

IBM Systems & Technology Group

© 2013 IBM Corporation

Peter Relson
IBM Poughkeepsie
relson@us.ibm.com
14 August 2013

Transactional
Execution Facility

z/OS 1.13, 2.1

Session 14255

Permission is granted to SHARE Inc. to publish this
presentation paper in the SHARE Inc. proceedings;
IBM retains the right to distribute copies of this
presentation to whomever it chooses.

1

©2013 IBM Corporation

* 2

The following are trademarks of the International B usiness Machines Corporation in the United States a nd/or other countries.

The following are trademarks or registered trademar ks of other companies.

InfiniBand is a registered trademark of the InfiniBand Trade Association (IBTA).
Intel is a trademark of the Intel Corporation in the United States and other countries.
Linux is a trademark of Linux Torvalds in the United States, other countries, or both.
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
All other products may be trademarks or registered trademarks of their respective companies.
The Open Group is a registered trademark of The Open Group in the US and other countries.

Notes:
Performance is in Internal Throughput Rate (ITR) ra tio based on measurements and projections using sta ndard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user' s job stream, the I/O configuration, the storage co nfiguration, and the workload processed.
Therefore, no assurance can be given that an indiv idual user will achieve throughput improvements equ ivalent to the performance ratios stated here.
IBM hardware products are manufactured from new par ts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this pr esentation are presented as illustrations of the m anner in which some customers have used IBM product s and the results they may have achieved.
 Actual environmental costs and performance charact eristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or featu res discussed in this document in other countries, and the information may be subject to
change without notice. Consult your local IBM busi ness contact for information on the product or serv ices available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their publi shed announcements. IBM has not tested those produ cts and cannot confirm the
performance, compatibility, or any other claims rel ated to non-IBM products. Questions on the capabil ities of non-IBM products should be addressed to th e suppliers of those products.
Prices subject to change without notice. Contact y our IBM representative or Business Partner for the most current pricing in your geography.
This presentation and the claims outlined in it wer e reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed by the local country counsel for
compliance with local laws.

* Registered trademarks of IBM Corporation

AIX*
CICS*
DB2*
DFSMSdss
DFSMShsm
DFSMSrmm
DS6000
DS8000*
FICON*

FlashCopy*
HiperSockets
IBM*
IBM eServer
IBM logo*
IMS
Infiniband*
Language Environment*

Parallel Sysplex*
ProductPac*
RACF*
Redbooks*
REXX
RMF
ServerPac*
SystemPac*

System Storage
System z
System z9
System z10
System z10 Business Class
Tivoli*
WebSphere*
z9*

Trademarks
z10
z10 BC
z10 EC
z/OS*
zSeries*

©2013 IBM Corporation

* 3

Abstract

�This presentation will cover the transactional exec ution facility
of the zEC12 machine, its introduction in z/OS 1.13 and its full
availability in z/OS 2.1

©2013 IBM Corporation

* 4

Transactional eXecution

�I think of it as “TX”. You may see “TE” or “HTM” (H ardware
Transactional Memory)

�What is it?

�Why is it a good thing?

�How do you use it?

�Diagnostics

©2013 IBM Corporation

* 5

What is TX and a transaction?

�The Transactional Execution facility is a hardware- based facility,
new with zEnterprise EC 12

� It supports a “transaction” which may be thought of as a
sequence of instructions that act atomically

� Transactions “begin” and “end”

� A transaction may “abort” (does not reach the “end”), often due
to an environmental consideration. Some sort of “co nflict”
occurred (might be with another transaction, might not)

� When within a transaction, you are in transactional execution
mode

©2013 IBM Corporation

* 6

Why is transactional execution a good thing?

� Most programs need serialization at one time or oth er
� Getting and releasing serialization takes cycles
� If there is no one contending, you've just wasted t ime
� Wouldn't it be great if you could just “try it” and if you

find there's some one contending, then (and only th en)
do you get the serialization

� And wouldn't it be great if whatever you tried “did n't
count” if you found contention?

