
What is OpenStack ?

Mike Buzzetti
buzzetti@us.ibm.com

IBM

14221

I am here to help buzzetti@us.ibm.com

IBM's Reference Architecture for Cloud

Governance

Security, Resiliency, Performance & Consumability

Cloud Service
Creator

Cloud Service
Consumer

Cloud Service Provider

Common Cloud
Management Platform (CCMP)

Operational
Support
Services

(OSS)

Cloud Services

Inf rastructure-as-a-Service

Platform-as-a-Service

Sof tware-as-a-Service

Business-Process-
as-a-Service

Business
Support
Services

(BSS)

Cloud
Service

Integration
Tools

Consumer
In-house IT

Service
Creation

Tools

Infrastructure

Existing & 3rd party
services, Partner

Ecosystems

http://en.wikipedia.org/wiki/Nebula_(computing_platform

RackSpace

http://en.wikipedia.org/wiki/Rackspace

Community

More than 6000 people and 100 companies

Active online community through mailing lists, IRC, wiki

Bi-yearly design summits

Companies need to donate money AND people that ACTIVELY contribute

and many more …
http://www.OpenStack.org/foundation/companies/

Relase Names

These codenames are chosen by popular vote using the basic Launchpad poll feature over
the ~openstack group. Codenames are cities or counties near where the corresponding
OpenStack design summit took place. An exception (called the Waldon exception) is
granted to elements of the state flag that sound especially cool.

Austin: The first design summit took place in Austin, TX
Bexar: The second design summit took place in San Antonio, TX
Cactus: Cactus is a city in Texas
Diablo: Diablo is a city in the bay area near Santa Clara, CA
Essex: Essex is a city near Boston, MA
Folsom: Folsom is a city near San Francisco, CA
Grizzly: Grizzly is an element of the state flag of California

design summit takes place in San Diego, CA
Havana: Havana is an unincorporated community in Oregon

design summit takes place in Oregon
Ichang?: Design Summet to take place in Hong-Kong

Commitment

http://www.domicity.com/2013/06/openstack-accelerating-commitment-by-big-vendors/

 Click to edit the
outline text format

 Second Outline
Level

 Third Outline
Level

 Fourth
Outline Level

 Fifth
Outline
Level

 Sixth
Outline
Level

• Seventh Outline
LevelClick to edit
Master text styles
• Second level
• Third level

• Fourth level

• Fifth level

OpenStack design tenets focus on delivering Cloud
Computing Platform on an available, scalable, and elastic
control plane

Sources:
http://www.openstack.org/downloads/openstack-compute-datasheet.pdf
http://wiki.openstack.org/BasicDesignTenets

Basic Design Tenets

1) Scalability and elasticity are our main goals

2) Any feature that limits our main goals must be optional

3) Everything should be asynchronous
If you can't do something asynchronously, see #2

1) All required components must be horizontally scalable

2) Always use shared nothing architecture (SN) or sharding
If you can't Share nothing/shard, see #2

1) Distribute everything
Especially logic. Move logic to where state naturally

exists.

1) Accept eventual consistency and use it where it is
appropriate.

2) Test everything.
We require tests with submitted code. (We will help

you if you need it)

OpenStack Open Source Cloud Mission

to produce the ubiquitous Open Source Cloud Computing
platform that will meet the needs of public and private
clouds regardless of size, by being simple to implement
and massively scalable

http://www.openstack.org/downloads/openstack-compute-datasheet.pdf
http://wiki.openstack.org/BasicDesignTenets
http://wiki.openstack.org/BasicDesignTenets
http://www.openstack.org/downloads/openstack-compute-datasheet.pdf
http://wiki.openstack.org/BasicDesignTenets
http://wiki.openstack.org/BasicDesignTenets

OpenStack is comprised of six core projects delivering an
IaaS solution + a project delivering an Object Storage solution

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Focus
Compute (Nova)

Block Storage (Cinder)

Network (Quantum)
Provision and
manage virtual
resources

Dashboard (Horizon)
Self-service portal

Image (Glance)
Catalog and manage
server images

Identity (Keystone)
Unified authentication
and authorization

Object Storage (Swift)
petabytes of secure,
reliable object storage

IaaS

Iden tity

D ashboard

Im age
C om pute

O b ject
S torage

B lock
S torage

N etw ork

Provides
UI for Provides

UI for

Provides
UI for Provides

UI for

Provides
UI for

Provides
Auth for

Provides
Auth for

Provides
Auth for

Provides
Auth for

Provides
Auth for

Provides
Auth for

Provides
volumes

for

Provide
network

connectivity
for

Stores
images in

Stores disk
files in

http ://w w w.solinea.com

http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/
http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

OpenStack services can be categorized into two groups –
controller services and distributed services (but all can be scaled-out!)

