
The Future of PDSE:
New Features in z/OS 2.1

Speaker: Thomas Reed /IBM Corporation

SHARE Boston 2013

Session:14147

(C) 2012, 2013 IBM Corporation

2

Agenda

2.1 PDSE Major Topics

• IMF/BMF Code Restructure

• Easing the Member Size Limitation

• PDSE Member Generations

• Version 2 PDSE Format

3

What is a PDSE?

• PDSE: Partitioned DataSet Extended

• A PDSE is a collection of directory and data pages

• At V2R1 there are 2 dataset formats V1 and V2 PDSEs

• PDSE server consists of one or two address spaces
(SMSPDSE and SMSPDSE1)

• The SMSPDSE(1) address spaces serve client access

requests for PDSE datasets

• Under the hood SMSPDSE(1) also manages PDSE

serialization and buffering

z/OS V2.1 PDSE Enhancements:

IMF/BMF Code Restructure

5

IMF/BMF Code Restructure: Rationale

• Current Issues/Compromises/Reasons for the restructure:

• The PDSE index manager facility (IMF) is a heavy user of

CPU time

• Inefficient use of storage during PDSE update processing

• Performing an IEBCOPY may result in excessive unused

space in the Attribute Directory (AD)

6

IMF/BMF Code Restructure:
Solutions

• Improvements Implemented:

• Shortened code paths

• Enhance buffer caching efficiency

• Enhance buffered page lookup

• Enhance update page re-use

7

IMF/BMF Code Restructure:
IMF Code Changes

• Majority of index processing now done inline

• Greatly reduced code base size

• Shortened path length for index operations

• Most remaining IMF processing has been moved into CDM

• IMF LRU (Least Recently Used) task

• Largely supplants BMF LRU

• NEW index page LRU algorithm

• Much more efficient tracking of directory page lifespans

• Reduced CPU usage as well

8

IMF/BMF Code Restructure:
IMF Code Changes cont.

• Combined previously separate PDSE update and Directory

page cache components

• Allows for more efficient re-use of pages during index

updates

• Reduced index page splits control index growth

• Created entirely new Directory Store component

• Handles caching of directory pages as well as update

processing

• Accesses directory pages more efficiently

9

IMF/BMF Code Restructure:
Results

• Reduced CPU utilization for the most common PDSE

directory processing

• Large PDSE datasets (>1000 Members) benefit most

• Improved index update process

• Improved efficiency of storage utilization during PDSE
update processing

• Tighter indexes resulting in fewer overall index pages for
both V1 and V2 PDSEs

10

IMF/BMF Code Restructure:
Performance Results

• TSO Performance Workload: V1R13 vs V2R1

• 300 Concurrent Users accessing 30 large PDSEs

• Mixture of RECFMs FB, VB, U

• Each PDSE contained over 10,000 members

• Varied sizes for each member

11

IMF/BMF Code Restructure:
Performance Results

• Distinct improvements from V1R13 to V2R1

• 87% CPU reduction and 87% storage reduction in the

SMSPDSE address space

• 55% CPU reduction and 43% storage reduction in the TSO

User address spaces

• Significant reduction in CPU and Storage usage for index
processing

NOTE: Performance improvements are based on internal IBM laboratory tests. Your results will vary.

12

IMF/BMF Code Restructure:
Performance Results

• TSO Response Time Improvements

• Enter browse, view member list

• 60% improvement due to improved index processing

• Edit existing member

• 30% improvement

• Edit new member

• 30% improvement

NOTE: Performance improvements are based on internal IBM laboratory tests. Your results will vary.

13

IMF/BMF Code Restructure:
Customer Perspective

• Enhancements require NO external changes to exploit

• Enhancements make NO changes to the existing PDSE
data set structure

• Enhancements are compatible with ALL PDSE data sets

• Enhancements have NO coexistence considerations

• Improvements

• Reduced CPU utilization

• Reduced storage utilization for updates

• More efficient storage management

• Reduced I/O due to improved directory processing

z/OS V2.1 PDSE Enhancements:

Easing PDSE Member Size Limitation

15

Easing PDSE Member Size Limitation :
Rationale

• Current Limitations:

