreadsheet

Buffer Credits Why FICON Never Averages a Full Frame Size

- The speed of the link
- The cable distance of the link
- The average frame size
- Average frame size is the hardest to obtain
 - Use the RMF 74-7 records report "FICON Director Activity Report"
 - You will find that FICON just never averages full frame size
 - Below is a simple FICON 4K write that demonstrates average frame size

4K will not fit into 2 BCs because of headers for FC as well as SB3 protocol that is used and the 64 byte FICON header that is placed into the payload field of the 1st frame of every FICON exchange.

Average = (76+2020+2084+100+68) / 5 = 870 Bytes

Buffer Credits for Long Distance The Impact of Average Frame Size on Buffer Credits

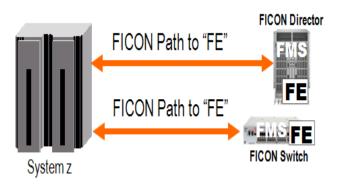
A distance	of 20KM wi	th 100% link	utilization	2Gbps	4Gbps	8Gbps	10Gbps	16Gbps
SOF,			Smaller than full frame by	Buffer	Buffer	Buffer	Buffer	Buffer
Header,	Payload	Total Frame		Credis	Credis	Credis	Credis	Credis
CRC, EOF	Fayload	Bytes	xx%	Required	Required	Required	Required	Required
CRC, EOF			XX /0	8b10b	8b10b	9b10b	64b66b	64b66b
36	2112	2148	0.00%	20	40	80	99	159
36	1055	2002	6.80%	22	43	95	107	170
36	1824	1860	13.41%	23	46	92	115	183
36	1682	1718	20.02%	25	50	99	124	198
36	1540	1576	26.63%	27	54	108	135	216
36	1398	1434	33.24%	30	60	119	149	238
36	1256	1292	39.85%	33	66	132	165	264
36	1114	1150	46.46%	37	74	148	185	296
36	072	1008	53.07%	43	85	160	211	338
36	830	866	59.68%	50	99	197	246	393
36	600	724	66.29%	59	118	225	294	470
36	546	582	72.91%	74	147	293	366	585
36	404	440	79.52%	97	194	387	484	773
36	262	298	86.13%	143	286	571	714	1142
36	120	156	92.74%	273	545	1090	1363	2180
36	36	72	96.65%	591	1181	2362	2952	4724

Created by using Brocades Buffer Credit Calculator

Buffer Credit Starvation Why not just saturate each port with BCs?

- If a malfunction occurs in the fabric or....
- If a CHPID or device is having a problem...
- It is certainly possible that some or all of the I/O will time out
- If ANY I/O does time out then:
 - All frames and buffers for that I/O (buffer credits) must be discarded
 - All frames and buffers for subsequently issued I/Os (frames and buffer credits) in that exchange must be discarded
 - Remember queued I/O will often drive exchanges ahead of time
 - The failing I/O must be re-driven
 - Subsequent I/O must be re-driven
- The recovery effort for the timed out I/O gets more and more complex – and more prone to also failing – when an over abundance of buffer credits are used on ports

Complete your sessions evaluation online at SHARE.org/BostonEval


© 2012-2013 Brocade - For Boston Summer SHARE 2013 Attendees

Buffer Credit Starvation Detecting Problems with FICON BCs

Produce the FICON Director Activity Report by creating the RMF 74-7 records – but this is only available when utilizing switched-FICON!