Controller
Services

Distributed
Services

Deployments consist of projects interfacing over public APIs,
with each project composed of multiple services interfacing via private APIs
over RPC

Compute (Nova) is a horizontally scalable offering
on-demand compute resources by provisioning and managing
VMs

Core Use Case:

■ Provision and manage virtualized compute resources
(CPU, memory, disk, network)

Key Capabilities:

REST-based APIs with rate limiting and authentication

Manage Local Area Networks (LAN)

Live migration of guests

VM management (Instance)
Run, reboot, suspend, resize, terminate instances

Floating IP addresses

Security Groups

RBAC with Projects & Quotas

Manage to KVM, Xen (XenServer, Xen Cloud Platform),
LXC, VMware vSphere 4.1+, Hyper-V, Bare Metal,
PowerVM (limited)

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Database and Queue are central to the Nova control plane

Core Use Case:

 Queue provides RPC messaging between services

 Database provides data persistence

Runs As: Controller Service

Deployment Considerations:

 Use DB and Queue clustering/HA methods

 ZeroMQ implementation available to decentralize queue

Key Capabilities:

 Community uses RabbitMQ as default queue, MySQL
DB (IBM uses Apache Qpid and DB2)

 Single “cell” (1 Queue, 1 Database) typically scales from
500 – 1000 physical machines

 Cells can be rolled up to support larger
deployments

 Communications route through queue
 API requests are validated and placed on

queue
 Workers listen to queues based on role or role

+ hostname
 Responses are dispatched back through

queue

nova-compute manages individual hypervisors and
compute nodes

Core Use Case:

 Manage all interactions with single hypervisor control
point

Runs As: Distributed Service

Deployment Considerations:

 Many nova-compute instances exist in the environment
to ensure compute provisioning is always available

 Single nova-compute is not HA, manage single
hypervisor to minimize failure domain

 No direct database acces is required

Key Capabilities:

 Create and manage virtual machines on hypervisor

 Attach networks and volumes to physical host (iSCSI,
FC), expose to guest virtual machines

 Implementation point for security groups defining firewall
rules for guest network traffic

 Uses plug-in model to manage to different hypervisors

nova-scheduler allocates virtual resources to compute nodes

Core Use Case:

 Selects compute node to run virtual machine on

Runs As: Controller Service

Deployment Considerations:

 Default scheduler is horizontally scalable

 For other schedulers (e.g. Platform EGO), follow their
specific best practice

Key Capabilities:

 Default scheduled is allocation-based using a series of
filters to reduce set of applicable hosts and uses costing
functions to provide weight

 Platform EGO adds utilization-based scheduling to
default allocation based

nova-api supports multiple API implementations and is
the entry point into the cloud

Core Use Case:

 Accept, validate, authenticate, and distribute incoming
REST API requests

Runs As: Controller Service

Deployment Considerations:

 Horizontally scalable, start many instances

 Front with load-balancer to present as single endpoint

Key Capabilities:

 APIs supported
 OpenStack Compute API
 EC2 API (subset)

 Robust extensions mechanism to add new capabilities

nova-conductor manages database interactions on behalf of
compute nodes

Core Use Case:

 Handles all database requests for nova-compute
service

Runs As: Controller Service

Deployment Considerations:

 Horizontally scalable, start many instances

Key Capabilities:

 Talks directly to database on behalf of compute nodes

Network (Quantum) is a pluggable, scalable and
API-driven system for managing networks and IP addresses

Core Use Cases:

■ Provision and manage virtualized network resources
(networks, ports, attachments)

Key Capabilities:

■ Flexible networking models to suit the needs of different
applications or user groups

■ Create/delete tenant-specific L2 networks

■ Attach / Detach host to network

■ L3 support (dedicated static and DHCP, Floating IPs,
DHCP, Routing)

■ L4-7 Support (Load Balancers)

■ Extension framework enabling deploy and management
of additional network services: intrusion detection
systems (IDS), load balancing, firewalls and virtual
private networks (VPN)

