

A GPS Guide for Your Journey to Automated Storage Tiering

Tony Negro EMC Corporation

Tuesday August 13, 2013 Session Number 14125

AGENDA

- Introduction (Why make the journey)
 - Virtual Provisioning for CKD devices
 - Fully Automated Storage Tiering for Virtual Pools (FAST VP)
- Implementation Planning (preparing for the trip)
 - A Starting point
 - Understanding workload Skew
- Configuration Best Practices (avoiding traffic jams)
- Migration Considerations (navigation choices)
 - Host based vs. Array based
 - Allocation by policy
 - Monitoring FAST VP
- Summary

Introduction

- FAST VP Fully Automated
 Storage Tiering for Virtual Pools
- Policy-based system that automatically optimizes application performance
- Promotes and demotes sub-LUN level data across storage tiers to achieve performance service levels and/or cost targets

Why FAST Adoption

Complete your sessions evaluation online at SHARE.org/BostonEval

Virtual Provisioning for CKD Devices

Overview

6

Standard Provisioning Concept

- Capacity for a CKD device is allocated from a group of physical disks
 - Example: RAID 5 with striped data + parity
- Workload is spread across physical disk of the RAID group

Virtual (thin) Provisioning Concept

- Storage capacity is structured in virtual pools
- Workload is spread across physical disk in the pool

Theory of Operation

- Two new types of devices are introduced:
 - Thin device the <u>host visible</u> device which is configured to customer requirements.
 - Can be used with SRDF, TimeFinder and IBM Compatibility features
 - Data device an <u>internal</u> device that contains storage space (Track Groups) that are associated with a thin Device
- Actual space from a data device is assigned to a thin device during the BIND operation or on demand when data is written

Over-subscription

- An over-subscribed thin pool has more total reported thin device capacity than is physically available
- Over-subscription can reduce consumed storage
 - Avoids over-allocation of physical storage to applications
 - Reduces the cost of storage, energy consumption and footprint
- Care must be taken to ensure that a pool full condition is not reached
- Pool consumption can be monitored with Solutions Enabler SYMCLI, Solutions Enabler Event Daemon, UniSphere for VMAX or with SCF Monitor

Pre-allocated Pool Space

CU#	SSID	ТҮРЕ	CYL	GB/CU	3390B
00	1000	.000 3390-27 32760		6236.16	224
01	1001	33 <u>9</u> 0-27	32760	62 <u>3</u> 6.16	<u>2</u> 24
➡	➡	-	↓	-	↓
0B	100B	3390-27	32760	6236.16	224
0C	100C	3390-9 10017		2042.4	240
0D	100D	3390-3	3339	681.6	240
				71321.76	2944

Thin Devices (TDEV) = ~72TB

120%Over-subscribed Pool

CU#	SSID	TYPE	CYL	GB/CU	3390B
00	1000	3390-27	32760	6236.16	224
01	1001	33 <u>9</u> 0-27	32760	62 <u>3</u> 6.16	<u>2</u> 24
4	-	↓	4	-	-
0B	100B	3390-27	32760	6236.16	224
0C	100C	3390-9	10017	2042.4	240
0D	100D	3390-3	3339	681.6	240
				71321.76	2944

Thin Devices (TDEV) = ~72TB

Thin Reclaim Utility (TRU)

Fully Automated Storage Tiering for Virtual Pools (FAST VP)

Overview

14

Basis for FAST

- With information growth trends, an ALL Fibre Channel configuration will:
 - Cost too much
 - Consume too much energy and space
- FAST VP helps by leveraging disk drive technologies
- What makes FAST work in realworld environments?
 - Skew: At any given time, only a small address range is active – the smaller the range, the better

80% of IO's on 20% of capacity

FAST Storage Elements

- Symmetrix Tier a shared storage resource with common technologies (Disk Groups or Thin Pools)
- FAST Policy manage Symmetrix Tiers to achieve service levels for one or more Storage Groups
- FAST Storage Group logical grouping of devices for common management

Complete your sessions evaluation online at SHARE.org/BostonEval

FAST VP – Score Analysis

• Extents Group Sets are grouped in a histogram according to the Score

FAST VP Hierarchy

- Extent Group Set
 - 48 extent groups
 - 360 MB FBA / 320 MB CKD
 - Statistics collection unit

Extent Group

- 10 thin device extents
- 7.5 MB FBA / 6.8 MB CKD
- Largest data movement unit
- Thin Device Extent (Track Group)
 - VP allocation unit
 - 768 KB FBA / 680 KB CKD
 - Smallest data movement unit

- I/O <u>rates</u> are continuously collected for each Extent Group Set
 - Read Miss (RM)
 - Write (W)
 - Prefetch (P)
- Rates are updated every 10 minutes changing the 'score' of the Extent Group Set

Implementation Planning

Preparing for the journey

Configuration Starting Points

Typical Observed Workload Skew

Typical FAST Capacity Mix

85% or more of system IOPS from 15% or less of system capacity

Use Tier Advisor to provide modeling based on actual workload skew

Tier Advisor

Disk modeling tool to:

- Identify Skew & Workload
- Find best price vs. performance combination
- Ensure that Tiers have the capabilities to support current load and growth

Tier Advisor is recommended for planning. It is not required for FAST VP operations.