 A FICON Management Server (FMS) license per switching device enables the switch's Control Unit Port (CUP) – always FE – to provide information back to RMF at its request

• Analyze the column labeled AVG FRAME PACING for non-zero numbers. Each of these represents the number of times a frame was waiting for 2.5 microseconds or longer but BC count was at zero so the frame could not be sent

Complete your sessions evaluation online at SHARE.org/BostonEval

														PAGE
	z/05	V1R8		SYSTEM ID	PRD1		STAR	I 04/	/12/200	9-04.30	0.00	INTERVAL	000.15.00	
				RPT VERSIO	N VIR8 F	MF	END	04/	/12/200	9-04.45	5.00	CYCLE 1.	000 SECONDS	5
IODF =	A2 CR	-DATE:	03/27/2009	CR-TIME: 16	.43.51	ACT:	ACTIV	ATE						
SWITCH	DEVICE:	032B	SWITCH ID:	2B TYPE:	006140	MODEL:	001	MAN:	MCD	PLANT	: 01	SERIAL:	000001316	56G
PORT	-CONNE	CTION-	AVG FRAME	AVG FRAM	E SIZE	PORT	BANDW	IDTH	(MB/SE	(C)	ERROR			
ADDR	UNIT	ID	PACING	READ	WRITE	R	EAD		WRITE		COUNT			
0.5	CHP	05	U	849	1436		8.63		17.	34	0			
07	CHP-H	6B	0	1681	1395		0.87		ο.	32	0			
09	CHP	15	7	833	1429		11.96		20.	49	0			
OC	CHP-H	64	0	939	1099		0.39		0.	50	0			
OD	CHP	6B	1	1328	1823		3.56		12.	73	0			
OF	CHP-H	66	0	1496	1675		1.85		2.	61	0			
10	CHP	64	0	644	1380		0.03		0.	13	0			
13	CHP-H	19	0	907	885		0.58		ο.	45	0			
16	CHP	12	0	1241	1738		0.97		1.	72	0			
17	CHP	OB	0	685	1688		0.10		0.	82	0			
1A	CHP	15	0	1144	1664		0.65		1.	18	0			
1B	CHP	OD	0	510	1759		0.12		1.	72	0			
1E	CHP-H	05	0	918	894		0.59		ο.	45	0			
1F	CHP	21	0	1243	1736		0.97		1.	70	0			
20	CU	E900	0	1429	849		17.66		8.	85	0			
	CU	E800												
	CU	E700												
22	CHP	10	0	923	1753		0.55		2.	78	0			
23	CHP	54	0	1805	69		0.80		0.	00	0			
24	CHP	64	0	89	1345		0.00		0.	00	0			
27	CHP	6B	0	1619	82		0.01		0.	00	0			
28	CHP	95	27	918	1589		10.32		30.	56	0			
2B	CHP	70	0	69	2022		0.00		0.	71	0			

FICON DIRECTOR ACTIVITY

FICON Director Activity Report With Frame Delay

Using Buffer Credits is how FC does Flow Control, also called "Frame Pacing"

SHARE

PAGE

1

FICON DIRECTOR ACTIVITY

	Laneu	I I ai		acing						PAGE 1
		z/0S	V1R8	•	SYSTEM ID	ABCD				NTERVAL 000.15.00
					RPT VERSI	ON V1R8 R	MF END	04/12/2009-04	.45.00 C	YCLE 1.000 SECONDS
I	IODF = A	2 CR-	-DATE:	03/27/2009	CR-TIME: 1	8.43.51	ACT: ACTIVAT	E		
S	SWITCH D	EVICE:	032B	SWITCH ID. 2	2B TYPE	: 006140	MODEL: 001	MAN: MCD PL	ANT: 01	SERIAL: 0000 HIJKLMN
F	PORT	-CONNE(CTION-	AVG FRAME	AVG FRAM	ME SIZE	PORT BANDWID	TH (MB/SEC)	ERROR	N
A		UNIT	ID	PACING	READ	WRITE		WRITE	COUNT	
		СНР-Н	05		849	1436	8.63	17.34	0	In the last
		CHP	6B		1681	1395	50.87	10.32	0	15 minutes
		CHP	15	0	833	1429	11.96	20.49	0	•
		СНР-Н	64	0	939	1099	0.39	0.50	0	
		CHP	6B	0	1328	1823	3.56	12.73	0	V
		CHP-H	66	0	1496	1675	1.85	2.61	0	This port had a
		CHP	64	0	644	1380	0.03	0.13	0	•
		CHP-H	19	0	907	885	0.58	0.45	0	frame to send
		CU	C800	0	1241	738	20.97	5.72	0	but did not
		CU	CA00			1000	70.10	3.82	0	
		CHP	15	0	1144	1664	0.65	1.18	0	have any
		CHP	0D	0	510	1759	0.12	1.72	0	Buffer Credits
		СНР-Н СНР	05 21	0	918	894 1736	0.59	0.45	0	left to use
		CU	E900	0	1243 1429	849	0.97 17.66	1.70 8.85	0	
		CU	E800	0	1929	015	T1.00	0.05	0	to send them.
		CU	E700							
		CHP	10	0	923	1753	0.55	2.78	0	And this
		CHP	54	ő	1805	69	20.80	7.30	ő	
		CHP	64	0	89	1345	0.00	0.00	ő	happened
		CHD	6B		1619	82	0.01	0.00		270 times
		SWITCH	95	270	- 330	789	50.32	10.56	0	during the
		CIT	70	0	69	2022	0.00	0.71	0	-
	7									interval.