■ Support for
– OpenFlow (Big Switch, Floodlight, NEC

controllers)
– Numerous SDN and network virtualization

providers (e.g Niciria, Midokura, Plum Grid,
Brocade, Mellanox)

– OpenVswitch
– Cisco Nexus

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Database and Queue are central to the
Quantum control plane

Core Use Case:

 Queue provides RPC messaging between
services

 Database provides data persistence

Runs As: Controller Service

Deployment Considerations:

 Use DB and Queue clustering/HA methods

 ZeroMQ implementation available to decentralize
queue

 Can use same Queue as Nova

Key Capabilities:

 Community uses RabbitMQ as default queue,
MySQL DB (IBM uses Apache Qpid and DB2)

quantum-server implements the OpenStack Network API

Core Use Case:

 Accept, validate, authenticate, and distribute incoming
REST API requests

Runs As: Controller Service

Deployment Considerations:

 Use active/passive or active/active for HA using Linux
HA methods (e.g. corosync)

Key Capabilities:

 Requires access to a database for persistent storage

 Passes user requests to the configured OpenStack
Networking plug-in for additional processing

 Relies on the OpenStack Identity Project (Keystone) for
authentication and authorization of all API request.

Quantum uses an agent model to add additional functionality to a
deployment

Core Use Case:

 plugin-agent: runs alongside nova-compute to manage
physical host network connectivity

 dhcp-agent: provides DHCP to tenant networks

 l3-agent: provides L3/NAT forwarding for external
network access

Runs As: Distributed Service (plugin-agent) or Controller
Service (dhcp-agent, l3-agent)

HA:

 plugin-agent: same as nova-compute, single instance is
not HA, minimize failure domain

 dhcp-agent, l3-agent: running many ensure ensures
availability to provision new, can use active/passive or
active/active for HA of provisoined node.

Key Capabilities:

 plugin-agent: runs alongside nova-compute to manage
physical host network connectivity

 dhcp-agent: provides DHCP to tenant networks

 l3-agent: provides L3/NAT forwarding for external
network access

Quantum plugins are vendor or technology-specific plugins that map virtual
network topology onto infrastructure

Core Use Case:

 Map virtual network topology onto infrastructure

Runs As: Controller Service

HA:

 Dependent on implementation

Key Capabilities:

 Uses plug-in model to support vendor-specific or
technology-specific implementation that translates virtual
networks to physical network

Storage (Cinder) exposes block devices to be connected to compute instances for
expanded storage, better performance and enterprise storage platform integration

Core Use Cases:

■ Provision and manage lifecycle of volumes and their
exposure for attachment

Key Capabilities:

■ Persistent block level storage devices for use with
OpenStack compute instance

■ Manage the creation, attaching and detaching of the
block devices to servers

■ Support for booting virtual machines from Cinder-
backed storage

■ Snapshot and restore functionality

■ Supports following
– LVM-backed volumes (iSCSI)
– XIV (iSCSI)
– SVC (iSCSI and Fiber Channel)
– NetApp (iSCSI and NFS)
– EMC (iSCSI)
– HP/Lefthand (iSCSI)
– RADOS block devices (e.g. Ceph distributed file

system)
(full list at Cinder Support Matrix)

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Database and the Queue are the core of Cinder’s
control plane

Core Use Case:

 Queue provides RPC messaging between
services

 Database provides data persistence

Runs As: Controller Service

Deployment Considerations:

 Use DB and Queue clustering/HA methods

 ZeroMQ implementation available to
decentralize queue

 Can use same queue/database as Nova

Key Capabilities:

 Community uses RabbitMQ as default
queue, MySQL DB (IBM uses Apache Qpid
and DB2)

cinder-api is the entry point to OpenStack Volume Service

Core Use Case:

 Accept, validate, authenticate, and
distribute incoming REST API requests

Runs As: Controller Service

Deployment Considerations:

 Horizontally scalable, start many
instances

 Front with load-balancer to present as
single endpoint

Key Capabilities:

 APIs supported
 OpenStack Volume API

 Robust extensions mechanism to add new
capabilities

cinder-volume manages individual block-based
volume providers

Core Use Case:

 Manages interactions with single block volume
provider

Runs As: Distributed Service

Deployment Considerations:

 Many cinder-volume instances exist in the
environment to ensure volume provisioning is
always available

 Single cinder-volume is not HA, manage single
provider to minimize failure domain

