
Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

1 of 41

Develop an IMS Application using Java and
Open Database

Skill Level: Beginner to Intermediate

Poonam Chitale (pchitale@us.ibm.com)

Software Engineer, IBM®

Joshua Newell (newelljo@us.ibm.com)

Software Engineer, IBM®

IBM Corporation

August 2013

Abstract
This tutorial takes you through the steps of using Rational® Developer for System z® Version 8.0.3 to write a
Java™ application to access IMS databases through the IMS Universal DL/I driver and the IMS Universal
JDBC driver.

About this tutorial
This tutorial will take you through the steps of writing a Java application to access IMS databases using the
IMS Universal DL/I driver and the IMS Universal JDBC driver.

Customers who store business data in IMS databases want an easy way to access their data. They also want
to be able to develop applications for IMS using modern and standardized programming solutions. The IMS
Universal drivers, part of the IMS Version 12 Open Database solution, are software components that provide
Java applications with connectivity to IMS databases from z/OS® and from distributed environments through
TCP/IP.

The IMS Universal drivers are built on industry standards and open specifications. Java applications that use
the IMS Universal drivers can reside on the same logical partition (LPAR) or on a different LPAR from the IMS
subsystem. Two types of connectivity are supported by the IMS Universal drivers: local connectivity to IMS
databases on the same LPAR (type-2 connectivity) and distributed connectivity through TCP/IP (type-4
connectivity).

This tutorial will help to familiarize you with using two of the IMS Universal drivers:

 IMS Universal DL/I driver, which provides a stand-alone Java application programming interface (API)
for writing granular queries to IMS databases using programming semantics similar to traditional IMS
DL/I calls

 IMS Universal JDBC driver, which provides a stand-alone Java Database Connectivity (JDBC) 3.0
driver for making structured query language (SQL)-based database calls to IMS databases.

In this tutorial, you will run Java applications in a Windows® environment and connect to the IMS database
using type-4 connectivity mode.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

2 of 41

Distributed and local connectivity with the IMS Universal drivers

The IMS Universal drivers support distributed (type-4) and local (type-2) connectivity to IMS databases. The
connectivity type is specified in the driverType connection property. In this tutorial exercise, you will use type-4
connectivity.

 Type-4 connectivity: With type-4 connectivity, the IMS Universal drivers can run on any platform that
supports TCP/IP and a Java Virtual Machine (JVM), including z/OS. To access IMS databases using type-4
connectivity, the IMS Universal drivers first establish a TCP/IP-based socket connection to IMS Connect.
IMS Connect is responsible for routing the request to the IMS databases using the Open Database Manager
(ODBM), and sending the response back to the client application. The DRDA® protocol is used internally in
the implementation of the IMS Universal drivers. You do not need to know DRDA to use the IMS Universal
drivers.

Figure 1: Distributed (type-4) connectivity

 Type-2 connectivity: Local (or type-2) connectivity with the IMS Universal drivers is targeted for the z/OS
platform and runtime environments. You would use type-2 connectivity when connecting to IMS subsystems
in the same logical partition (LPAR). In this tutorial, you will not need type-2 connectivity.

Objectives
To understand and gain hands-on experience creating Java applications to access and manipulate enterprise
data residing on the IMS database.

Upon completion of this study, you will be able to perform these tasks:

 Create a Java application to access IMS data by issuing IMS DL/I calls to the IMS database through
the IMS Universal DL/I driver

 Create a Java application to access IMS data by issuing SQL calls to the IMS database through the
IMS Universal JDBC driver

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

3 of 41

 Deploy and run a Java application in a Windows environment

System requirements for the tutorial:
Software installed on Windows

 Rational Developer for System z Version 8.0.3 (RDz)

 IMS Universal drivers libraries
o imsudb.jar

 Sample Java project
o IMSDBJavaApplicationLab.zip

System software installed on IBM z/OS

 IMS Version 12 configured with Open Database Manager (ODBM)

 IMS Connect Version 12

Checklist for first-time implementation

You may find it helpful have the following information and resources ready before proceeding with your first
implementation of the Java applications using the IMS Universal drivers. The information and resources to
run this tutorial is provided in the checklist below.

Table 1: Implementation checklist

Information or resource Your environment For this tutorial

IMS Connect host name (or IP
address) and DRDA port
number

Obtain this information
from IMS system
programmers.

Host name: ZSERVEROS.DEMOS.IBM.COM

DRDA port number: 7001

IMS data store name (IMS ID) Obtain this information
from IMS system
programmers.

Datastore name: IMSD

z/OS user ID and password Obtain this information
from IMS system
programmers.

Userid: EM4ZIMS

MetadataURL to the Java
metadata file generated by the
IMS Explorer

Obtain this information
from IMS application
programmers.

MetadataURL:(DatabaseName)
class://com.ibm.ims.db.databaseviews.DFSSAM09Dat
abaseView

Workspace directory and
project name to be used when
generating artifacts

A naming standard is
recommended.

Workspace directory:

C:\share\imsjavalab\workspace

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

4 of 41

Overview of development tasks

To complete this tutorial, you will perform the following tasks:

1 Task 1 - Install the tutorial sample project

1.1 Import the IMSDBJavaApplicationLab sample project

1.2 Verify that the IMS Universal drivers library is located on the build path

2 Task 2 – Access IMS data with the IMS Universal DL/I driver

2.1 Connect to the IMS database through the IMS Universal DL/I driver

2.1.1 Open the DLIAPIAssigment.java sample application

2.1.2 Set the connection properties

2.2 Issue DL/I calls to access the IMS database

2.2.1 Exercise 1 - Retrieve data in an IMS database

2.2.2 Exercise 2: Retrieve batch data in an IMS database

2.2.3 Exercise 3: Create SSALists with multiple segments, specify qualifications, and

mark specific fields for retrieval

2.2.4 Exercise 4: Utilize command codes for DL/I

3 Task 3 - Access IMS data with the IMS Universal JDBC driver

3.1 Connect to the IMS database through the IMS Universal JDBC driver

3.1.1 Open the JDBCApiAssignment.java sample application

3.1.2 Set the connection properties

3.2 Issue SQL calls to access the IMS database

3.2.1 Exercise 1 - Retrieve all fields of a segment

3.2.2 Exercise 2 - Retrieve fields of a segment based on a conditional statement

3.2.3 Exercise 3 - Order SQL query output by field values

3.2.4 Exercise 4 - Retrieve a specific field of a segment

3.2.5 Exercise 5 – Retrieve multiple fields from multiple segments

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

5 of 41

1 Task 1 - Install the tutorial sample project
In this task, you will import the tutorial sample project to IBM Rational Developer for System z (RDz), and
verify that the Java library with the code to run the IMS Universal DL/I and JDBC drivers is installed.