And this is an ISL Link!

Indicators of Buffer Credit Starvation

Fabric with zHPF Enabled


We have a BC Calculator that you can use!

A	B	c	0	E	1	G	н	1	1	x	1	м	N	0	P	0
												600	3 V2 frame 3 V3 frame			
	Decendels Duffer Con	the Calanda					CAN					634	Typical DA1D 4K			
	Brocade's Buffer Crec	dit Calcula	ation for	Fibre Ch	annel (FIC	ON and/or	SAN)									
				_			Link Spee				_					
			1 Gbps	2 Gbps	4 Gbps	8 Gbps	10 Gbps	16 Gbps	32 Gbps	40 Gbps	100 Gbps					
			10625E-03			8.5000E-05		3.4000E-08		3.4000E-07	10625E-06					
Paran	eter			- ward		. Analasia	1000	tauroni.			10000					
	of light in Fibre	200000km/;	5.00E-06					5.00E-06	5.00E-06	5.00E-06	5.00E-06					
	coeds pur byto		3.41E-03					5.88E-10 5.12E-07	2.54E-10 2.56E-07	2.35E-10 2.05E-07	3.4%-11 8.19E-08					
	gth in succeds (dependent on cell i19) gth in km (dependent on cell i19)		8.195-06					5.125-07								
Buffer	r Credit Calculation					10 Gig has 64b/668 therefore a botter p-										
Course .	erean carcanation					terrasec terras p	STRUMBLA .									
	rmine kilometers from miles, type miles into cell D13:			1	220											
(1 mile :	= 1.603344 bilometer)		50	Mits Equil	80	Kilometers rounded	to the neurost integer									
				1 100		-										
To Cal	culate the proper number of buffer credits that	you will need to	o keep the IS	SL link 100% u	tilized - especia	ally over long d	istances:								-	
	the frame "Payload" cize in Bytes (in cell D23)		834		bytes and 36 overhes		and the second second	870	Bytes							
Type in	the total <u>kilometers</u> of the wire rea (in cell D24)**** e calculated kilometers from cell F19 if required)	113	80	Kloneters												
fose a	e culculated anometers from cell r 13 af required)			a montants												
				-	100000	NOTION.										
If esing	166 ISL compression, type in your compression Rati	io (is cell F2T):	(1111)		2.2	(2.2 to 1)	(Compression a		as reduce the fran o 1. Unknows who		rs suggest that co ht do.)	apressioa will				
					220000000000000000000000000000000000000			-	200000000000000000000000000000000000000							
	Description	1 Gbps	2 Gbps	4 Gbps	8 Gbps	8 Gbps	10 Gbps	Compressed 10 Gbps	16 Gbps	Compressed 16 Gbps	32 Gbps	Compressed 32 Gbps	40 Gbps	40 Gbps	100 Gbps	Compress 100 Gbg
	Francleagth takes up this many km on the wire	164	0.82	0.41	0.20	0.20	0.16	0.16	0.10	0.10	0.05	0.05	0.04	0.04	0.02	0.02
	(calculated from frame size in cell 120)															
	credits @ 100% B/V Utilization raw calculation:	51.72	195.44	350.88	78176	1713.86	977.19	2145.63	863.51	3439.75	3127.02	6873.45	5906.78	6539.01	9171.95	21458.21
Buffen	credits @ 100% B/V Utilization rounded up:	98	196	391	782	1720	978	2150	1564	3440	3128	6880	3909	8600	9772	21499
	Brocade Communications Systems, Inc.		+ Copyrig	ht 2002-2013	2-2013, all rights reserved.											
			2133													
								ern d		10.01	40.01 400		1.10			
							cryption to an			port (8Gb,	, 10Gb or 160	b optics) to	or a user's IS	L links		
							disabled as the									
		3.) Compre	ession and	lor encryp	tion is done	on a frame-	by-frame bas	is so when	these are en	abled there	will be a ne	ed for addit	tional buffer	credits		
				11												