Key Capabilities:

 Create and manage volumes on storage
backend

 Expose volumes to physical host (e.g. iSCSI,
FC)

 Uses plug-in model to support differing storage
systems

cinder-scheduler selects cinder-volume instance to place volume on

Core Use Case:

 Selects cinder-volume service to place
volume on

Runs As: Controller Service

Deployment Considerations:

 Default scheduler is horizontally scalable

Key Capabilities:

 Default scheduled is allocation-based
using a series of filters to reduce set of
applicable hosts and uses costing
functions to provide weight

Identity Service (Keystone) offers project-wide identity, token,
service catalog, and policy services designed for integration with
existing systems

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Core Use Cases:

■ Installation-wide authentication and
authorization to OpenStack services

Key Capabilities:

■ Authenticate user / password requests against
multiple backends (SQL, LDAP, etc) (Identity
Service)

■ Validate / manage tokens used after initial
username/password verification (Token Service)

■ Endpoint registry of available services (Service
Catalog)

■ Authorize API requests (Policy Service)

■ Domain / Project / User model with RBAC for
access to compute, storage, networking

■ Policy service provides a rule-based authorization
engine and the associated rule management
interface.

keystone service is the entry point for all AuthN and AuthZ
in OpenStack

Core Use Case:

■ Handle and service all Identity REST
API requests

Runs As: Controller Service

Deployment Considerations:

■ Horizontally scalable, start many
instances

■ Front with load-balancer to present as
single endpoint

Key Capabilities:

■ APIs supported
– OpenStack Identity API

■ Pluggable backends for each function:
identity, token, catalog, and policy

Glance database persists all image related metadata

Core Use Case:

■ Persist image-related metadata

Runs As: Controller Service

Deployment Considerations:

■ Use DB and Queue clustering/HA
methods

■ Can use same queue/database as
Nova

Key Capabilities:

■ Persists image-related metadata

Image Service (Glance) provides registration, discovery, and
delivery services for virtual disk and server images

Core Use Cases:

■ Administrator registers available guest images

■ End-user discovers available guest images

■ Deliver image to compute node on provisioning

Key Capabilities:

■ Image Registry (storage optional and is delegated
to a configurable store)

■ Administrators can create base templates from
which users can start new compute instances

■ Users can choose from available images, or
create their own from existing servers

■ Snapshots can also be stored in the Image
Service so that virtual machines can be backed
up quickly

■ Supported formats: Raw, Machine (a.k.a. Amazon
AMI), VHD (Hyper-V), VDI (VirtualBox), qcow2
(Qemu/KVM), VMDK (VMWare), OVF (VMWare,
others)

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

glance-api routes incoming REST API Requests

Core Use Case:

■ Routes REST API requests to the
appropriate handler

Runs As: Controller Service

Deployment Considerations:

■ Horizontally scalable, start many
instances

■ Front with load-balancer to present as
single endpoint

Key Capabilities:

■ APIs supported
– OpenStack Image API

■ Routes requests from clients to
registries of image metadata and to its
backend stores

■ Pluggable image store backends

glance-registry services Image Service API requests

Core Use Case:

■ Services Identity REST
API requests

Runs As: Controller Service

Deployment
Considerations:

■ (to be determined)

Key Capabilities:

■ APIs supported
– OpenStack Image API

Horizon (Dashboard) enables administrators and users to
access, provision, and manage resources through a self-service
portal GUI

Core Use Cases:

■ Self-service portal for compute and
object storage

■ Cloud administration (users/projects,
quotas, etc.)

Key Capabilities:

■ Thin wrapper over APIs, no local state

■ Registration pattern for applications to
hook into

■ Out-of-the-box support for all core
OpenStack projects.

■ Anyone can add a new component as a
“first-class citizen”.

■ Visual and interaction paradigms are
maintained throughout.NOT SHIPPED BY IBM

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

horizon is the self-service portal implementation

Core Use Case:

■ GUI access to OpenStack APIs

Runs As: Controller Service

Deployment Considerations:

■ (to be determined)

Key Capabilities:

■ Provision and manage virtual servers,
volumes, and networks

■ Create and manage tenants and users

NOT SHIPPED BY IBM

Putting it all together....

Demo

Questions ?

39

1

What is OpenStack ?