1.1 Switch to the Java perspective
Switch from the default z/OS Projects perspective to the Java perspective.

1. IBM Rational Developer for System z V 8.0.3 is started and you are using the

C:\share\imsjavalab\workspaceas your workspace directory.

Important:

For this tutorial, you will use C:\share\imsjavalab\workspaceas your workspace directory.

The Workspace

In RDz, a workspace is a directory that stores files for your projects. You can select your

own directory or take the default directory. Artifacts created by RDz will be stored in

this directory.

2. From the menu bar, select Window > Open Perspective > Other.

Figure 2: Opening a perspective in Rational Developer for System z

3. Scroll down and select Java from the Open Perspective dialog box.

Figure 3: Choosing the Java perspective

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

6 of 41

4. Press OK to switch to the Java perspective.

5. To verify that you are in Java perspective, make sure that the Java button appears in

the upper right corner of RDz, as shown in the figure below.

Figure 4: Verifying that the Java perspective is opened.

What is a perspective?
A perspective defines the initial set and layout of views in the Workbench window. Within the window,
each perspective shares the same set of editors. Each perspective provides a set of functionality
aimed at accomplishing a specific type of task or works with specific types of resources. For example,
the Java perspective combines views that you would commonly use while editing Java source files,
while the Debug perspective contains the views that you would use while debugging Java programs.

1.2 Import the IMSDBJavaApplicationLab sample project
Import the files for the IMSDBJavaApplicationLab sample project into the RDz workspace.

The IMSDBJavaApplicationLab sample project

The sample project includes the Java library that contains the IMS Universal drivers

required for this tutorial. The sample also includes sample Java application code that

you will customize to connect to an IMS database and issue database access calls.

1. From the menu bar, click File > Import to open the Import dialog box.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

7 of 41

Figure 5: Launching the Import dialog box

2. From the Import dialog box, select General > Existing Projects into Workspace and

click Next.

Figure 6: Launching the Import Existing Projects into Workspace wizard

3. From the Import Projects page, select Select root directory and click Browse.

4. Browse to the directory C:\Lab Files\IMS Java Application

Development\IMSDBJavaApplicationLab and click OK.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

8 of 41

Figure 7: Importing a project from an archive file

5. Make sure that the checkbox for IMSDBJavaApplicationLab is selected and click

Finish.

The sample project IMSDBJavaApplicationLab should appear in the Package Explorer view.

Figure 8: Package Explorer view after successfully importing the sample project

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

9 of 41

1.3 Verify that the IMS Universal drivers library is located on the build
path

Verify that the Java archive file imsudb.jar is correctly located in the build path of this project.

1. Right click on the project in the Package Explorer view and select Build Path >

Configure Build Path

Figure 9: Opening the Java Build Path properties page

2. From the Java Build Path page, click on the Libraries tab. Verify that the file

imsudb.jar – IMSDBJavaApplicationLab is present.

The imsudb.jar library

The imsudb.jar file contains the Java classes, interfaces, and metadata required to use

the IMS Universal DL/I driver and the IMS Universal JDBC driver.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

10 of 41

Figure 10: Verifying that the imsudb.jar library is in the build path

3. Click OK to save your changes and exit the Java Build Path page.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

11 of 41

2 Task 2 – Access IMS data with the IMS Universal DL/I driver
In this task, you will write a Java application to connect to an IMS database and manipulate data using a DL/I-
based syntax with the IMS Universal DL/I driver.

What is DL/I?

Data Language/I (DL/I) is the IMS data manipulation language, which is a common

high-level interface between a user application and IMS. DL/I calls are invoked from

application programs written in languages such as Java, PL/I, COBOL, VS Pascal, C,

and Ada. It also can be invoked from assembler language application programs by

subroutine calls. IMS lets the user define data structures, relate structures to the

application, load structures, and reorganize structures.

By using the IMS Universal DL/I driver, you can build segment search arguments

(SSAs) and use the methods of the program communication block (PCB) object to read,

insert, update, delete, or perform batch operations on segments. You can gain full

navigation control in the segment hierarchy.

Basic programming model for a Java application using the IMS Universal DL/I

driver

In general, to write a IMS Universal DL/I driver application, follow these steps:

1. Import the com.ibm.ims.dli package that contains the IMS Universal DL/I driver

classes, interfaces, and methods.

2. Connect to an IMS database subsystem.

3. Obtain a program specification block (PSB), which contains one or more PCBs.

4. Obtain a PCB handle, which defines an application's view of an IMS database

and provides the ability to issue database calls to retrieve, insert, update, and

delete database information.

5. Obtain an unqualified segment search argument list (SSAList) of one or more

segments in the database hierarchy.

6. Add qualification statements to specify the segments targeted by DL/I calls.

7. If retrieving data, mark the segment fields to be returned.

8. Execute DL/I calls to the IMS database.

9. Handle errors that are returned from the DL/I programming interface.

10. Disconnect from the IMS database subsystem.

2.1 Connect to the IMS database through the IMS Universal DL/I driver
Before you can execute DL/I calls from your IMS Universal DL/I driver application, you must connect to an
IMS database.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

12 of 41

2.1.1 Open the DLIAPIAssigment.java sample application

The DLIApiAssignment.java sample application

This sample application contains skeleton Java code for connecting to the IMS database

and issuing DL/I data access calls using the IMS Universal DL/I driver.

1. From the Package Explorer view, expand IMSDBJavaApplicationLab > src >

com.ibm.ims.db.exercise.