Ask your local Brocade SE to provide this to you free of charge!

This Section

- Slow Draining Devices
- Data Encoding
- Forward Error Correction (FEC)
- Virtual Channels
- Compression and Encryption on ISLs

Slow Draining Devices

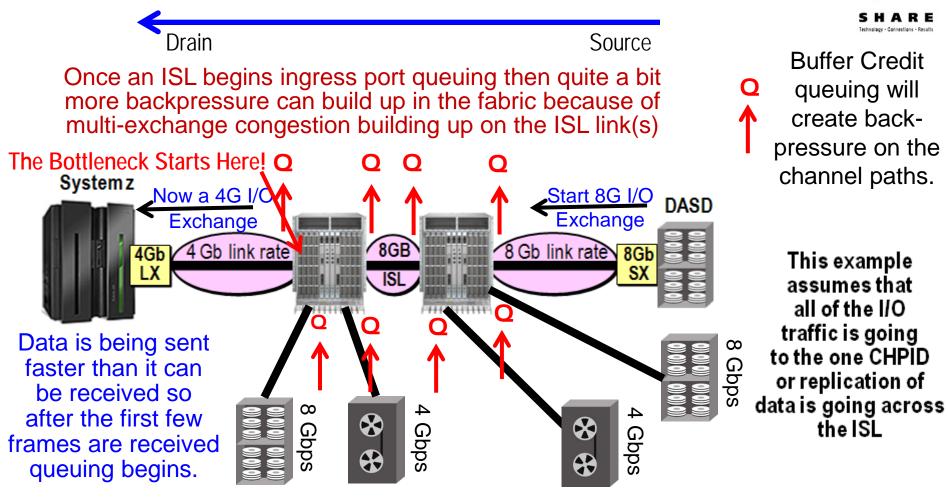
- Slow draining devices are <u>receiving ports</u> that have more data flowing to them than they can consume.
 - This causes external frame flow mechanisms to back up their frame queues and potentially deplete their buffer credits.
- A slow draining device can exist at any link utilization level
- It's very important to note that it can spread into the fabric and can slow down unrelated flows in the fabric.
- What causes slow draining devices?
- The most common cause is within the storage device or the server itself. That happens often because a target port has a slower link rate then the I/O source ports(s) or the Fan-In from the rest of the environment overwhelms the target port.