Mike Buzzetti
buzzetti@us.ibm.com

IBM

14221

I am here to help buzzett i@us.ibm.com

This is me. I am here to help. I include this chart so
that people can have my email.
The reason I created this presentation is based on
the past few years working with customers. Helping
them understand that there is a lot of virtualization
out there.
Although I might look young, I have been in the IT
field for almost 15 years. Virtualization has been a
core technology for me for most of it.

IBM's Reference Architecture for Cloud

Governance

Security, Resiliency, Performance & Consumability

Cloud Service
Creator

Cloud Service
Consumer

Cloud Service Provider

Common Cloud
Management Platform (CCMP)

Operational
Support
Services

(OSS)

Cloud Services

Inf rastructure-as-a-Service

Platform-as-a-Service

Sof tware-as-a-Service

Business-Process-
as-a-Service

Business
Support
Services

(BSS)

Cloud
Service

Integration
Tools

Consumer
In-house IT

Service
Creation

Tools

Infrastructure

Existing & 3rd party
services, Partner

Ecosystems

http://en.wikipedia.org/wiki/Nebula_(computing_platform
)

Nebula, that originated to support NASA
research projects, was donated to OpenStack in
2010.

RackSpace

http://en.wikipedia.org/wiki/Rackspace
IT hosting company founded in 1998.
Contributed its cloud files product in 2010. This
became part of the Object Storage portion of
OpenStack (Swift).

Community

More than 6000 people and 100 companies

Active online community through mailing lists, IRC, wiki

Bi-yearly design summits

Companies need to donate money AND people that ACTIVELY contribute

and many more …
http://www.OpenStack.org/foundation/companies/

Relase Names

These codenames are chosen by popular vote using the basic Launchpad poll feature over
the ~openstack group. Codenames are cities or counties near where the corresponding
OpenStack design summit took place. An exception (called the Waldon exception) is
granted to elements of the state flag that sound especially cool.

Austin: The first design summit took place in Austin, TX
Bexar: The second design summit took place in San Antonio, TX
Cactus: Cactus is a city in Texas
Diablo: Diablo is a city in the bay area near Santa Clara, CA
Essex: Essex is a city near Boston, MA
Folsom: Folsom is a city near San Francisco, CA
Grizzly: Grizzly is an element of the state flag of California

design summit takes place in San Diego, CA
Havana: Havana is an unincorporated community in Oregon

design summit takes place in Oregon
Ichang?: Design Summet to take place in Hong-Kong

Commitment

http://www.domicity.com/2013/06/openstack-accelerating-commitment-by-big-vendors/

 Click to edit the
outline text format

 Second Outline
Level

 Third Outline
Level

 Fourth
Outline Level

 Fifth
Outline
Level

 Sixth
Outline
Level

• Seventh Outline
LevelClick to edit
Master text styles
• Second level
• Third level

• Fourth level

• Fifth level

9

OpenStack design tenets focus on delivering Cloud
Computing Platform on an available, scalable, and elastic
control plane

Sources:
http://www.openstack.org/downloads/openstack-compute-datasheet.pdf
http://wiki.openstack.org/BasicDesignTenets

Basic Design Tenets

1) Scalability and elasticity are our main goals

2) Any feature that limits our main goals must be optional

3) Everything should be asynchronous
If you can't do something asynchronously, see #2

1) All required components must be horizontally scalable

2) Always use shared nothing architecture (SN) or sharding
If you can't Share nothing/shard, see #2

1) Distribute everything
Especially logic. Move logic to where state naturally

exists.

1) Accept eventual consistency and use it where it is
appropriate.

2) Test everything.
We require tests with submitted code. (We will help

you if you need it)

OpenStack Open Source Cloud Mission

to produce the ubiquitous Open Source Cloud Computing
platform that will meet the needs of public and private
clouds regardless of size, by being simple to implement
and massively scalable

OpenStack is comprised of six core projects delivering an
IaaS solution + a project delivering an Object Storage solution

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Focus
Compute (Nova)

Block Storage (Cinder)

Network (Quantum)
Provision and
manage virtual
resources

Dashboard (Horizon)
Self-service portal

Image (Glance)
Catalog and manage
server images

Identity (Keystone)
Unified authentication
and authorization

Object Storage (Swift)
petabytes of secure,
reliable object storage

IaaS

Identity

D ashboard

Im age
C om p ute

O b jec t
Sto rage

B lock
S to rage

N etw ork

Provides
UI for Provides

UI for

Provides
UI for Provides

UI for

Provides
UI for

Provides
Auth for

Provides
Auth for

Provides
Auth for

Provides
Auth for

Provides
Auth for

Provides
Auth for

Provides
volumes

for

Provide
network

connectivity
for

Stores
images in

Stores disk
files in

h ttp://w w w.solinea .co m

OpenStack services can be categorized into two groups –
controller services and distributed services (but all can be scaled-out!)

