
IMS and Java on zOS 

Poonam Chitale  
pchitale@us.ibm.com 

Joshua Newell 
newelljo@us.ibm.com 

IMS Open Database  
August 13, 2013 

Session #14171 

 

mailto:pchitale@us.ibm.com


Session Objectives and Agenda  

• Java z/OS platform strategy 

 

• Java and IMS strategy and direction 

 

• Futures 

 



3 

zEC12 and Java 

New 5.5 GHz 6-Core Processor Chip  

Large caches to optimize data serving 

Second generation OOO design 

 

Up-to 45% improvement in throughput amongst Java workloads measured with zEC12 

Multi-threaded workload shows ~12x aggregate hardware and software improvement comparing Java5SR5 on 
z9 to Java7SR3 on zEC12 

z/OS Multi-Threaded 64 bit Java Workload 16-Way 

~12x Improvement in Hardware and Software

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

zEC12 SDK 7 SR3

Aggressive + 

LP Code Cache  
zEC12 SDK 7 SR1

z196 SDK 7 SR1 

z196 SDK 6 SR8

z10 SDK 6 SR4

z10 SDK 6 GM 

no (LP CR)

z9 Java 5 SR5 

no (LP CR)



zEC12 – More hardware for Java 

4 

Continued aggressive investment in Java on Z 

Significant set of new hardware features tailored 
and co-designed with Java 

Hardware Transaction Memory (HTM)  

Better concurrency for multi-threaded applications 

Run-time Instrumentation (RI) 

Real-time feedback on program characteristics 

Enables increased optimization by JRE 

2GB page frames 

Improved performance targeting 64-bit heaps 

Page-able 1MB large pages using flash 

Better versatility of managing memory 

New software hints/directives 

Data usage intent improves cache management 

Branch pre-load improves branch prediction 

New trap instructions 

Reduce over-head of implicit bounds/null checks 

 



Java z/OS 

J9 R2.6 Virtual Machine 
• Significant enhancements to JIT optimization technology 

• z196 exploitation of instructions and new pipeline 

• New Balanced GC policy to reduce max pause times 

• Default GC policy changed to gencon 
 

5 

z196 and Java6.0.1: Engineered Together 

 Up to 2.1x improvement to Java throughput  

 Reduced footprint 

 Tighter integration with z/OS facilities 

 Improved responsiveness in application behavior 

Performance 

 2.1x improvement to multi-threaded workload 

 1.93x improvement to CPU-intensive workload 

z/OS Unique Enhancements 

 JZOS 2.4.0 

 z/OS Java unique security 
enhancements 

 

 

 



IBM J9 2.6 Technology Enhancements - Garbage Collection: Balanced Policy 

• Improved responsiveness in application behavior 
• Reduced maximum pause times to achieve more consistent behavior 

• Incremental result-based heap collection targets best ROI areas of the heap 

• Native memory aware approach reduces non-object heap consumption 

• Next generation technology expands platform exploitation possibilities 
• Virtualization – Group heap data by frequency of access, direct OS paging decisions 

• Dynamic reorganization of data structures to improve memory hierarchy utilization (performance) 

• Recommended deployment scenarios 
• Large (>4GB) heaps 

• Frequent global garbage collections 

• Excessive time spent in global compaction 

• Relatively frequent allocation of large (>1MB) arrays 

• Input welcome: Help set directions by telling us your needs 

6 



7 

z/OS Java SDK 7: 16-Way Performance  
 Aggregate HW and SDK Improvement z9 Java 5 SR5 to zEC12 Java 7 

7 (Controlled measurement environment, results may vary) 

~12x aggregate hardware and software improvement comparing Java5SR5 on z9 to Java7SR3 on zEC12 

LP=Large Pages for Java heap    CR= Java compressed references 

z/OS Multi-Threaded 64 bit Java Workload 16-Way 

~12x Improvement in Hardware and Software

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

N
o

rm
a

li
z
e

d
 T

h
ro

u
g

h
p

u
t

zEC12 SDK 7 SR3

Aggressive + 

LP Code Cache  
zEC12 SDK 7 SR1

z196 SDK 7 SR1 

z196 SDK 6 SR8

z10 SDK 6 SR4

z10 SDK 6 GM 

no (LP CR)

z9 Java 5 SR5 

no (LP CR)