• PDSE members can have a maximum of 15,728,639 records

• PDS datasets are not bound by this limit

• Why it Matters:

• Current member limit can make it unfeasible to use PDSE

datasets in some situations

• Customers are forced to use multiple large sequential

datasets

• Customers can’t take advantage of PDSE’s buffering and

indexing benefits

• SHARE Requirement: SSMVSS11010

16

Easing PDSE Member Size Limitation :
Solution

• New Enhancement:

• Increase the PDSE member size limit

• New limit is over 125 times larger at approximately

2,146,435,071 records

• New limit is substantially larger than the maximum supported

size of a PDS member

• Anything that will fit in a PDS member will now fit in a PDSE

member

• Implementation:

• Changes were made in BAM to increase the record limit for

PDSE members if BLOCKTOKENSIZE LARGE is specified

17

Easing PDSE Member Size Limitation :
How to Exploit the Enhancement with
BSAM/BPAM

• Accessing Records Beyond the Current Limit:

• A program can WRITE records beyond the current limit under
the following conditions
• DSORG=PS

• DCB MACRF is W (not WP) <WP: WRITE with Note/Point>
• Or

• DCB MACRF is WP and DCBE BLOCKTOKENSIZE=LARGE*
• DSORG=PO

• DCBE BLOCKTOKENSIZE=LARGE*

• (*) if BLOCKTOKENSIZE=LARGE is not specified, a WRITE
beyond 15,728,639 will result in an ABEND S002-A8
• NOTE: BLOCKTOKENSIZE=LARGE indicates a program

supports a 32-bit Note token

18

Easing PDSE Member Size Limitation :
How to Exploit the Enhancement with
BSAM/BPAM cont.

• A program can READ records beyond the current limit in
all cases

• Works regardless of DSORG or MACRF

• A program can NOTE records beyond the current limit

under the following conditions:

• DCBE BLOCKTOKENSIZE=LARGE*

• (*) if BLOCKTOKENSIZE=LARGE is not specified, a

NOTE beyond 15,728,639 will result in an ABEND S002-
A8

19

Easing PDSE Member Size Limitation :
How to Exploit the Enhancement with
QSAM.

• Any QSAM program can get/put records beyond the
current limit in all cases

20

Easing PDSE Member Size Limitation :
Coexistence with V1R12 and V1R13

• Issuing a WRITE/PUT beyond record 15,728,639 will

result in the existing ABEND S002-A8

• Issuing a READ/GET beyond record 15,728,639 will be

allowed

21

Easing PDSE Member Size Limitation :
Coexistence with V1R12 and V1R13 cont.

• Issuing a NOTE beyond record 15,728,639 with DCBE

BLOCKTOKENSIZE=LARGE will return a valid NOTE

value

• Issuing a NOTE beyond record 15,728,639 without DCBE

BLOCKTOKENSIZE=LARGE will result in an ABEND
S002-A4

• WITHOUT coexistence APAR applied results are

unpredictable

• Issuing a POINT beyond record 15,728,639 with DCBE

BLOCKTOKENSIZE=LARGE will result in out-of-extent on
the next READ/WRITE

22

Easing PDSE Member Size Limitation :
New NOTE/POINT Token Range

• PDSE Directory

• X’00000001’

• PDSE Members (MLT)

• X’00000002’ to X’0007FFFF’

• PDSE Record Numbers (RLT)

• X’00100001’ to X’7FFFFFFF’

23

Easing PDSE Member Size Limitation :
Changes to Messages and Codes

• IEC036I 002-A8

• Existing Description:

• “Maximum number of records in a PDSE member has been
exceeded. Or maximum number of blocks allowed in an
extended sequential data set has been exceeded.”

• Additional Description Added:

• “Or a Note was issued for a PDSE data member and the record
is more than 15,728,639 records into the member and
BLOCKTOKENSIZE=LARGE was not specified when the PDSE
was opened. NOTE could not have returned a valid value.”

z/OS V2.1 PDSE Enhancements:

PDSE Member Generations (Sneak Peak!)

25

PDSE Member Generations :
Sneak Peak

• New Enhancement:

• When creating a PDSE Version 2 Dataset the user will be

able to specify the number of generations that the system will
retain for replaced members.