Controller
Services

Distributed
Services

Deployments consist of projects interfacing over public APIs,
with each project composed of multiple services interfacing via private APIs
over RPC

Compute (Nova) is a horizontally scalable offering
on-demand compute resources by provisioning and managing
VMs

Core Use Case:

■ Provision and manage virtualized compute resources
(CPU, memory, disk, network)

Key Capabilities:

REST-based APIs with rate limiting and authentication

Manage Local Area Networks (LAN)

Live migration of guests

VM management (Instance)
Run, reboot, suspend, resize, terminate instances

Floating IP addresses

Security Groups

RBAC with Projects & Quotas

Manage to KVM, Xen (XenServer, Xen Cloud Platform),
LXC, VMware vSphere 4.1+, Hyper-V, Bare Metal,
PowerVM (limited)

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Database and Queue are central to the Nova control plane

Core Use Case:

 Queue provides RPC messaging between services

 Database provides data persistence

Runs As: Controller Service

Deployment Considerations:

 Use DB and Queue clustering/HA methods

 ZeroMQ implementation available to decentralize queue

Key Capabilities:

 Community uses RabbitMQ as default queue, MySQL
DB (IBM uses Apache Qpid and DB2)

 Single “cell” (1 Queue, 1 Database) typically scales from
500 – 1000 physical machines

 Cells can be rolled up to support larger
deployments

 Communications route through queue
 API requests are validated and placed on

queue
 Workers listen to queues based on role or role

+ hostname
 Responses are dispatched back through

queue

nova-compute manages individual hypervisors and
compute nodes

Core Use Case:

 Manage all interactions with single hypervisor control
point

Runs As: Distributed Service

Deployment Considerations:

 Many nova-compute instances exist in the environment
to ensure compute provisioning is always available

 Single nova-compute is not HA, manage single
hypervisor to minimize failure domain

 No direct database acces is required

Key Capabilities:

 Create and manage virtual machines on hypervisor

 Attach networks and volumes to physical host (iSCSI,
FC), expose to guest virtual machines

 Implementation point for security groups defining firewall
rules for guest network traffic

 Uses plug-in model to manage to different hypervisors

nova-scheduler allocates virtual resources to compute nodes

Core Use Case:

 Selects compute node to run virtual machine on

Runs As: Controller Service

Deployment Considerations:

 Default scheduler is horizontally scalable

 For other schedulers (e.g. Platform EGO), follow their
specific best practice

Key Capabilities:

 Default scheduled is allocation-based using a series of
filters to reduce set of applicable hosts and uses costing
functions to provide weight

 Platform EGO adds utilization-based scheduling to
default allocation based

nova-api supports multiple API implementations and is
the entry point into the cloud

Core Use Case:

 Accept, validate, authenticate, and distribute incoming
REST API requests

Runs As: Controller Service

Deployment Considerations:

 Horizontally scalable, start many instances

 Front with load-balancer to present as single endpoint

Key Capabilities:

 APIs supported
 OpenStack Compute API
 EC2 API (subset)

 Robust extensions mechanism to add new capabilities

nova-conductor manages database interactions on behalf of
compute nodes

Core Use Case:

 Handles all database requests for nova-compute
service

Runs As: Controller Service

Deployment Considerations:

 Horizontally scalable, start many instances

Key Capabilities:

 Talks directly to database on behalf of compute nodes

Network (Quantum) is a pluggable, scalable and
API-driven system for managing networks and IP addresses

Core Use Cases:

■ Provision and manage virtualized network resources
(networks, ports, attachments)

Key Capabilities:

■ Flexible networking models to suit the needs of different
applications or user groups

■ Create/delete tenant-specific L2 networks

■ Attach / Detach host to network

■ L3 support (dedicated static and DHCP, Floating IPs,
DHCP, Routing)

■ L4-7 Support (Load Balancers)

■ Extension framework enabling deploy and management
of additional network services: intrusion detection
systems (IDS), load balancing, firewalls and virtual
private networks (VPN)