Figure 11: Navigating to the DLIApiAssignment.java sample application

2. From the Package Explorer view, double click on the file DLIApiAssignment.java to

open the sample application in the Java editor.

Maximizing a view is the ability to increase a view to the maximum possible size on the screen. This
can be accomplished by double-clicking on the view tab. To go back to the original view size, double-
click on the view tab again.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

13 of 41

Figure 12: The opened DLIApiAssignment.java sample application in the Java editor

The Java editor

The Java editor provides specialized features for editing Java code. The editor includes

support for syntax highlighting, content/code assist, code formatting, import

assistance, and integrated debugging features.

2.1.2 Set the connection properties

1. In the Java editor, scroll down the application source code until you find the Java main

method shown in the screenshot below.

Figure 13: Java main method in the DLIApiAssignment sample application

Moving your cursor to a specific line number

RDz provides a shortcut to move your cursor directly to a specific line in an editor. To go to a specific
line, press Ctrl + L from the editor. Enter the line number and press OK.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

14 of 41

Displaying line numbers in the editor

Line numbers can be displayed directly in the editor by going to Windows > Preferences. In the
Preferences Dialog Menu navigate to General > Editors > Text Editors and check the box next to
Show line numbers.

Figure 14: Configuring the editor to display line numbers

2. In line 44 of the code, delete the constant REPLACE_THIS and replace it with

IMSConnectionSpec.DRIVER_TYPE_4 to set the driver connectivity type.

Java code assist

RDz provides code assist for Java applications. By pressing CTRL + space, the Java editor will

display a list of possible commands variables for that line. Try specifying the driver type by typing IMS

and pressing CTRL + space and scrolling to the constant IMSConnectionSpec. Alternatively, when

you type a period (.) after a class, the Java code assist displays a menu of methods and variables

that the class can invoke. Try it after IMSConnectionSpec and select DRIVER_TYPE_4.

3. In line 56 of the code, delete the string "your.host.name.com" and replace it with

"zserveros.demos.ibm.com" to set the host.

The datastoreServer property

The host variable in the sample application is used to set the datastoreServer property. This

connection property contains the name or IP address of the data store server (IMS Connect). You
can provide either the host name (for example, dev123.svl.ibm.com) or the IP address (for example,
192.166.0.2). In this tutorial, the target IMS Connect has already been pre-configured for you. Use
zserveros.demos.ibm.com as the dataStoreServer.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

15 of 41

Figure 15: Setting the connection properties

4. In line 57 of the code, delete the string "" and replace it with “IMSD" to set the

datastoreName.

The datastoreName property

This connection property contains the name of the IMS data store to access. When using type-4
connectivity, the datastoreName property must match either the name of the data store defined to
Open Database Manager (ODBM) or be blank. In this tutorial, the target IMS data store has already
been created for you and pre-populated with data. Use IMSD as the dataStoreName.

5. In line 58 of the code, delete the string "yourID" and replace it with "EM4ZIMS" to set

the username.

The user and password properties

The user and password connection properties are the user name and password used for the
connection to IMS Connect. This information can typically be obtained from your RACF®
administrator.

6. In line 60 of the code, verify that the drdaPort value 7001 has already been set for you.

The portNumber property

The drdaPort variable in the sample application is used to set the portNumber property. This

connection property is the TCP/IP server port number to be used to communicate with IMS Connect.
The portNumber property is not required when using type-2 connectivity. In this tutorial, the target
IMS Connect has already been pre-configured for you. Use 7001 as the drdaPort.

7. In line 82 of the code, delete the constant REPLACE_THIS and replace it with the string

"class://com.ibm.ims.db.databaseviews.DFSSAM09DatabaseView" to set the

metadataURL.

The metadataURL property

This connection property is the location of the database metadata representing the target IMS
database. The metadataURL property is the fully qualified name of the Java metadata class
generated by the IMS Enterprise Suite DLIModel utility plug-in, based on the PSB and DBD source
files of the target IMS database. The Java metadata class must be generated before coding a Java
application to access the target IMS database using the IMS Universal drivers. The format of the

metadataURL is: “class://packageName.className”

In this tutorial, the Java metadata class has already been generated for you. Use
class:\\com.ibm.ims.db.databaseviews.DFSSAM09DatabaseView as the metadataURL.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

16 of 41

Figure 16: Setting the metadataURL connection property

8. Press Ctrl + S to save your code changes.

After completing this step, your Java application should be ready to connect using the Universal

DL/I driver. Next, you will need to modify the Java application code to issue data access calls

to IMS.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

17 of 41

The Parts Order sample database

This tutorial uses the Parts Order database that is provided in the IMS Installation Verification
Program (IVP). You can refer to this diagram when working on the exercises in this tutorial.

The diagram below shows the hierarchical structure of the segments in the Parts Order database.
Each rectangle represents a database segment. PARTROOT is the root segment of this database,
and STANINFO and STOKSTAT are its child segments. STOKSTAT has CYCCOUNT and
BACKORDR as its child segments. Each segment contains one or more fields that contain data. For
example, PARTKEY is a field in the PARTROOT segment.

Figure 17: Segments of the Parts Order database (reference only)

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

18 of 41

2.2 Issue DL/I calls to access the IMS database

The following exercises in this section will show you how to issue DL/I calls in your Java application to retrieve
data from the IMS database using the IMS Universal DL/I driver.

Lab exercises

This task contains several programming exercises for you to complete. These exercises will help to
familiarize you with basic data access operations using the IMS Universal DL/I driver. At certain
points indicated in the instructions, you will be asked to provide the correct code. For your reference,
we have provided the exercise solutions. You can find the code with the exercise solutions from the
Package Explorer view by opening IMSDBJavaApplicationLab >
com.ibm.ims.db.exercise.solution > DLIApiAssignment.java

2.2.1 Exercise 1 - Retrieve data in an IMS database

In this exercise, you will retrieve data in an IMS database by issuing DL/I Get Unique and Get

Next calls through the IMS Universal DL/I driver.