� Our normal locks and ENQs are often not fine-graine d
enough to prevent “false contention”. TX may let yo u
accomplish fine-grained serialization

� Unlike PLO, all statements within a transaction can
serialize against non-transactional statements

©2013 IBM Corporation

* 7

TX (Cont)

�Upon abort,
–Storage (aside from NTSTG) is unchanged to the prog ram
compared to time-of-begin, except for a transaction diagnostic
block (TDB)

–GRs may be unchanged to the program
–ARs are not unchanged
–FPRs are not unchanged

�New instructions TBEGIN, TBEGINC, TABORT, TEND, PPA ,
NTSTG, ETND
�Full availability when bits CVTTX and CVTTXC are on (z/OS 2.1),
available for testing when CVTTXTE is on (z/OS 1.13)
�Not available if z/OS is a guest of z/VM (the CVT b it(s) will not be
on)

©2013 IBM Corporation

* 8

TX (cont)

�Special rules are applied to instructions executed within TX
mode.
�PoOp has a section “Restricted Instructions” in cha pter 5 that
lists those instructions not allowed within a trans action. Loosely,
chapter 7 (general) instructions are OK; chapter 10 (control)
instructions are not
�The instructions are treated as block-concurrent (a s observed by
other CPUs and the channel subsystem), with the TX facility
providing the serialization that you might otherwis e implement
yourself

©2013 IBM Corporation

* 9

TX (cont)

�Two transactions “conflict” in many ways. One is th at both need
to access the same cache line and at least one need s to write to
that line. Not all conflicts can be controlled by t he application
�Upon a conflict, the transaction cannot complete su ccessfully
but might succeed if retried.
�When no conflict exists, one processor might be abl e to
complete in a simple way, without having to obtain software-
managed serialization or utilizing serializing inst ructions
�You can think of stores within a transaction as bei ng "rolled
back" upon transaction abort.
� Similarly, you can think of the registers as being saved at the
transaction begin and then (optionally) rolled back to their pre-
transaction begin values.

©2013 IBM Corporation

* 10

Types of Transactions

�There are two types of transactions
–Non-Constrained
–Constrained

©2013 IBM Corporation

* 11

User controls over a transaction

The user can control

�The general register pairs that are to be saved at the initiation of
a transaction (TBEGIN or TBEGINC instruction), and restored
upon a transaction abort.

�For non-constrained transaction, whether data is re turned to
provide information about the abort (Transaction Di agnostic
Block – TDB, mapped by IHATDB)

©2013 IBM Corporation

* 12

More user controls over a transaction

The user can control

�Whether access register modification is allowed wit hin the
transaction. Note: upon transaction abort, access r egister values
are never restored.

�Whether floating point operations are allowed withi n the
nonconstrained transaction. Note: upon transaction abort,
floating point register values are never restored.

�Program interrupt filtering for a non-constrained t ransaction. For
example, the application may ask that certain class es of program
interrupts be presented to the application as an ab ort, rather
than processed by the system as a program interrupt .

©2013 IBM Corporation

* 13

Non-constrained Transactions

�Begin with TBEGIN

�End normally with TEND

�Can be aborted with TABORT

�May be aborted for many system-defined reasons (“co nflicts”)

�TBEGIN may identify a “transaction diagnostic block ” (TDB,
mapped by IHATDB)

�Upon abort, flow proceeds to the instruction after TBEGIN
(usually a conditional branch)

©2013 IBM Corporation

* 14

Simple transaction

 LA 2,Source_Data_Word

 LA 3,Target_Data_Word

 TBEGIN theTDB,X'8000' the "80" indicates to restore GRs 0-1

* upon abort, each bit in those 2 hex digits

* corresponds to a double register pair

 BRC 7,Transaction_aborted

 L 1,0(,2)

 ST 1,0(,3)

 TEND

<<when you get here, register 1 will have been chan ged by the "L", and the target word
will have been set>>
 ...

Transaction_aborted DS 0H

<<when you get here, all the registers will have th e value they had before the TBEGIN
instruction (0-1 restored, 2-F not used), the targ et word will be unchanged, and the
TDB, identified on the TBEGIN instruction, will con tain information about the
transaction abort>>

©2013 IBM Corporation

* 15

Non-constrained Transactions (Cont)
The instruction after TBEGIN is usually a condition al relative branch to
handle the CC's from TBEGIN completion
�CC=0 (transaction initiation successful) should "fa ll through".
�CC=1 (abort due to an indeterminate condition) shou ld branch
somewhere to deal with this situation.

�CC=2 (abort due to a transient condition) should br anch somewhere to
deal with this situation (dealing with this might r etry, but should
eventually "time out" and go to the fall-back path) . While there is no
"right number" for the question "how many times sho uld I retry", “6” is
the recommended number as a default.