■ Support for
– OpenFlow (Big Switch, Floodlight, NEC

controllers)
– Numerous SDN and network virtualization

providers (e.g Niciria, Midokura, Plum Grid,
Brocade, Mellanox)

– OpenVswitch
– Cisco Nexus

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Database and Queue are central to the
Quantum control plane

Core Use Case:

 Queue provides RPC messaging between
services

 Database provides data persistence

Runs As: Controller Service

Deployment Considerations:

 Use DB and Queue clustering/HA methods

 ZeroMQ implementation available to decentralize
queue

 Can use same Queue as Nova

Key Capabilities:

 Community uses RabbitMQ as default queue,
MySQL DB (IBM uses Apache Qpid and DB2)

quantum-server implements the OpenStack Network API

Core Use Case:

 Accept, validate, authenticate, and distribute incoming
REST API requests

Runs As: Controller Service

Deployment Considerations:

 Use active/passive or active/active for HA using Linux
HA methods (e.g. corosync)

Key Capabilities:

 Requires access to a database for persistent storage

 Passes user requests to the configured OpenStack
Networking plug-in for additional processing

 Relies on the OpenStack Identity Project (Keystone) for
authentication and authorization of all API request.

Quantum uses an agent model to add additional functionality to a
deployment

Core Use Case:

 plugin-agent: runs alongside nova-compute to manage
physical host network connectivity

 dhcp-agent: provides DHCP to tenant networks

 l3-agent: provides L3/NAT forwarding for external
network access

Runs As: Distributed Service (plugin-agent) or Controller
Service (dhcp-agent, l3-agent)

HA:

 plugin-agent: same as nova-compute, single instance is
not HA, minimize failure domain

 dhcp-agent, l3-agent: running many ensure ensures
availability to provision new, can use active/passive or
active/active for HA of provisoined node.

Key Capabilities:

 plugin-agent: runs alongside nova-compute to manage
physical host network connectivity

 dhcp-agent: provides DHCP to tenant networks

 l3-agent: provides L3/NAT forwarding for external
network access

Quantum plugins are vendor or technology-specific plugins that map virtual
network topology onto infrastructure

Core Use Case:

 Map virtual network topology onto infrastructure

Runs As: Controller Service

HA:

 Dependent on implementation

Key Capabilities:

 Uses plug-in model to support vendor-specific or
technology-specific implementation that translates virtual
networks to physical network

Storage (Cinder) exposes block devices to be connected to compute instances for
expanded storage, better performance and enterprise storage platform integration

Core Use Cases:

■ Provision and manage lifecycle of volumes and their
exposure for attachment

Key Capabilities:

■ Persistent block level storage devices for use with
OpenStack compute instance

■ Manage the creation, attaching and detaching of the
block devices to servers

■ Support for booting virtual machines from Cinder-
backed storage

■ Snapshot and restore functionality

■ Supports following
– LVM-backed volumes (iSCSI)
– XIV (iSCSI)
– SVC (iSCSI and Fiber Channel)
– NetApp (iSCSI and NFS)
– EMC (iSCSI)
– HP/Lefthand (iSCSI)
– RADOS block devices (e.g. Ceph distributed file

system)
(full list at Cinder Support Matrix)

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Database and the Queue are the core of Cinder’s
control plane

Core Use Case:

 Queue provides RPC messaging between
services

 Database provides data persistence

Runs As: Controller Service

Deployment Considerations:

 Use DB and Queue clustering/HA methods

 ZeroMQ implementation available to
decentralize queue

 Can use same queue/database as Nova

Key Capabilities:

 Community uses RabbitMQ as default
queue, MySQL DB (IBM uses Apache Qpid
and DB2)

cinder-api is the entry point to OpenStack Volume Service

Core Use Case:

 Accept, validate, authenticate, and
distribute incoming REST API requests

Runs As: Controller Service

Deployment Considerations:

 Horizontally scalable, start many
instances

 Front with load-balancer to present as
single endpoint

Key Capabilities:

 APIs supported
 OpenStack Volume API

 Robust extensions mechanism to add new
capabilities

cinder-volume manages individual block-based
volume providers

Core Use Case:

 Manages interactions with single block volume
provider

Runs As: Distributed Service

Deployment Considerations:

 Many cinder-volume instances exist in the
environment to ensure volume provisioning is
always available

 Single cinder-volume is not HA, manage single
provider to minimize failure domain