Using the Get Unique (GU) and Get Next (GN) DL/I calls

If an input message contains more than one segment, a Get Unique call retrieves the first segment of
the message and Get Next (GN) calls retrieve the remaining segments.

When issued from the IMS Universal DL/I driver, the Get Unique call retrieves a specific segment or
collection of segments on a hierarchic path from an IMS database. The GU call also establishes the
position in the database from which additional segments can be processed in a forward direction.

The Get Next call retrieves the next segment or collection of segments on a hierarchic path from an
IMS database. The GN call usually proceeds forward along the hierarchy of a database from the
current database position to the next required segment. To modify the GN call to start at an earlier
position than the current position in the database, you can use an IMS command code. The Get Next
call returns a Path object representing the hierarchic path from the root segment to the segment the
cursor is currently positioned on. The Path object includes the data stored in the segments along the
hierarchic path.

Exercise 1 begins on line 103 of the DLIApiAssignment.java sample application, where the

function displayPARTROOT(psb) is invoked. To go to the start of the function, go to line 107,

move the mouse over the displayPARTROOT(psb)function invocation, and press F3.

Figure 18: Navigating to the start of Exercise 1

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

19 of 41

2.2.1.1 Exercise 1 - Step 1: Define an unqualified SSAList to specify the segments

to retrieve

1. In line 146 of the code, delete the constant REPLACE_THIS and replace it with the Java

code statement to get an unqualified SSAList for the PARTROOT segment. You can find

the answer after Figure 19 below.

Hint:

Use the PCB object that has been created (partspcb1) to call the getSSAList(String)

method. Pass in the segment name ("PARTROOT") as the input parameter.

The SSAList interface

The com.ibm.ims.dli.SSAList interface represents a list of segment search arguments (SSAs)

used to specify the segments to target in a particular database call. Use the SSAList interface to

construct each segment search argument in the list, and to set the command codes and lock class for

the segment search arguments. Each SSA in the SSAList can be qualified or unqualified. A SSA

qualification can be used to filter the segments to update or retrieve on a hierarchic path.

Figure 19: Defining the unqualified segment search argument list

Verify your Java code statement:

In line 146, your Java code statement should look like this:

SSAList ssaList = partspcb1.getSSAList("PARTROOT");

2.2.1.2 Exercise 1 - Step 2: Issue a Get Unique DL/I call to retrieve segments

1. In line 164 of the code, delete the constant REPLACE_THIS and replace it with the Java

code statement to issue a Get Unique DL/I call. You can find the answer after figure 20

below.

Hint:

Use the PCB object that was previously created (partspcb1) to call the getUnique(Path,

SSAList, boolean) method.

 Pass in the Path object that was previously created (path) as the 1st input parameter.

 Pass in the SSAList object that was previously created (ssaList) as the 2nd input

parameter.

 Pass in the boolean value false as the 3rd input parameter. False indicates that this DL/I

call is not a Get Hold Unique call.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

20 of 41

Figure 20: Insert code to issue the Get Unique call

Verify your Java code statement:

In line 164, your Java code statement should look like this:

if (partspcb1.getUnique(path, ssaList, false)) {

2.2.1.3 Exercise 1 – Step 3: Issue a Get Next DL/I call

1. In line 178 of the code, delete the constant REPLACE_THIS and replace it with the Java

code statement to issue a Get Next DL/I call. You can find the answer after Figure 21

below.

Hint:

Use the PCB object that was previously created (partspcb1) to call the getNext(Path,

SSAList, boolean) method.

 Pass in the Path object that was previously created (path) as the 1st input parameter

 Pass in the SSAList object that was previously created (ssaList) as the 2nd input

parameter

 Pass in the boolean value false as the 3rd input parameter, to indicate that this DL/I call

is not a Get Hold Next call.

Figure 21: Insert code to issue a Get Next call

Verify your Java code statement:

In line 178, your Java code statement should look like this:

while (partspcb1.getNext(path, ssaList, false)) {

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

21 of 41

2.2.1.4 Exercise 1 – Step 4: Run the application and verify the output results

1. Press Ctrl + S to save your changes to the files.

2. Right click on the Java editor and select Run As > Java Application.

Figure 22: Running the Java application

3. An Errors in Workspace dialog box will appear but you can safely ignore it. Click on

Proceed to continue.

4. In the Console view, verify that the output results look like the screenshots below.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

22 of 41

Figure 23: Beginning of Exercise 1 result output in the Console view

Figure 24: End of Exercise 1 result output in the Console view

2.2.2 Exercise 2: Retrieve batch data in an IMS database

In this exercise, you will retrieve batch data from an IMS database by issuing a Batch Retrieve

call through the IMS Universal DL/I driver.

Batch Retrieve

You can use the batch retrieve call to retrieve multiple segments from an IMS database in a single
call. Instead of a client application making multiple GU and GN calls, IMS performs all the GU and
GN processing and returns the results back to the client in a single batch network operation. The
fetch size property determines how much data is returned on each batch network operation.

Exercise 2 begins on line 110 of the DLIApiAssignment.java sample application. At the

beginning of Exercise 2, the code for this exercise has been commented out.

2.2.2.1 Exercise 2 – Step 1: Uncomment the code for Exercise 2

1. In the Java editor, highlight lines 112 to 114 of the DLIApiAssignment.java sample
application and press Ctrl + / to uncomment the code.

Figure 25: Code for Exercise 2 (before uncomment)

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

23 of 41

Code comments allows comment statements that will not be compiled and executed to be inserted
directly into the application source code. In RDz, blocks of code can be commented and
uncommented by highlighting that block and pressing Ctrl + /.

Figure 26: Code for Exercise 2 (after uncomment)

2. The function displayPARTROOTUsingBatchRetrieve contains the Java code for the

batch retrieval operation. In line 113, move your mouse over the

displayPARTROOTUsingBatchRetrieve(psb)function invocation and press F3 to open

the function declaration.

2.2.2.2 Exercise 2 – Step 2: Issue a Batch Retrieve call to retrieve multiple

segments

1. In line 210 of the code, delete the constant REPLACE_THIS and replace it with the Java

code statement to issue a Batch Retrieve call. You can find the answer after the figure

below.