IMS JMP region performance 
  Aggregate SDK, software and hardware improvements  

IMS Java transaction throughput from 2009 to 2012

4191

7600 8448
9389

12540

19838

0

5000

10000

15000

20000

25000

Jun-08 Dec-08 Jul-09 Jan-10 Aug-10 Feb-11 Sep-11 Apr-12 Oct-12

Timeline

E
T

R
 (

T
ra

n
/S

e
c

)

8 

Over 4x aggregate throughput improvement from 2009 to 2012 due 

to the following enhancements 

 Java version to version performance improvements 

 IMS improvements 

 Hardware improvements 

 DASD improvements 



IMS JMP region performance 
  Hardware stack improvements  

IMS Java - Hardware stack improvements (2012)

19838

14754

0

5000

10000

15000

20000

25000

z196 zEC12

E
T

R
 (

T
ra

n
/S

e
c

)

9 

(Controlled measurement environment, results may vary) 

Up to 32% ETR 

throughput 

increase moving 

same workload 



Java and IMS 

IMS family has a long-term commitment to Java 

• Investing over 50 FTEs (full-time equivalents) in Java technology moving forward 

• IMS dependent region types (JMP, JBP, MPP, BMP, IFP) 

• Java EE platform (WebSphere Application Server) 

• z/OS and open systems access to IMS assets 

10 

Java is an integral component of the IMS modernization strategy 

 Enable customers to quickly achieve IMS value while significantly reducing 

development costs and improving productivity 

 IMS leverages the IBM JVM for System z and integrates it into the IMS runtime 

containers 



11 

Java and IMS – IMS 7 to IMS 13 highlights 

Dedicated investment for well 

over a decade…and 

continuing 

 

IMS 7 

Initial Java support 

JDR API 

JDBC 1.0 

DB2 access from JDRs 

JDBC 2.0 

IMS Catalog 

Increased application 

scalability 

JDBC 4.0 

Universal Java EE, JDBC, DLI drivers 

JDR resource adapter 

Improved language interoperability 

Java callout support (JMS) 

Java z/OS partnership 

Java support in MPP/BMP/IFP 

DB2 JCC support in MPP/BMP/IFP 

JDBC 3.0 

Remote access 

IMS 8 

IMS 9 

IMS 10 

IMS 11 

IMS 12 

JMP, JBP use of ESAF 

JMS Enhancements 

JDBC – data type enhancements 

IMS 13 



Java dependent region deployment 

Java dependent region resource adapter 
• Allows new IMS transactions (JMP, JBP) to be written in Java and managed by 

the IMS transaction manager 

• Complete Java framework for applications operating in an IMS container 

• Message queue processing 

• Program switching 

• Deferred and immediate 

• Transaction demarcation 

• GSAM support 

• Additional IMS call support necessary for IMS transactions 

• INQY 

• INIT 

• LOG 

• Etc 

• Shipped with type 2 Universal drivers 
 

12 



IMS Open Database 

Solution statement 

• Extend the reach of IMS data 

• Offer scalable, distributed, and high-speed local access to IMS database resources 

Value 

• Business growth 

• Allow more flexibility in accessing IMS data to meet growth challenges 

• Market positioning 

• Allow IMS databases to be processed as a standards-based data server 

Key differentiators 

• Standards-based approach (Java Connector Architecture, JDBC, SQL, DRDA) 

• Solution packaged with IMS 

Enables new application design frameworks and patterns 

• JCA 1.5 (Java EE) 

• JDBC 

13 



Java and IMS moving forward 
Java z/OS stakeholder 

• Continued partnership to maximize synergy 
between IMS and Java z/OS 

14 

Performance 

 Aggressive performance analysis and cooperative 
approach to continue h/w and s/w exploitation 

Enterprise modernization 

 Language interoperability 

 Universal drivers/JDR resource adapter 

Integration 

 Aggressive approach to horizontal integration across 
IBM portfolio 

– Rational 

– Cognos 

– Data Studio 

– InfoSphere 



Language interoperability (Java and COBOL) 
• Significant collaboration over the past year to enrich language interoperability in IMS 

dependent regions 

• IMS, Language Environment (LE), Java z/OS, COBOL organizations have all worked together 

• Including a major European customer (Fiducia) 

• Specific areas of focus in order to ensure a robust offering 

• Exception handling and percolation 

• Real-time debugging (stepping through the stack across language boundaries) 

• Cleaning out (optionally) COBOL working storage areas across application schedules 

• Performance 

• Several others 

• Continued collaboration 

• Want to start a working group with direct focus in this space between IBM and interested parties 

• Direct IBM assistance to propel your organization forward 

• Interested?  Let me know. 