Potential for improvements

•••• in Boston

Workloads have different needs

📼 C:\Documents and Settings\ffomin\My Documents\@EMC\@2012-Projects\Share Conference\reference load.tas - Tier Advisor 🔳 🔲 🔀								
Eile Options Help								
Workload 2 Baseline 2 Policies								
Name Re		l Cost Rel ST		Rel P	Rel Pwr EFD		FC	SATA
Base		1	1	1		0%	100%	0%
Multi-Tiered		0%	-24%	-32%	/ 0	3%	60%	37%
Group		Rel. RT			Capacity		Policy	
DB High Prty		-26%			8 TB		3 Tiers	
DB Very High		-48%			3 TB		EFD +FC	
ВАТСН		-6%			17 TB		FC Only	
other		-10%			15TB		FC and SATA	
SHAR								

FAST VP Time Windows

- Two time window types Performance and Data Movement
 - Control what workload to include in analysis and when to allow FAST VP to move data
- Configure the performance time windows to target the specific workloads to optimize

 Default is 24x7, but can be configured to exclude certain time periods
- Configure data movement windows to allow data movements all the time
 - At a minimum, configure for the same periods of time covered by the performance time windows

FAST VP Workload Analysis Period

- The Workload Analysis Period determines the degree to which FAST VP metrics are influenced by past host activity
- The higher the value, the more weight is assigned to less recent host activity
 - Leaves previously active data in a higher tier for as long as possible
- A lower value can allow FAST VP to be more aggressive in identifying data to be demoted
 - This may lead to greater amounts of data being moved between tiers
- Match the value to the performance time window to cover one calendar week

VP Allocation by FAST VP Policy

- When enabled, new allocations can be made in any pool contained within the associated FAST VP policy

 Alleviates possibility of new allocation failing if chosen pool is full
- Enable allocation by policy
- FAST VP picks the best tier and pool
 - Based on FAST VP metrics and policies
 - Uses policy percentages and pool free space if no metrics

FAST VP Pool Reserved Capacity

- Reserves a percentage of a thin pool for new allocations
 - Reserved space excluded from FAST VP data movements
 - Set at system level for all pools, but can be overridden for individual pools
- Increasing PRC on a pool may cause FAST VP to move data out of that pool
 - Potential for creating additional space in a pool prior to a migration
- For pools with bound thin devices set the **PRC** based on the lowest allocation warning level for that thin pool
 - For pools with no bound thin devices, set the **PRC** to 1%

FAST VP SRDF Coordination

- Allows FAST VP promotion/demotion decisions on remote R2 devices to include local R1 performance metrics
 - R1 device read activity accounted for on R2 device
 - Potential to maintain more balanced configuration between R1 and R2 devices
 - R2 device data more appropriately allocated in case of failover
- Enable SRDF Coordination for SGs containing SRDF devices
 - Recommended for both SRDF/S and SRDF/A

Now Available! SRDF Coordination for Multi-site SRDF

Control Mechanisms

 Storage Group Prioritization – useful when multiple SG's are associated to the same policy and competing for the same resources

High priority is moved to FLASH first

Configuration Best Practices

Avoiding road construction and traffic jams

Choose the Right Disk Type for the FC/SAS Tier

Log base 10

The number of IOPS per GB on a 300 GB 15K drive is ~3X higher than in a 600 GB 10K

- As a general rule of thumb consider smaller and faster FC/SAS Disks in the mid-Tier because of the expected I/O density
- Consider \$/IOPS vs. \$/GB
- But note that we cannot be prescriptive...
 - Best recommendation still is to do the proper analysis to find the drive type that matches the workload
 - Ex: larger drive sizes can be a good match for light workloads

Thin Pool Size

- Overall pool reliability is based on drive quantity and RAID protection
- Reliability can be increased by adding SRDF protection to TDEVs using the pool

*Spinning Drive Example

RAID Protection selection

Protection	Random Write Performance	Resiliency	 Choose RAID 5 (3+1) for EFD More usable capacity per
RAID 1	Best	Better	 drive Choose RAID 1 for FC
RAID 5	Better Goo		 Consumes less DA resources FC tier is typically less than 70% of total capacity
RAID 6	Good	Best	Choose RAID 6 (6+2) for SATA
			 Greater chance for optimized writes on VMAX 40K