Hint:

Use the PCB object that was previously created (partspcb1) to call the

batchRetrive(SSAList) method.

 Pass in the SSAList object that was previously created (ssaList) as the input parameter.

Figure 27: Insert code to issue a batch retrieve call

Verify your Java code statement:

In line 210, your Java code statement should look like this:

PathSet ps = partspcb1.batchRetrieve(ssaList);

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

24 of 41

2.2.2.3 Exercise 2 – Step 3: Commit the unit of work

1. In line 227 of the code, delete the constant REPLACE_THIS and replace it with the Java

code statement to commit your unit of work. You can find the answer after the figure

below.

Hint:

Use the PSB object was previously created (psb) to call the commit() method.

Committing and rolling back DL/I transactions

The IMS Universal DL/I driver provides support for local transactions with the commit and rollback
methods. A local transaction consists of a unit of work with several units of recovery. An IMS
Universal DL/I driver application can commit or roll back changes to the database within a unit of

recovery. In the IMS Universal DL/I driver, the local transaction is scoped to the PSB instance. No

explicit call is needed to begin a local transaction. After the unit of work starts, the application makes
DL/I calls to access the database and create, replace, insert, or delete data. The application commits

the current unit of recovery by using the PSB.commit method. The commit operation instructs the

database to commit all changes to the database that are made from the point when the unit of work
started, or from the point after the last commit or rollback method call, whichever was most recent.

Figure 28: Insert code to issue a commit call

Verify your Java code statement:

In line 227, your Java code statement should look like this:

psb.commit();

2.2.2.4 Exercise 2 – Step 4: Run the application and verify the output results

1. Press Ctrl + S to save your changes to the files.

2. Right click on the Java editor and select Run As section > Java Application, as shown

in section 2.2.1.4.

3. An Errors in Workspace dialog box will appear. Click on Proceed.

4. In the Console view, verify that the output results look like the screenshots below.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

25 of 41

Figure 29: Beginning of Exercise 2 result output in the Console view

Figure 30: End of Exercise 2 result output in the Console view

2.2.3 Exercise 3: Create SSALists with multiple segments,
specify qualifications, and mark specific fields for retrieval

In this exercise, you will mark specific segment fields for retrieval from the IMS database. You

will also specify the number of rows of data for the IMS Universal DL/I driver to retrieve.

Marking segment fields for retrieval with the IMS Universal DL/I driver

In your Java application, you can specify which segment fields are to be returned from a database

retrieve call by using the markFieldForRetrieval or the markAllFieldsForRetrieval

methods. Following the IMS default, all of the fields in the lowest level segment specified by the

SSAList are initially marked for retrieval.

The markFieldForRetrieval method

This SSAList method is used to mark a specific field for retrieval from the database. The

markFieldForRetrieval method is used together with getPathForRetrieveReplace() and

with the data retrieval methods in the PCB interface. When a retrieve call is made, the resulting Path

object will contain all the fields that have been marked for retrieval.

The markAllFieldsForRetrieval method

This method is used to mark all fields in the specified segment for retrieval from the database. The

markAllFieldsForRetrieval method is used together with getPathForRetrieveReplace() and

with the data retrieval methods in the PCB interface. When a retrieve call is made the resulting Path

object will contain only the fields marked for retrieval. Following the IMS default, all of the fields in the

lowest level segment specified by the SSAList are initially marked for retrieval.

Exercise 3 begins on line 116 of the DLIApiAssignment.java sample application. At the

beginning of Exercise 3, the code for this exercise has been commented out.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

26 of 41

2.2.3.1 Exercise 3 – Step 1: Uncomment the code for Exercise 3

1. In the Java editor, highlight lines 118 to 120 of the DLIApiAssignment.java sample

application and press Ctrl + / to uncomment the code.

Figure 31: Code for Exercise 3 (before uncomment)

Figure 32: Code for Exercise 3 (after uncomment)

2. The function displayBACKORDR contains the Javacode for the retrieval. In line 119,

move your mouse over the displayBACKORDR(psb)function invocation and press F3 to

open the function declaration.

2.2.3.2 Exercise 3 – Step 2: Build an unqualified SSAList

1. In line 246 of the code, delete the constant REPLACE_THIS and replace it with the

Java code statement to build an unqualified SSAList for a hierarchic path of segments

ranging from the top-level PARTROOT segment to the bottom-level BACKORDR segment.

You can find the answer after the figure below.

Hint:

Declare a new SSAList variable (ssaList). Use the PCB object that has been created

(partspcb1) to call the getSSAList(String, String) method.

 Pass in the PARTROOT segment name ("PARTROOT") as the 1st input parameter

 Pass in the BACKORDR segment name ("BACKORDR") as the 2nd input parameter

Figure 33: Insert code to build the unqualified SSAList

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

27 of 41

Verify your Java code statement:

In line 246, your Java code statement should look like this:

SSAList ssaList = partspcb1.getSSAList("PARTROOT", "BACKORDR");

2.2.3.3 Exercise 3 - Step 3: Mark the fields to retrieve

1. In line 262 of the code, delete the constant REPLACE_THIS and replace it with the

Java code statement to mark the WORKORDER field for retrieval from the BACKORDR

segment. In line 263, add the Java code statement to mark the ORDERQTY field for

retrieval from the same segment. You can find the answer after the figure below.

Hint:

Use the SSAList object that has been created (ssaList) to call the

markFieldForRetrieval(String, String, boolean) method.

 Pass in the segment name ("BACKORDR") as the 1st input parameter, to indicate the

name of the segment in the SSAList containing the field

 Pass in the field name ("WORKORDER") as the 2nd input parameter, to indicate the

name of the field to be marked for retrieval from the database

 Pass in the boolean value true as the 3rd input parameter, to indicate that this field

should be retrieved from the database

In the next line, create a similar statement to mark the ORDERQTY field for retrieval.