Key Capabilities:

 Create and manage volumes on storage
backend

 Expose volumes to physical host (e.g. iSCSI,
FC)

 Uses plug-in model to support differing storage
systems

cinder-scheduler selects cinder-volume instance to place volume on

Core Use Case:

 Selects cinder-volume service to place
volume on

Runs As: Controller Service

Deployment Considerations:

 Default scheduler is horizontally scalable

Key Capabilities:

 Default scheduled is allocation-based
using a series of filters to reduce set of
applicable hosts and uses costing
functions to provide weight

Identity Service (Keystone) offers project-wide identity, token,
service catalog, and policy services designed for integration with
existing systems

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

Core Use Cases:

■ Installation-wide authentication and
authorization to OpenStack services

Key Capabilities:

■ Authenticate user / password requests against
multiple backends (SQL, LDAP, etc) (Identity
Service)

■ Validate / manage tokens used after initial
username/password verification (Token Service)

■ Endpoint registry of available services (Service
Catalog)

■ Authorize API requests (Policy Service)

■ Domain / Project / User model with RBAC for
access to compute, storage, networking

■ Policy service provides a rule-based authorization
engine and the associated rule management
interface.

keystone service is the entry point for all AuthN and AuthZ
in OpenStack

Core Use Case:

■ Handle and service all Identity REST
API requests

Runs As: Controller Service

Deployment Considerations:

■ Horizontally scalable, start many
instances

■ Front with load-balancer to present as
single endpoint

Key Capabilities:

■ APIs supported
– OpenStack Identity API

■ Pluggable backends for each function:
identity, token, catalog, and policy

Glance database persists all image related metadata

Core Use Case:

■ Persist image-related metadata

Runs As: Controller Service

Deployment Considerations:

■ Use DB and Queue clustering/HA
methods

■ Can use same queue/database as
Nova

Key Capabilities:

■ Persists image-related metadata

Image Service (Glance) provides registration, discovery, and
delivery services for virtual disk and server images

Core Use Cases:

■ Administrator registers available guest images

■ End-user discovers available guest images

■ Deliver image to compute node on provisioning

Key Capabilities:

■ Image Registry (storage optional and is delegated
to a configurable store)

■ Administrators can create base templates from
which users can start new compute instances

■ Users can choose from available images, or
create their own from existing servers

■ Snapshots can also be stored in the Image
Service so that virtual machines can be backed
up quickly

■ Supported formats: Raw, Machine (a.k.a. Amazon
AMI), VHD (Hyper-V), VDI (VirtualBox), qcow2
(Qemu/KVM), VMDK (VMWare), OVF (VMWare,
others)

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

glance-api routes incoming REST API Requests

Core Use Case:

■ Routes REST API requests to the
appropriate handler

Runs As: Controller Service

Deployment Considerations:

■ Horizontally scalable, start many
instances

■ Front with load-balancer to present as
single endpoint

Key Capabilities:

■ APIs supported
– OpenStack Image API

■ Routes requests from clients to
registries of image metadata and to its
backend stores

■ Pluggable image store backends

glance-registry services Image Service API requests

Core Use Case:

■ Services Identity REST
API requests

Runs As: Controller Service

Deployment
Considerations:

■ (to be determined)

Key Capabilities:

■ APIs supported
– OpenStack Image API

Horizon (Dashboard) enables administrators and users to
access, provision, and manage resources through a self-service
portal GUI

Core Use Cases:

■ Self-service portal for compute and
object storage

■ Cloud administration (users/projects,
quotas, etc.)

Key Capabilities:

■ Thin wrapper over APIs, no local state

■ Registration pattern for applications to
hook into

■ Out-of-the-box support for all core
OpenStack projects.

■ Anyone can add a new component as a
“first-class citizen”.

■ Visual and interaction paradigms are
maintained throughout.NOT SHIPPED BY IBM

Image Source: http://www.solinea.com/2013/04/17/openstack-summit-intro-to-openstack-architecture-grizzly-edition/

horizon is the self-service portal implementation

Core Use Case:

■ GUI access to OpenStack APIs

Runs As: Controller Service

Deployment Considerations:

■ (to be determined)

Key Capabilities:

■ Provision and manage virtual servers,
volumes, and networks

■ Create and manage tenants and users

NOT SHIPPED BY IBM

Putting it all together....

Demo

39

Questions ?

39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