�CC=3 (abort due to a persistent condition) should b ranch somewhere
to deal with this situation, eventually winding up in a "fall-back" path
because, for some reason, the system believes that the transaction is
unlikely ever to succeed. (Note that this applies t o the current
circumstances. For example, a list search on a hash table might not
succeed for the current hash, but for most other ha shes might
succeed.).

©2013 IBM Corporation

* 16

Transaction Diagnostic Block (TDB)

�256 byte area, mapped by IHATDB
�Bytes 8-F: Transaction abort code

–External Interrupt (2), Program Interrupt (4), I/O Interrupt (6),
lots of codes for overflows and cache conflicts

�Bytes 18-1F: Aborted transaction instruction addres s
�Byte 20: Exception access ID
�Byte 21: Data exception code
�Bytes 24-27: Program Interruption ID
�Bytes 28 – 2F: Translation exception ID
�Bytes 40 – 47: Breaking Event Address
�Bytes 80 – FF: 64-bit GRs 0-F

©2013 IBM Corporation

* 17

TDB Contents:

Transaction Abort Code

Format Flags Reserved Trans Nest. Depth

Program Interruption ID

Aborted Transaction Instruction Address

Reserved

Conflict Token

Model-Dependent Diagnostic Information

General Registers

Reserved

0

8

16

24

EAID DXC32

112

56

128

248

Breaking-Event Address48

Translation Exception ID40

©2013 IBM Corporation

* 18

Constrained Transactions

�Begin with TBEGINC
�End normally with TEND
�May be aborted for many system-defined reasons
�Upon abort, flow proceeds to the TBEGINC

In the absence of repeated constraint violations, a constrained
transaction is assured of eventual completion. Thus it needs no
fallback path.

©2013 IBM Corporation

* 19

Simple constrained transaction

 LA 2,Source_Data_Word

 LA 3,Target_Data_Word

 TBEGINC 0,X'8000'

 L 1,0(,2)

 ST 1,0(,3)

 TEND

<<when you get here, register 1 will have been chan ged by the "L", and
the target word will have been set>>

The transaction may have aborted one or more times but at some point
it succeeded.

The TBEGINC asked that register pair 0/1 be restore d, but there was no
need to do so since the transaction did not depend on the initial values
of those registers, so the operand could (should) h ave been X'0000'.

©2013 IBM Corporation

* 20

Constrained Transaction Constraints

�The transaction executes no more than 32 instructio ns.
�All instructions within the transaction must be wit hin 256
contiguous bytes of storage.
�The only branches you may use are relative branches that branch
forward (so there can be no loops).
�No SS- or SSE-format instructions may be used.
�Additional general instructions may not be used.

©2013 IBM Corporation

* 21

Constrained Transaction Constraints (cont)

�The transaction's storage operands may not access m ore than
four octowords.
�The transaction may not access storage operands in any 4 K-byte
blocks that contain the 256 bytes of storage beginn ing with the
TBEGINC instruction.
�Operand references must be within a single doublewo rd, except
for some of the "multiple" instructions for which t he limitation is a
single octoword.
�Neither instructions nor operands may use different logical
addresses that are mapped to the same absolute addr ess

©2013 IBM Corporation

* 22

Constrained Transactions (cont)

�Even with all of these constraints, with care, you can do useful
things.
�It is possible to implement a double-headed double- threaded
enqueue/dequeue protocol (particularly one that alw ays adds
either to the front or back of the queue)
�This is a protocol that ordinarily requires more fo rmal
serialization

©2013 IBM Corporation

* 23

Program Interruption Info

�New program interrupt code x'18' – transaction cons traint
exception

–Machine may or may not issue; the machine is allowe d to
ignore these conditions and not issue the program i nterrupt.

–You must not rely on the machine ignoring

�X'0200' bit in the program interrupt code indicates that it
occurred within TX

–e.g., x'0211' – page fault while within a transacti on

�Program Interrupt TDB (PITDB) saved at location x'1 800' upon a
program interruption while within a transaction. Co ntains
information about register and instruction address at the time of
the program interruption. This is not saved by z/OS 1.13.