Figure 34: Insert code to mark the segment fields to retrieve

Verify your Java code statement:

In line 262 and 263, your Java code statements should look like this:

ssaList.markFieldForRetrieval("BACKORDR", "WORKORDER", true);

ssaList.markFieldForRetrieval("BACKORDR", "ORDERQTY", true);

2.2.3.4 Exercise 3 – Step 4: Specify the number of rows to fetch per network call

1. In line 274 of the code, delete the constant REPLACE_THIS and replace it with the

Java code statement to set the fetch size property to 30. You can find the answer after

the figure below.

Hint:

Use the PCB object that has been created (partspcb1) to call the setFetchSize(int) method.

 Set the number of rows to fetch (30) as the 1st input parameter

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

28 of 41

Fetch size property

The fetch size is the number of rows physically retrieved from the IMS database per network call. A

list of rows is represented by a Path instance containing one or more segments that match the

segment search argument criteria specified by an SSAList. This is set for you internally. You can

also set the fetch size using the setFetchSize method from the PCB interface. Setting the fetch

size allows a single request to return multiple rows at a time, so that each application request to
retrieve the next row does not always result in a network request.

Figure 35: Insert code to change the fetch size

Verify your Java code statement:

In line 274, your Java code statement should look like this:

partspcb1.setFetchSize(30);

2.2.3.5 Exercise 3 – Step 5: Print the retrieved segment fields from the path

1. In line 287 of the code, delete the 1st instance of the constant REPLACE_THIS and

change the System.out.println statement to print the value of the WORKORDER field

returned by IMS. In the same line, delete the 2nd instance of the constant

REPLACE_THIS and change the Java code statement to print the value of the ORDERQTY

field returned by IMS. You can find the answer after the figure below.

Hint:

Use the Path object that has been created (path) to call the getString(string) method.

 Set the 1st parameter to the field name ("WORKORDER"), to retrieve the value of this

field.

Use a similar method call to retrieve the value of the ORDERQTY field.

Figure 36: Modifying the System.out.println statement to print the retrieved segment fields

Verify your Java code statement:

In line 287, your Java code statement should look like this:

System.out.println(path.getString("WORKORDER") + "\t\t" +

path.getString("ORDERQTY"));

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

29 of 41

2.2.3.6 Exercise 3 – Step 6: Run the application and verify the output results

1. Press Ctrl + S to save your changes to the files.

2. Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.4.

3. An Errors in Workspace dialog box will appear. Click on Proceed.

4. In the Console view, verify that the output results look like the screenshots below.

Figure 37: Exercise 3 result output in the Console view

2.2.4 Exercise 4: Utilize command codes for DL/I

In this exercise, you will add a command code in the SSAList to retrieve a sequence of

segments.

Command codes for DL/I

SSAs can also include one or more command codes, which can change and extend the functions of
DL/I calls. For example, you can use the D command code to retrieve or insert a sequence of
segments in a hierarchic path with one call rather than retrieving or inserting each segment with a
separate call. A call that uses the D command code is called a path call.

Exercise 4 begins on line 122 of the DLIApiAssignment.java sample application. At the

beginning of Exercise 4, the code for this exercise has been commented out.

2.2.4.1 Exercise 4 – Step 1: Uncomment the code for Exercise 4

1. In the Java editor, highlight lines 123 to 125 of the DLIApiAssignment.java sample

application and press Ctrl + / to uncomment the code.

Figure 38: Code for Exercise 4 (before uncomment)

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

30 of 41

Figure 39: Code for Exercise 4 (after uncomment)

2. The function displayPARTROOTandBACKORDER contains the code for the batch retrieval

operation. In line 124, move your mouse over the

displayPARTROOTandBACKORDRData(psb)function invocation and press F3 to open the

function declaration.

2.2.4.2 Exercise 4 – Step 2: Add a command code to the SSAList

1. In line 333 of the code, delete the constant REPLACE_THIS and replace it with the Java

code statement to add the D command code. You can find the answer after the figure

below.

Hint:

Use the SSAList object that has been created (ssaList) to call the addCommandCode (String,

byte) method.

 Set the name of the segment ("PARTROOT") as the 1st input parameter

 Set the command code (SSAList.CC_D) as the 2nd input parameter

Figure 40: Insert the code to add an IMS command code

Verify your Java code statement:

In line 333, your Java code statement should look like this:

ssaList.addCommandCode("PARTROOT", SSAList.CC_D);

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

31 of 41

2.2.4.3 Exercise 4 – Step 3: Run the application and verify the output results

1. Press Ctrl + S to save your changes to the files.

2. Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.4.

3. In the Console view, verify that the output results look like the screenshots below.

Figure 41: Exercise 4 result output in the Console view

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

32 of 41

3 Task 3 - Access IMS data with the IMS Universal JDBC driver
In this task, you will write a Java application to connect to an IMS database and manipulate data using
structured query language (SQL) with the IMS Universal JDBC driver.

What is JDBC?

Java Database Connectivity (JDBC) is an application programming interface (API) that

Java applications use to access relational databases or tabular data sources. The JDBC

API is the industry standard for database-independent connectivity between the Java

programming language and any database that has implemented the JDBC interface.

The client uses the interface to query and update data in a database.

IMS support for JDBC lets you write Java applications that can issue dynamic SQL calls

to access IMS data and process the result set that is returned in tabular format. The

IMS Universal JDBC driver is designed to support a subset of the SQL syntax with

functionality that is limited to what the IMS database management system can process

natively. Its DBMS-centric design allows the IMS Universal JDBC driver to fully leverage

the high performance capabilities of IMS. The IMS Universal JDBC driver also provides

aggregate function support, and ORDER BY and GROUP BY support.

Basic programming model for a Java application using the IMS Universal JDBC

driver

The IMS Universal JDBC driver supports the standard programming model for using

JDBC drivers. For more information about the JDBC programming model, see the JDBC

Basics tutorial by SUN.

3.1 Connect to the IMS database through the IMS Universal JDBC driver
Before you can execute SQL calls from your IMS Universal JDBC driver application, you must connect to an
IMS database.

3.1.1 Open the JDBCApiAssignment.java sample application

The JDBCApiAssignment.java sample application

This sample application contains skeleton Java code for connecting to the IMS database

and issuing SQL data access calls using the IMS Universal JDBC driver.