Complete your sessions evaluation online at SHARE.org/BostonEval

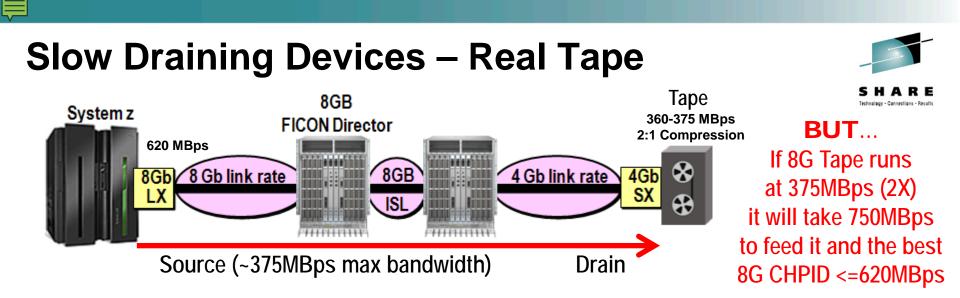
© 2012-2013 Brocade - For Boston Summer SHARE 2013 Attendees

Slow Draining Devices – DASD (Revisited from Session 13010) (Adding 8G DASD with only 4G CHPIDs)

Systemz Sys


- This is potentially a very poor performing, infrastructure!
- DASD is about 90% read, 10% write. So, in this case the "drain" of the pipe is the 4Gb CHPID and the "source" of the pipe is the 8Gb storage port.
- The Source can out perform the Drain!
- This can cause congestion and back pressure towards the CHPID. The switch port leading to the CHPID becomes a slow draining device.

Complete your sessions evaluation online at SHARE.org/BostonEval


© 2012-2013 Brocade - For Boston Summer SHARE 2013 Attendees

Buffer credits can get used up

The Affects Of Link Rates (watch out for ISLs!)

- The is a simple representation of a single CHPID connection
- Of course that won't be true in a real configuration and the results could be much worse and more dire for configuration performance

- For 4G tape this is OK Tape is about 90% write and 10% read on average
- The maximum bandwidth a tape can accept and compress (@ 2:1 compression) is about 360MBps for Oracle (T1000C) and about 375MBps for IBM (TS1140)
- A FICON Express8S CHPID in Command Mode FICON can do about 620MBps
- A 4G Tape channel can carry about 380MBps (400 * .95 = 380MBps)
- So a single CHPID attached to a 4G tape interface:
 - Can run a single IBM tape drive
 - Can run a single Oracle (STK) tape drive

(620 / 375 = 1.65)(620 / 360 = 1.72)

Data Encoding – Patented by IBM 8b/10b compared to 64b/66b

8b/10b (since 1950s but patented in 1983)

Payload Area of Frame – up to 2112 bytes of data

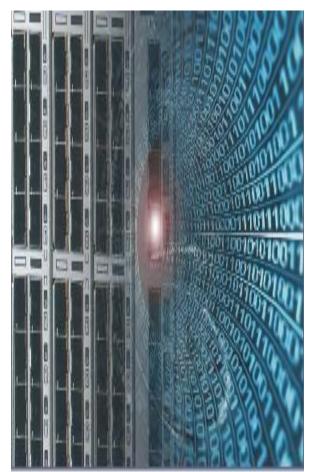
8b/10b: Each 8 bit Byte becomes a 10 bit Byte - 20% overhead

64b/66b (available since 2003) Sync Header – copy/save hi-order bit

E-of-F		8 BYTEs	8 BYTEs	8 BYTEs	8 BYTEs	C of T	
	000			$\mathbf{CC} \Diamond $		2-0I-F	-

Payload Area of Frame – up to 2112 bytes of data

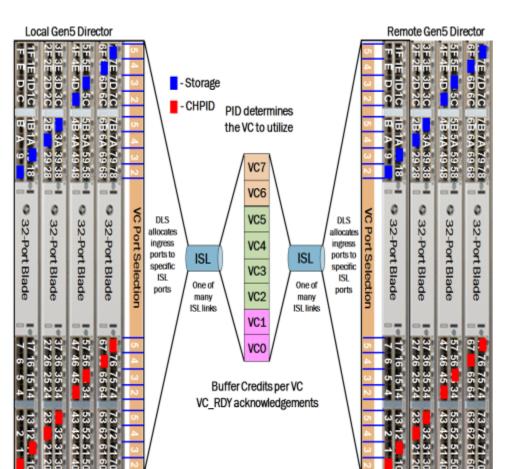
64b/66b: Two check bits are added after every 8 Bytes – 3% overhead