• What about Java and PL/I? 

• Would like to start investing in this space 

• Interested?  Let me know. 

15 



Java and IMS Future 

Continued modernization of the core 
system 

• IMS catalog 

• Database versioning 

• Dynamic database 

• Native SQL 

• Programming models 

 

16 



17 

Business Challenge 

– Required open systems access to IMS 

database assets 

– Error-prone process to accomplish task 

• Unloaded databases and did manual entry 

into open system database 

 Solution 

– Leverage IMS Open Database 

technology and the Universal 

JDBC driver 

 

Benefits 

– Real-time access to data 

– Confident decision making 

– Trusted information 

Who 

– Caterpillar 

• Core manufacturing 

system managed 

by IMS 



18 

Business Challenge 

– Integrate critical applications after merger 

with Delta 

– Implement a distributed application front-

end using SOA on top of existing z/OS 

 Solution 

– Implement IMS/JDBC on z/OS to 

integrate technical operations data 

via ESB and WebSphere Application 

Server 

 

Benefits 

– Technical infrastructure is much more 

open and primed for integration across 

the enterprise 

– Smooth integration of all critical 

applications running on z/OS after 

merger with Delta 

Who 

– Northwest Airlines/Delta 

• Largest airline in the 

world 

• Technical operations 

managed by IMS 



19 

Business Challenge 

– Modernize existing core services 

– Offer new services framework to business partners 

– Impaired ability to deliver new function Solution 

– Leverage the JDR resource adapter and 

Universal JDBC and Universal DLI 

drivers for IMS 

– Integration of existing assembler modules 

common to the application framework 

– Deployment in JMP regions 

– Initially no language interoperability (pure 

Java) 

• Future direction 

Benefits 

– Leverage abundant Java domain knowledge in 

industry 

– Dramatically decreased time to market 

– IMS API consistency with relational databases 

Who 

– Worldwide bank 

• Core banking system 

managed by IMS TM/DB 

and written mostly in 

COBOL 



20 

Business Challenge 

– Introduce additional core services to support 

new banking channels 

– Impaired ability to deliver new function Solution 

– Introduce a new banking channel 

implemented in Java using the 

Universal JDBC and Universal DLI 

drivers for IMS 

– Deployment in CICS JCICS regions 

– Initially no language interoperability 

(pure Java) 

• Future potential 

Benefits 

– Leverage abundant Java domain 

knowledge in industry 

– Dramatically decreased time to market 

– IMS API consistency with relational 

databases 

Who 

– Bank in US 

• Several banking channels 

managed by IMS and written 

mostly in COBOL 



21 

Business Challenge 

– Integration of 3rd party credit checking 

technology that was part of a Java package 

 

Solution 

– Leverage the deferred program 

switching support in Java class 

libraries to switch conversation 

iterations from MPP to JMP 

regions and back 

Benefits 

– Ability to leverage decades of 

existing assets and add in new Java-

based services into the architecture 

transparently 

– Just another service 

– In production within a month with 

this solution 

Who 

– German bank 

• Framework mainly PL/I 

with conversational 

transactions 



Business Drivers 

– Modernize existing core banking framework to 

build a highly integrated and optimized core 

system in an SOA-based environment 

– Expand with new components, based on new 

architecture 

– Integrate standard (Java) technology 

Solution 

– Leverage the IMS application server 

and its Java capabilities 

• Deployment in JVM-ready JMP regions 

– Deep use of Java-COBOL language 

interoperability to leverage and build 

upon existing assets with new Java 

technology 

– Access DB2 z/OS using the DB2 

JCC type 2 JDBC driver 

– Access IMS DB using the IMS 

Universal type 2 JDBC driver 

 

Benefits 

– Leverage abundant Java domain skills 

and knowledge in the industry 

– Dramatically improved time to market for 

new services 

– Easily maintainable topology for the next 

several decades 

– Stay on rock solid hardware/software 

stack 



Summary 

IMS is committed to enterprise modernization 

• Deep synergy across many organizations within IBM 

• Portfolio integration is very important 

• Constantly validating the enterprise roadmap with customers 

 

The partnership of IMS and Java technology is capable of handling mission-critical workload 

• IMS is an important stakeholder in the IBM Java on System z strategy 

• Java running in IMS regions has been benchmarked at over 19,000 transactions per 

second 

 

Many customers are modernizing their IMS application development patterns and access 

paradigms around Java as the primary language of choice 

• Over 40 proof of concepts in the last year alone 

23 



Thank You! 

 