1. In the Package Explorer view, expand IMSDBJavaApplicationLab > src >

com.ibm.ims.db.exercise

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

33 of 41

Figure 42: Navigating to the JDBCApiAssignment.java sample application

2. From the Package Explorer view, double click on JDBCApiAssignment.java to open the

sample application in the Java editor.

Figure 43: The opened JDBCApiAssignment.java sample application in the Java editor

3.1.2 Set the connection properties

1. In line 22 of the code, verify that this application will connect using type-4 connectivity.

2. In line 35, verify that 7001 is set as the IMS Connect DRDA port number.

3. In line 38, verify that

"class://com.ibm.ims.db.databaseviews.DFSSAM09DatabaseView" is set as the

metadataURL.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

34 of 41

3.2 Issue SQL calls to access the IMS database
The following exercises in this section will show you how to issue SQL calls in your Java

application to retrieve data from the IMS database using the IMS Universal JDBC driver.

How do IMS database elements map to relational database elements?

The IMS Universal JDBC driver performs the necessary translation between IMS and relational
database elements. The table below summarizes the database element mappings.

Hierarchical database elements in IMS Equivalent relational database elements

Segment name Table name

Segment instance Table row

Segment field name Column name

Segment unique key Table primary key

Virtual foreign key field Table foreign key

3.2.1 Exercise 1 - Retrieve all fields of a segment

In this exercise, you will retrieve all the fields of a segment by issuing a SELECT statement

using the IMS Universal JDBC driver.

Using the SELECT keyword

Use the SELECT statement to retrieve data from one or more tables. The result is returned in a
tabular result set. The syntax for a simple SELECT query is:

 SELECT column_name(s) FROM table_name

An asterisk * can be used in place of column_name to represent all columns of that table. Because
IMS is a hierarchical database, column_name maps to field_name and table_name maps to
segment_name.

When using the SELECT statement with the IMS Universal JDBC driver:

 If you are selecting from multiple tables and the same column name exists in one or more of
these tables, you must table-qualify the column or an ambiguity error will occur.

 The FROM clause must list all the tables you are selecting data from. The tables listed in the
FROM clause must be in the same hierarchic path in the IMS database.

 In Java applications using the IMS JDBC drivers, connections are made to PSBs. Because
there are multiple database PCBs in a PSB, queries must specify which PCB in a PSB to
use. To specify which PCB to use, always qualify segments that are referenced in the FROM
clause of an SQL statement by prefixing the segment name with the PCB name. You can
omit the PCB name only if the PSB contains only one PCB.

1. Move your cursor to line 20 of the sample application. You will modify this statement to

issue different SQL queries in this task.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

35 of 41

Figure 44: Modify the query string to issue different SQL queries in the sample application

2. In line 20, construct a SQL query to retrieve all of the fields of the

PARTSPCB1.PARTROOT segment. Note that the segment name must start with the

PCB qualifier.

 Set the query string to "SELECT * FROM PARTSPCB1.PARTROOT"

3. Press Ctrl + S to save your changes to the files.

4. Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.4.

5. In the Console view, verify that the result output looks like the screenshots below.

Figure 45: Beginning of Task 3 - Exercise 1 result output

Figure 46: End of Task 3 - Exercise 1 result output

Comment [U1]:

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

36 of 41

3.2.2 Exercise 2 - Retrieve fields of a segment based on a

conditional statement

In this exercise, you will retrieve specific fields of a segment based on a conditional statement

by issuing a SELECT statement with a WHERE clause using the IMS Universal JDBC driver.

Using the WHERE keyword

Use the WHERE keyword in SQL to select data conditionally. The syntax for a conditional select
query is:

 SELECT column_name(s) FROM table_name WHERE column_name operator value

Note that for text values, the value must be enclosed in quotes. Operators on text values perform
binary comparisons. The IMS Universal JDBC driver converts the WHERE clause in an SQL query to
a segment search argument (SSA) list when querying a database. SSA rules restrict the type of
conditions you can specify in the WHERE clause.

1. In line 20, construct a SQL query that will display all fields of the

PARTSPCB1.PARTROOT segment where the PARTKEY field is greater than a ‘025’.

Note that the PARTKEY field contains data that is alphanumeric.

 Set the query string to "SELECT * FROM PARTSPCB1.PARTROOT WHERE

PARTKEY > '025'"

2. Press Ctrl + S to save your changes to the files.

3. Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.4.

4. In the Console view, verify that the beginning of the result output looks like the

screenshot below.

Figure 47: Beginning of Task 3 - Exercise 2 result output

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

37 of 41

3.2.3 Exercise 3 - Order SQL query output by field values

In this exercise, you will retrieve data from a segment in sorted order issuing a SELECT

statement with an ORDER BY clause using the IMS Universal JDBC driver.

Using the ORDER BY keyword

Use the ORDER BY clause in SQL to sort the results of a SQL query in ascending or descending
order. The syntax for a ordered select query is:

 SELECT column_name(s) FROM table_name ORDER BY column_name ASC|DESC

Note that ASC is used for ascending order and DESC is used for descending order. The field names
that are specified in an ORDER BY clause must match exactly the field name that is specified in the
SELECT statement.

1. In line 20, construct a SQL query that will retrieve all fields of the

PARTSPCB1.PARTROOT segment and sort the results by the PART field in descending

order.

 Set the query string to "SELECT * from PARTSPCB1.PARTROOT ORDER BY

PART DESC"

2. Press Ctrl + S to save your changes to the files.

3. Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.4.

4. In the Console view, verify that the result output looks like the screenshots below.

Figure 48: Beginning of the Task 3 - Exercise 3 result output

Figure 49: End of the Task 3 - Exercise 3 result output

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

38 of 41

3.2.4 Exercise 4 - Retrieve a specific field of a segment

In this exercise, you will retrieve a specific field in a segment. By querying only specific fields

instead of selecting all the fields in a particular segment, you can reduce network overhead

when using the IMS Universal JDBC driver.

1. In line 20, construct a SQL query that will display only the PART field from the

PARTSPCB1.PARTROOT segment.

 Set the query string to "SELECT PART FROM PARTSPCB1.PARTROOT"

2. Press Ctrl + S to save your changes to the files.

3. Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.4.