• This means that it will become possible to recover previous
versions of replaced PDSE members

26

PDSE Member Generations :
Old Member Generations

• Accessing old member generations:

• New DESERV macro options will reveal old member

generations and their aliases

• ISPF and IPT will provide information about old member

generations and how to recover them

• Note: Neither TSO commands nor JCL can be used to reveal
old generations

• Old generations will not be visible to current APIs

• Support for recovering prior levels of a PDSE member is planned to be made available with a
PTF for APAR OA42358 in the first quarter of 2014.**

• Additional PTFs will tolerate and ignore old generations.

** IBM's statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM's sole

discretion. The development, release, and timing of any future features or functionality described for our products remains at our

sole discretion.

27

PDSE Member Generations :
Features

• Applies to both SMS managed and non-SMS managed

PDSE datasets

• Supports both data members and program objects

• Aliases for each member generation will be retained as

well

28

PDSE Member Generations :
Usage Considerations

• Each time a member is replaced (not updated in place)

the replaced generation and its aliases are retained

• When the generation limit is reached the oldest generation

will be deleted permenantly

• PDSE Data sets utilizing member generations will require
more space

• When allocating PDSE Data sets with generations:

• MAXGENS keyword on the DD statement or dynamic

allocation or Data class

• PARMLIB will have a system limit on the generations limit

z/OS V2.1 PDSE Enhancements:

PDSE Version 2

30

PDSE Version 2 :
User Needs

• Users want to be able to better reclaim space from PDSE

datasets that is allocated but unused

• Users want to reduce PDSE I/O usage

• Users want to reduce PDSE CPU usage

31

PDSE Version 2 :
Why Do We Need a Version 2?

• Streamlining of the PDSE format

• Externally identical to Version 1 data sets

• Enables multiple improvements over Version 1

• Enhanced Partial Release

• Consolidation of directory pages

• Enhanced read performance

• Reduced virtual storage utilization

• Leverages V2R1 IMF/BMF restructure enhancements

32

PDSE Version 2 :
Enhanced Partial Release

• Version 2 datasets increase the chance that partial release

will be able to release space

• When might space be released?

• When SPACE=(,,RLSE) is specified in the DD statement on

OUTPUT to a V2 PDSE

• When space management is done by DFSMShsm

• When space management is done by DFSMSdss

• When the PARTREL macro is used

33

PDSE Version 2 :
Performance Benefits

• Enhancements will benefit the majority of processing

based on:

• Directory consolidation (especially VB data sets)

• Improved space management

• Leading to:

• Reduced I/O usage

• Reduced path length for almost all index operations

• Reduced CPU usage

34

PDSE Version 2 :
Performance Benefits

• Real world improvements:

• First OPEN of large PDSEs

• Creation of large members using variable records

• Variable records use storage much more efficiently

• Variable records are much faster in the vast majority of use
cases

• However:

• For PDSE’s with variable records, an OPEN followed by a

‘blind’ Point to the end of a member will be slower

• If this is your primary use for a PDSE then consider using a V1
data set

35

PDSE Version 2 :
Performance Results

• Testing Configuration

• 2 LPARs at V2R1, 7 processors each

• SMS Parameters:
• PDSESHARING(EXTENDED)

• PDSE_RESTARTABLE_AS(YES)

• PDSE_BUFFER_BEYOND_CLOSE(YES) AND

PDSE1_BUFFER_BEYOND_CLOSE(YES)

• PDSE_BMFTIME(300) AND PDSE1_BMFTIME(300)

36

PDSE Version 2 :
Performance Results

• Testing Workload

• 400 users split evenly between the LPARs

• 30 large PDSE datasets

• 10 with RECFM=FB, LRECL 256 and over 13,000 members

• 10 with RECFM=VB, LRECL=133 and over 13,000 members

• 10 with RECFM=U and about 15,000 members and 4,000 alias
entries

• TSO workload includes READ, UPDATE, IEBCOPY,

CREATE, and DELETE of members

• Comparing PDSE V1 and V2 performance at V2R1

• Meaning both dataset types are using the IMF/BMF
improvements

NOTE: Performance improvements are based on internal IBM laboratory tests. Your results will vary.