©2013 IBM Corporation

* 24

Non-transactional store

�NTSTG instruction

–A store that is not rolled back upon abort and thus can be
examined after the transaction ends

–Perhaps counts number of tries (this could also be in a
register)

©2013 IBM Corporation

* 25

HLASM

�HLASM support for the instructions will be provided via PM49761

�HLASM provides a print exit named ASMAXTXP, which y ou can
use in your assembly. It will be available via PM66 334

�It flags as errors things that violate a transactio nal execution
restriction, to the extent it can determine those v iolations.

�It is primarily detecting constrained-transaction c onstraints.

�To your assembly parameters, you would add
EX(PRX(ASMAXTXP))'

©2013 IBM Corporation

* 26

HLASM (cont)

Some sample warning messages via ASMAXTXP:

�** ASMA701W LISTING: ASMAXTXP: Transaction exceeds total
byte limit.

�** ASMA701W LISTING: ASMAXTXP: Relative branch tar get is
zero or negative.

�** ASMA701W LISTING: ASMAXTXP: Instruction is rest ricted.

©2013 IBM Corporation

* 27

Extending existing code to use TX

Consider a section of code that is serialized by an ENQ
 ENQ
 the group of updates
 DEQ

©2013 IBM Corporation

* 28

Extending existing code to use TX (cont)

 TM CVTFLAG4,CVTTX
 JZ FALLBACK_PATH

 TBEGIN

 JNZ Deal_With_Abort
 the group of updates
 TEND
...
FALLBACK_PATH DS 0H (also the no-TX path)

 ENQ
 the group of updates
 DEQ

Not so fast, this isn't right

©2013 IBM Corporation

* 29

Transaction / Fallback considerations

�When using non-constrained transactions, the transa ction must be
serialized against the fall-back path.

�For example, if one processor is within a transacti on and another
within the fall-back path, each needs to know enoug h to protect itself
against the other.

�Also, typically, a fall-back path needs to be seria lized against other
concurrent execution of that fall-back path.

�You can think of the fall-back path as needing "rea l" serialization
(hardware or software-provided) and the transaction as needing to be
able to tell that the fall-back path is running.

�One way of accomplishing this is for the fall-back path to set a
footprint when it has obtained "real" serialization and for the
transaction to query that footprint.

©2013 IBM Corporation

* 30

Extending existing code to use TX (cont)

 TM CVTFLAG4,CVTTX

 JZ FALLBACK_PATH

 TBEGIN

 JNZ Deal_With_Abort
 If I_Have_ENQ is on then TABORT
 the group of updates
 TEND
...
FALLBACK_PATH DS 0H (Also no-TX path)

 ENQ

 Set bit I_Have_ENQ
 the group of updates
 Reset bit I_Have_ENQ
 DEQ

©2013 IBM Corporation

* 31

Considerations (Cont)

�Even this simple example is incomplete.

�To avoid cases where a spin would result (when the ENQ holder
does not get a chance to reset the bit), the transa ction path
needs to limit the number of times that the transac tion is started
over.

�This can be done using a counter in a register that is not
restored upon the abort, or by using a non-transac tional store.

�Thus, at "Transaction_Aborted", there might be a te st to see if
flow should proceed to the fall-back path or back t o the TBEGIN.

�IBM suggests limiting the number of times to retry on CC=2 to 6.

�The architecture also provides a Perform Processor Assist
instruction which should be used prior to retrying the
transaction. Applying these concepts yields

©2013 IBM Corporation

* 32

Considerations (Cont)
�Transaction
 LHI 15,0 Zero count of transaction abo rts

Transaction_Again DS 0H

 TBEGIN

 BRC 7,Transaction_Aborted

 If I_Have_ENQ is on then TABORT

 the group of updates

 TEND

 ...

Transaction_Aborted DS 0H

 JC 5,Fallback_Path Not worth retrying f or CC=1,CC=3

 AHI 15,1 One more transaction abort

 CIJNL 15,6,Fallback_Path Give up after 6 a ttempts

 PPA 15,0,1 Perform Processor Assist option 1,
* count in GR15

 J Transaction_Again

 ...

Fallback_Path DS 0H

©2013 IBM Corporation

* 33

Considerations (Cont)

� The technique of using a footprint for the transact ion to detect
the fallback path is better than doing something li ke checking
“is the ENQ held” or “is the lock held” because the footprint
might be very granular for your particular case and the lock
might not be.

©2013 IBM Corporation

* 34

Fine-grained

�Consider the previous example, but with SETLOCK to
obtain/release the LOCAL lock instead of ENQ/DEQ.