Thin Device Binding

- Bind all thin devices to the FC tier
 - Provides more predictable performance for new allocations
 - Binding to a single tier simplifies management
- Do not bind FAST VP managed thin devices to EFD pools
 - Let FAST VP figure out what data belongs on EFD
- Don't preallocate just because you can
 - Preallocated, but unwritten extents can (and likely will) be demoted
 - Writes to preallocated extents will be on lowest tier

Migration Considerations

Navigation choices

38

Migration Methods

VP Allocation by FAST VP Policy

- When enabled, new allocations can be made in any pool contained within the associated FAST VP policy
 - Alleviates possibility of new allocation failing if chosen pool is full
 - Useful during migrations if target tier has insufficient free capacity
- Enable allocation by policy
- FAST VP picks the best tier and pool
 - Based on FAST VP metrics and policies
 - Uses policy percentages and pool free space if no metrics

120%Over-subscribed Pool

CU#	SSID	TYPE	CYL	GB/CU	3390B
00	1000	3390-27	32760	6236.16	224
01	1001	33 <u>9</u> 0-27	32760	62 <u>3</u> 6.16	<u>2</u> 24
4	➡	↓	4	-	4
0B	100B	3390-27	32760	6236.16	224
0C	100C	3390-9	10017	2042.4	240
0D	100D	3390-3	3339	681.6	240
		-		71321.76	2944

Thin Devices (TDEV) = ~72TB

SRDF Thick to Thin support - MF

- Support SRDF Thick to Thin (and thin to thick) for MF CKD
 - Refer to SRDF Product
 Guide for supported
 Enginuity levels and
 topologies
- Thin Reclaim Utility support for Thick R1→Thin R2

VLUN VP Mobility and Pinning

- Using VLUN, you can control the location of devices
 Move all extents of a device to a desired pool
- FAST VP allows pinning all extents of a device in their current locations
 - When pinned, FAST VP does not promote or demote extents of the device
- Leverage these two features to <u>override FAST VP</u>
 - For example, move previously active volumes to EFD and pin them in preparation for end-of-quarter processing

Monitoring FAST VP

Unisphere for VMAX Performance

FAST VP Management EMC Unisphere for VMAX EMC Unisphere for VMAX Home **Data Protection** Home System Storage Hosts Performance Support 000195700398 > Home 000195700398 > Storage 000195700398 Ld Storage Groups FAST VMAX40K 5876.22 View and manage storage groups. Includes expand, delete View FAST Dashboard. Includes create FAST policies and and set FAST associations. place storage groups under FAST control. Alerts W Thin Pools Tiers View and manage thin pools. Includes create, bind, write View and manage storage tiers. Includes create, delete, tier Physical Capacity balancing and related objects. usage and related objects. You can do everything using with the state of the state o **But the screenshots are not as pretty!** VMAX40K 5876.15 External Storage Disk Groups Alerts View and manage Federated Tiered Storage (FTS). View and manage disk groups. Includes usage, related

In Boston

Complete your sessions evaluation online at SHARE.org/BostonEval

Unisphere for VMAX Performance

- Unisphere provides real-time, diagnostic, and historical performance monitoring for FAST VP environments
- Monitor view provides system and user-defined dashboards to collate multiple performance indicators into a single view
- Three pre-configured FAST VP dashboards provide views into FAST VP for all primary storage elements
 - FAST VP By Storage Group
 - FAST VP By Tier
 - FAST VP By Policy

EMC Unisphere for VMAX

🍢 🏟 💈 🕒 🎙 🤉.

Summary

- Good planning will make the journey much easier
 - Understand the workload and requirements
 - Perform analysis considering SMS group definitions
- Follow configuration best practices
- Consider migration choices
- Monitor for exceptions and watch trends
- Mainframe FAST VP works!

For more Virtual/Tiered storage information:

- Available on http://support.emc.com
 - FAST VP for EMC Symmetrix VMAX Theory and Best Practices for Planning and Performance
- Other SHARE sessions
 - 13983: VMAX Management: Mainframe Tasks Simplified with Unisphere for VMAX &EzSM – Barry Snoots - Wed.
 @ 4:30 in Room 305
 - 13584: Less=More with Thin Provisioning and Linux on System z – Gail Riley - Thur. @ 4:30PM in Room 308
- EMC.COM Mainframe Page
 - http://www.emc.com/storage/mainframe.htm
- Follow EMC Symmetrix
 @EMCSymmetrix
 <u>www.facebook.com/Symmetrix</u>

A GPS Guide for Your Journey to Automated Storage Teling

T ny Negro EMC Corporation

Tuesday August 13, 2013 Session Number 14125