37

PDSE Version 2 :
Performance Results

• Improvements between V1 and V2 PDSE datasets:

• 11-18% Reduction in storage used

• 9% Reduction in CPU used by SMSPDSE1

• 2% Reduction in CPU used by TSO users

• Improvements in index heavy operations

• Browse dataset to member list - 7% faster

• Member delete to member list – 20% faster

NOTE: Performance improvements are based on internal IBM laboratory tests. Your results will vary.

38

PDSE Version 2 :
How to create Version 2 PDSEs

• New option for DSNTYPE keyword

• DSNTYPE=(LIBRARY,{1,2})

• 1– Version 1 PDSE (Default)

• 2 – Version 2 PDSE

• Supported for JCL, TSO Allocate

• New option for IGDSMSxx member in SYS1.PARMLIB

• DSNTYPE=({LIBRARY|PDS|HFS},{1,2})

• Precedence:

• DSNTYPE on JCL takes precedence over PARMLIB

39

PDSE Version 2 :
Usage Expectations

• Long Term

• It is expected that PDSE users will specify

DSNTYPE=(LIBRARY,2) in their IGDSMSxx parmlib member

• It is expected that V2 data sets will eventually supplant V1

data sets

• The following usage considerations are applicable for
mixed PDSE V1 and V2 environments

40

PDSE Version 2 :
How to create Version 2 PDSEs cont.

• LIKE=

• If DSNTYPE was specified on the JCL but version was not, the
value for version will be obtained from the IGDSMSxx member NOT
from the LIKE= data set.

• If DSNTYPE was not specified on the JCL, then the DSNTYPE
value and version will be obtained from the LIKE= data set.

• If DSNTYPE was not specified on the JCL and LIKE= was not
specified then the DSNTYPE value will be obtained from the DATA
CLASS and, if necessary, the version number will be obtained from
the IGDSMSxx member.

• If the DSNTYPE is not available from any source (JCL, LIKE= or
DATA CLASS) then the default values for both DSNTYPE and the
version (if applicable) will be picked up from the IGDSMSxx
member.

41

PDSE Version 2 :
How to create Version 2 PDSEs cont.

• REFDD=

• Use the REFDD parameter to specify attributes for a new

data set by copying attributes of a data set defined on an
earlier DD statement in the same job.

• One of the attributes which are copied to the new data set

from the attributes specified on the referenced DD statement

is DSNTYPE. DSN version will also be copied to the new
data set from the referenced DD statement.

42

PDSE Version 2 :
How to differentiate PDSE versions

• ISMF

• Dataset List: Version added to data under column ‘DATA

SET NAME TYPE’

• ISITMGD

• New field added: ISMDSNVER

• SMF Type 14/15

• New field added: SMF14DSVER

43

PDSE Version 2 :
How to differentiate PDSE versions: ISMF

• Dataset List Example

• Version displayed with data set type

44

PDSE Version 2 :
How to differentiate PDSE versions cont.

• Note:

• Neither IEHLIST LISTVTOC nor LISTPDS can be used to

identify Version 2 PDSE data sets

• No VTOC bit is set for Version 2 data sets

• PDSE data set versions are internally self describing

45

PDSE Version 2 :
Coexistence

• Coexistence APARs:

• OA39530

• OA40844

• OA41790

• Down-level systems (z/OS V1R12 and V1R13)

• Coexistence APARs allow for access to PDSE Version 2
datasets

• PDSE Version 2 data sets cannot be created below V2R1

46

PDSE Version 2 :
Unsupported Releases

• Attempting to open a V2 data set on a pre-V1R12 system

will result in a 0F4 ABEND

• ABEND 0F4 RC=24 RSN=01045AF1

• Reason Code 01045AF1 translates to: JCDM_INVALID_VDF

• PDSE Connect Processing will fail on initial page load
checks

• Prevents invalid data set information from being returned to
the client

• Prevents any processing that could break or corrupt the

Version 2 PDSE from occurring

47

PDSE Version 2 :
Diagnostics

• Existing diagnostics updated to support PDSE Version 2

data sets

• IEBPDSE

• IGWFPMAN

• IGWPIT

• Coexistence APARs are required for compatibility

Questions? Comments?

49

Please Fill Out the Survey!