�The LOCAL lock serializes many things, including th e allocation
of private storage, ECBs via WAIT/POST, etc. Some o f these you
might care about, others you might not.

�If you need serialization at an address space level similar to that
provided by the LOCAL lock but can accomplish your operation
with a transaction, then in that case you do not ne ed to be
competing for the LOCAL lock with processes you do not care
about. Only your fallback path would compete.

�Thus you might not have to be as concerned about th e overall
LOCAL lock contention for the space.

©2013 IBM Corporation

* 35

Are transactions for me?

The good news
� If you have “existing code” you have a built-in fal lback

path.
� Your code could check if TX is available (via CVTTX)

and if not, go directly to the fallback path
� Otherwise it might try doing the operation with a

transaction, serializing against the fallback back that
another asynchronous process might be in the midst
of
�If the transaction aborts too often, go to the fall back

path

Thus your “addition” is only the transactional equi valent
of your old code

©2013 IBM Corporation

* 36

Are transactions for me (cont)?

The bad news
� If you have too many aborts you have wasted time
� It's next to impossible (in my opinion) to accurate ly

calculate the abort rate because some aborts are no t
dependent only on some instances of your code
interfering with others
�It might be other work units
�It might even be other LPARs

� Experimentation / prototyping is very important

©2013 IBM Corporation

* 37

Are transactions for me (cont)?

The good news
� If you cannot afford to get serialization for whate ver

reason, you may be able to use constrained
transactions and accomplish things that are not
possible without them

� You may be able to attain higher granularity of you r
serialization technique

©2013 IBM Corporation

* 38

Are transactions for me (cont)?

The bad news
� To attain best granularity, even beyond avoiding

contending with unrelated work, but to avoid
contending with yourself if possible, you may have to
adjust your data structures to allow for finer chec king.
� Instead of a single linked list, you might have an ordered

hash table

©2013 IBM Corporation

* 39

Are transactions for me (cont)?

The good news
� It may not be trivial or even easy, but “possible” is a

far better answer than “not possible”.

©2013 IBM Corporation

* 40

A tidbit: instructions within TX vs non-TX
Suppose you need to “add 1 to X” with serialization

CS approach
� L old,X
� Again DS 0H
� LR new,old
� AHI new,1
� CS old,new,X
� JNZ Again
TX approach
� TBEGINC
� L temp,X
� AHI temp,1
� ST temp,X
� TEND

The transactional approach can be a bit more straig htforward. You
are allowed to use CS but need not.

©2013 IBM Corporation

* 41

My TX usage recommendations

� Keep it as simple as you can
�You are allowed to do program interrupt filtering. Java

may do this. I recommend against using this functio n.
z/OS does not prevent its use. The complexity invol ved
with using it is probably not worth it.

�You can nest transactions within transactions (in t hat
case, an abort goes to the outermost TBEGIN+4). Don 't
do it. It would be foolish to make a call within a
transaction if you do not know exactly what that ta rget
may do. And if you do know what that target will do , you
should probably put its code inline within your
transaction.

� If you can meet the constraints, use constrained
transactions

©2013 IBM Corporation

* 42

Roll-out

�z/OS 1.13 via OA38829: TX Lite
–Bit CVTTXTE “TX Test Environment”
–No particular diagnostics (but TDB may be used, map ped by
IHATDB). Program interrupt does write TDB into PSA as
architected at location x'1800' but this is not cap tured

–Transactions work (both non-constrained and constra ined)
–Recommend not using in production – very hard to di agnose

�z/OS 2.1
–Bits CVTTX and CVTTXC “Full support”
–PI TDB is captured and placed into SDWA
–SDWA has both “time of program interrupt regs/psw” and
“transaction abort regs/PSW”

–For ESPIE, macro IHAEPIE's EPIE has both sets too

©2013 IBM Corporation

* 43

Random Aborts (z/OS 2.1 only)

�To help test your code (both transaction and fallba ck) random
aborts can be requested

�WIth IEATXDC, you can request random aborts of tran sactions
for your task so that, upon repeated runnings, you are likely to
exercise both the non-abort and abort paths.