- At the end of every 32, eight byte groups, we have collected 32 hi-order ck bits
- This is a 32 bit check sum to enable Forward Error Correction to clean up links
- 1/2/4 and 8Gbps will always use 8b/10b data encoding

• 10Gbps and 16Gbps will always use 64b/66b data encoding Complete your sessions evaluation online at SHARE.org/BostonEval

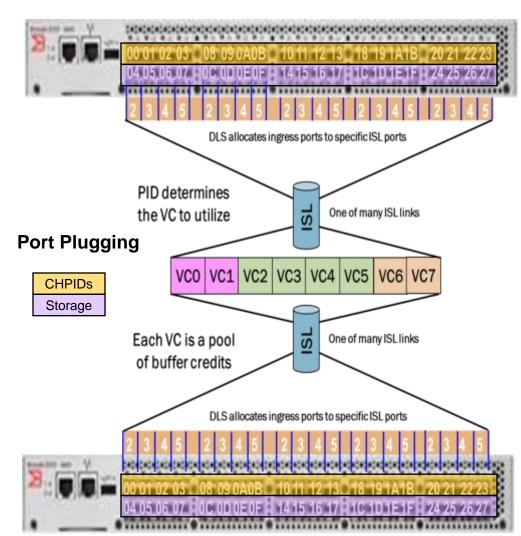
Forward Error Correction

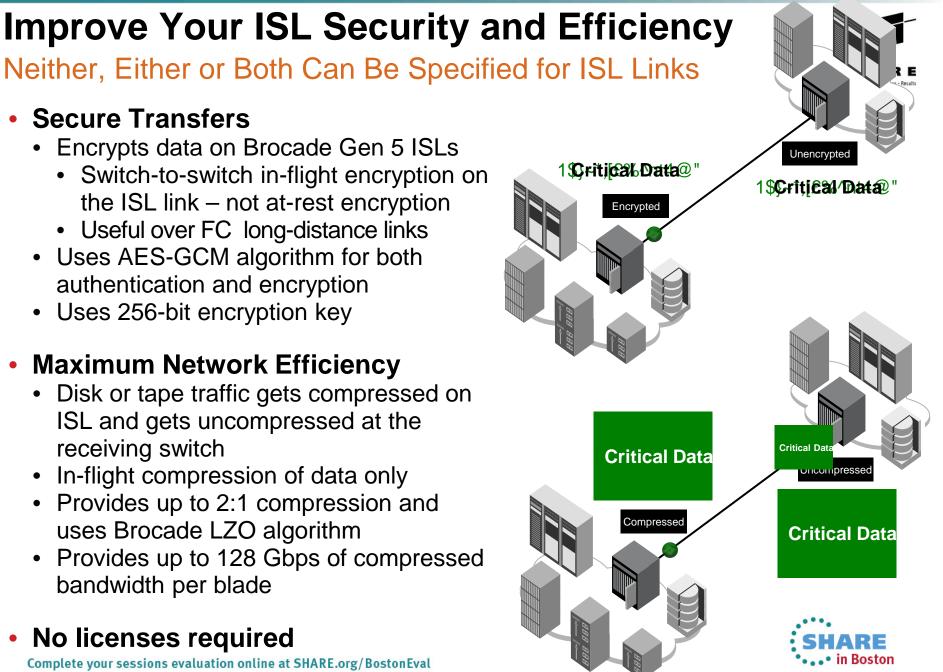
Repairing Link Bit Errors using the Sync bits from 64b/66b encoding