4. In the Console view, verify that the result output looks like the screenshots below.

Figure 50: Beginning of Task 3 - Exercise 4 result output

Figure 51: End of Task 3 - Exercise 4 result output

3.2.5 Exercise 5 – Retrieve multiple fields from multiple

segments

In this exercise, you will issue a SELECT query to retrieve data from segments that are on the

same and on different hierarchical paths in the IMS database. Note that the PARTROOT and the

BACKORDR segments are on the same hierarchic path, while the CYCCOUNT segment is on a

separate hierarchic path.

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

39 of 41

Retrieving fields from multiple segments

In SQL queries to relational databases, the JOIN keyword is typically used to query data from
multiple tables based on a relationship between the tables. IMS does not support using the JOIN
keyword explicitly, because IMS is a hierarchical database and it is possible that two segments are
unrelated to each other. However, an implicit join will be performed if the segments fall within the
same hierarchical path. The syntax for this is the same as for a SELECT query. Note that multiple
column names and table names can be specified as long as a comma is used to separate them. IMS
allows issuing a SELECT call to retrieve data from segments that are not on the same hierarchical
path, if a logical relationship has been defined between them.

1. In line 20, construct a SQL query that will display the PART field from the

PARTSPCB1.PARTROOT segment and the BACKKEY field from the

PARTSPCB1.BACKORDR segment.

 Set the query string to "SELECT PART, BACKKEY FROM PARTSPCB1.PARTROOT,

PARTSPCB1.BACKORDR"

2. Press Ctrl + S to save your changes to the files.

3. Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.4.

4. In the Console view, verify that the result output looks like the screenshot below.

Figure 52: Result output of Task 3 - Exercise 5 part 1

5. In line 20, construct a SQL query that will display the PHYSICALCOUNT field from the

PARTPCB1.CYCCOUNT segment and the WORKORDER field form the

PARTSPCB1.BACKORDR segment.

 Set the query string to "SELECT PHYSICALCOUNT, WORKORDER FROM

PARTSPCB1.CYCCOUNT, PARTSPCB1.BACKORDR"

6. Press Ctrl + S to save your changes to the files.

7. Right click on the Java editor and select Run As > Java Application, as shown in

section 2.2.1.4.

8. In the Console view, verify that the query fails with this error message: "The tables

BACKORDR and CYCCOUNT specified in the query cannot be joined together.

They are not along the same hierarchic path in the database".

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

40 of 41

Resources

Learn

 View the Information Management Software for z/OS Solutions Information Center for the latest
information and educational resources available for Information Management System (IMS), including

the Java API reference for the IMS Universal drivers.

 Visit the Rational software area on developerWorks for technical resources and best practices for

Rational Software Delivery Platform products.

 Explore Rational computer-based, Web-based, and instructor-led online courses. Hone your skills and

learn more about Rational tools with these courses, which range from introductory to advanced. The

courses on this catalog are available for purchase through computer-based training or Web-based
training. Additionally, some "Getting Started" courses are available free of charge.

 Subscribe to the Rational Edge e-zine for articles on the concepts behind effective software
development.

 Check out the Information Management IMS zone on developerWorks®.

 Subscribe to the IBM developerWorks newsletter, a weekly update on the best of developerWorks

tutorials, articles, downloads, community activities, webcasts and events.

 Browse the technology bookstore for books on these and other technical topics.

 Use Java in IMS dependent region: http://www.ibm.com/developerworks/data/library/techarticle/dm-

1011javaimsregions/index.html?ca=drs-

 IMS Universal Drivers programming guide:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingref

erence.htm

 Java programming reference:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingref

erence.htm

 Find code sample for cast-to-DLI approach for JDBC here:

https://www.ibm.com/developerworks/community/blogs/8a337b1c-3c0c-48a5-b7cc-

7f805884dbb9/entry/new_example_available_cast_to_dl_i_from_the_ims_universal_jdbc_driver?lang=e
n

Get products and technologies

 Download trial versions of IBM Rational software.

 Download a trial version of IBM Rational Developer for system z.

Discuss

 Participate in the discussion forum.

 Check out developerWorks blogs and get involved in the developerWorks community.

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/dzhome.htm
http://www.ibm.com/developerworks/rational
http://www.ibm.com/training/us/catalog/rational
http://www.ibm.com/developerworks/rational/rationaledge/
http://www.ibm.com/developerworks/db2/products/ims/index.html
https://www.ibm.com/developerworks/newsletter/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/data/library/techarticle/dm-1011javaimsregions/index.html?ca=drs-
http://www.ibm.com/developerworks/data/library/techarticle/dm-1011javaimsregions/index.html?ca=drs-
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingreference.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingreference.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingreference.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.apr/ims_javaprogrammingreference.htm
https://www.ibm.com/developerworks/community/blogs/8a337b1c-3c0c-48a5-b7cc-7f805884dbb9/entry/new_example_available_cast_to_dl_i_from_the_ims_universal_jdbc_driver?lang=en
https://www.ibm.com/developerworks/community/blogs/8a337b1c-3c0c-48a5-b7cc-7f805884dbb9/entry/new_example_available_cast_to_dl_i_from_the_ims_universal_jdbc_driver?lang=en
https://www.ibm.com/developerworks/community/blogs/8a337b1c-3c0c-48a5-b7cc-7f805884dbb9/entry/new_example_available_cast_to_dl_i_from_the_ims_universal_jdbc_driver?lang=en
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX15&S_CMP=ART
http://www.ibm.com/developerworks/downloads/r/rdz/learn.html?S_TACT=105AGX15&S_CMP=ART
http://www-01.ibm.com/software/data/ims/community/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community

Develop an IMS application using Java and OpenDB

© Copyright IBM Corporation 2011, 2012. All rights reserved.

41 of 41

About the authors

Poonam Chitale is a Software Engineer for IMS Open Database solution

Joshua Newell is a Software Engineer for IMS Open Database solution and level 2 support

Trademark notice

IBM, the IBM logo and ibm.com are trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. A current list of IBM trademarks is

available on the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml.