�IEATXDC SCOPE={PROBLEM | ALL},

 OPERATION={NO_ABORT, SET_EVERY, SET_RAN DOM}

�Implemented by bits in the Dispatchable Unit Contro l Table
(DUCT)

©2013 IBM Corporation

* 44

TX Diagnostics (z/OS 2.1 only)

�If a program interrupt in a transaction is not filt ered, normal z/OS
recovery processing takes place

�Additional information in an SDWA (all FRR SDWAs,
SDWALOC31=YES ESTAE-type SDWAs)

�Bits SDWAPTX1 (within byte SDWAIC1H in field SDWAAE C1) and
SDWAPTX2 (within byte SDWAIC2H in field SDWAAEC2): The
program interrupt occurred while within transaction al execution;
therefore bit SDWAPTX1 is valid only when bit SDWAP CHK is
on.

©2013 IBM Corporation

* 45

TX Diagnostics (z/OS 2.1 only)

�Existing fields SDWAG64, SDWAG64H, and SDWAGRSV con tain
the time of error register information. These are t he registers
current when the program interrupt occurred .

�Existing field SDWAPSW16 contains the time of error register
information. This is the PSW current when the progr am interrupt
occurred.

�When bits SDWAPCHK and SDWAPTX2 are on, new field
SDWATXG64 contains the registers that resulted from the
transaction abort due to the program interrupt.

�When bits SDWAPCHK and SDWAPTX2 are on, new field
SDWATXPSW16 contains the PSW that resulted from the
transaction abort due to the program interrupt.

©2013 IBM Corporation

* 46

SLIP (z/OS 2.1 only)

�Suppose you have a SLIP trap with a DATA keyword lo oking to
see if storage has changed to a bad value

�If the bad value change occurs within a transaction , by the time
SLIP sees things, storage no longer looks bad (it h as been rolled
back)

©2013 IBM Corporation

* 47

More SLIP (z/OS 2.1 only)

�The SLIP DISPLAY of an active trap will display, wh en non-0, the
number of times that the SLIP trap was examined for an event in
TX, but did not match because of the DATA keyword (in a
transactional execution case, this could be normal, because the
stores were rolled back when the error or PER progr am interrupt
occurred). This is referred to as the transactional execution
DATA filter mismatch count (Note: if the value is 2 55, the count
of events could have exceeded 255).

�The SLIP GTF record, at offset (decimal) 135, has a 1-byte count
that is the transactional execution DATA filter mis match count,

©2013 IBM Corporation

* 48

SLIP TXIGD (z/OS 2.1 only)

�The best that can be done: capture diagnostic data in the hope
that this is the cause

–TXIGD keyword (Transactional eXecution IGnore Data) on a
SLIP trap: if the only thing keeping the trap from matching is
the data keyword, ignore the data keyword

�NOTXIGD may be specified to indicate the normal cas e

�You can modify an existing SLIP trap to set (TXIGD) or reset
(NOTXIGD)

–SLIP MOD,ID=MYTX,TXIGD

–SLIP MOD,ID=MYTX,NOTXIGD

©2013 IBM Corporation

* 49

More SLIP (z/OS 2.1 only)

�A new ERRTYP option, TXPROG, is supported. When spe cified,
the SLIP trap will match only if the event was a pr ogram interrupt
error event that occurred within transactional exec ution mode

©2013 IBM Corporation

* 50

Other interesting parts of the TX architecture
�PER event suppression
�PER Transaction End event

�Consider a SLIP trap in effect with a PER range cov ering a
constrained transaction.
�Every time through the transaction, the SLIP trap h its, the PER
event aborts the transaction, and the abort process resumes at
the TBEGINC
�This could loop forever if nothing is done about it .

�System recognizes “PER event within constrained tra nsaction”
�System sets “PER Event Suppression” so that subsequ ent PER
events within a transaction are suppressed
�System sets “PER Transaction End event” so that the TEND will
be noticed and can turn off Event Suppression

©2013 IBM Corporation

* 51

Summary

�Transactional Execution is here

�It can be a powerful tool for your applications

�Coding a transaction is easy; providing for fallbac k less so
(constrained transactions are constrained, but need no fallback)

�The benefit depends on the amount of contention tha t occurs

©2013 IBM Corporation

* 52

References

Related Session(s)
� Session s14087 – zEC12 CPU Facilities

Publications
� z/OS V2R1 MVS System Commands
� z/OS V2R1 MVS Programming Assembler Services

Reference

©2013 IBM Corporation

* 53

Questions?