- Dirty or worn cable links can cause bit errors in frames and even frame errors which, in the worst case, will drive I/O retry
- The 16 Gbps standard provides for a mechanism to correct ISL link bit errors – this new Brocade Gen 5 capability is called Forward Error Correction (FEC)
- Both sides of the ISL link must support 10 or 16 Gbps optics – not for DWDM or FCIP
- The high-order bits are collected from the 64b/66b data encoding to help correct transmission bit errors
- Used on our E_Ports (ISLs) that are Condor3-to-Condor3 ASIC connections
- Does slightly increase frame latency by about 400
 nanoseconds per frame
- Significantly enhances reliability of frame transmissions and reduces I/O retries

ISL Link Virtual Channels (VC) Reduced Head-of-Line Blocking on ISL Links

- Reduced Head-of-Line Blocking (HoLB) on ISLs maximizes total switching fabric performance
- Brocade has been delivering a unique capability to minimize HoLB on ISL links as well as between fabric ports on a switch since 2002
- Virtual Channels can be thought of as several pools of buffer credits dedicated to an ISL port
- Each of these buffer credit pools (virtual channels) services unique F_Ports on each connectivity blade




ISL Link Virtual Channels (VC)

Reduced Head-of-Line Blocking on ISL Links

- Works with any of Brocade's Gen2, Gen3, Gen4 and Gen5 switching devices.
- In this graphic it is easier to see how physical ports (PIDs) are mapped onto Virtual Channels (VC) when data will be sent across an ISL link
- Avoid using the same VC for both the source and destination traffic
 - Separate CHPIDs from their Storage Ports using different VCs where possible
 - This helps minimize HoLB

© 2012-2013 Brocade - For Boston Summer SHARE 2013 Attendees

Brocade Proudly Presents...

Our Industries ONLY FICON Certification

Industry Recognized Professional Certification We Can Schedule A Class In Your City – Just Ask!

Brocade FICON Certification

Brocade Certified Architect for FICON

- Certification for Brocade Mainframe-centric Customers
- Available since September 2008
- Updated for 8Gbps in June 2010
- Updated for 16Gbps in November 2012
- This certification tests the attendee's ability to understand IBM System z I/O concepts, and demonstrate knowledge of Brocade FICON Director and switching infrastructure components
- Brocade would be glad to provide a free 2-day BCAF certification class for Your Company or in Your City!
- Ask me how to make that happen for you!

Brocade Certified Architect for FICON (BCAF)

This FICON Certification is Unique in the Industry

BCAF is a Preparatory Certification Seminar – 2 days

- These classes teach the certification material
- Certification is awarded only after successful completion of the examination
- We have been holding classes since mid-2008
- This is good for mainframers who desire to become professionally certified as FICON subject matter experts
- This uses advanced materials and is not well suited for professionals with less than 1 year of experience

Total number of attendees at these seminars since 2008: **455** (as of May 2013) Total number of Brocade FICON Certifications awarded: **222+**

We also have a Brocade Accredited FICON Specialist credential (based on WBT training and an exam): **122** awarded

Brocade Mainframe Social Media

Visit Brocade's Mainframe Blog Page at: http://community.brocade.com/community/brocadeblogs/mainframe

Almost 250,000 hits

Also Visit Brocade's New Mainframe Communities Page at:

http://community.brocade.com/community/forums/products_and_solutions/mainframe_solutions

You can also find us on Facebook at:

https://www.facebook.com/groups/330901833600458/

• www.linkedin.com Groups

Complete your sessions evaluation online at SHARE.org/BostonEval

© 2012-2013 Brocade - For Boston Summer SHARE 2013 Attendees

Please Fill Out Your Evaluation Forms!!

14268

And Please Indicate on those forms if there are other presentations you would like to see in this track at SHARE!

QR Code

Thursday August 15, 2013 -- 9:30am to 10:30am -- Session 14268

