

Migrating To IBM zEC12: A Journey In Performance

Meral Temel Türkiye İş Bankası (İŞBANK)

13 August 2013 14113

Migrating To IBM zEC12: A Journey In Performance

Agenda

- Who is İşBank ?
- Mainframe Configuration
- **Z10 zEC12 Configuration Differences**
- Migration Process (Steps & Hints & Tips)
- **ZPCR Study**
- **Z10 To zEC12 Upgrade Performance Analiz Using SMF113 Counters**
- SCPU DASD I/O CF Memory View
- **Section Side Effects**
- Planned Features
- Seferences
- More Information Backup Slides

S The Biggest & First Bank Of Turkey

\$4851 ATMs

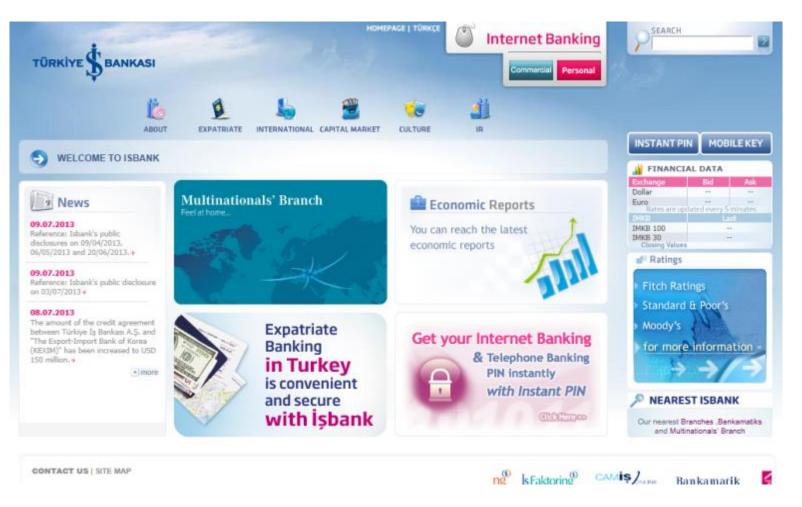
1231 Branches In Turkey, 19 Branches Outside Turkey

Has The Highest Profit According To All Bank Announcements 2013

Member Of SHARE Inc.

Who Is **İŞBANK**?

BRANCHES



Who Is **İŞBANK**?

INTERNET BANKING

Who Is İŞBANK ?

ATM

İŞCEP Mobile Phone Application

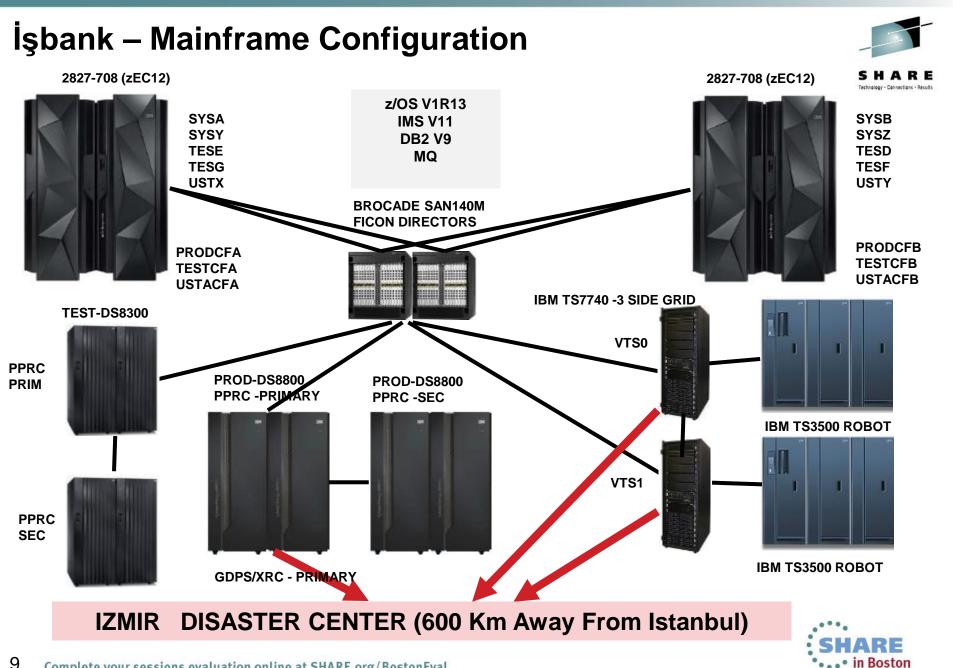
İŞBANK IPAD FINANCE CENTER Application

ANLI BORSA	ZLEDİKLI	ERIM			ISCTR
SENET	GRUP	SONFIVAT 16	RGSM	SAAT	Son Flyat: 6.18
EFES t	Α.	26,90		15:40	AlSeans Degisim: In the SAT
IFYON	A	69,50	0,00	15:41	
KENK	(A)	8,46	0,00	15:44	ISCTR 6,18
	A	1,66		15:33	
IKFEN		10.30	0,00	15:42	
uksa		5,08	0,00	15:43	
LARK 🕴	A	5.20		15:40	COMLON HAFTALIN AVON
LORK 🕴		1,00		15:30	
LGYO 🚦	(A)	20,25		15:44	HADERLER
LKIM 🕴	- 4-	12,40		15:46	15:44 ***ISGYO***IS GAYRIMENKUL > 22.02.2013 YATIRIM ORTAKLIGI A.S. (Özel Durum
	A	5.24		15:09	15:43 TEPAV/02ATAY: YUZDE 4 BUYUME
NHYT 🕴					22.02.2013 ORANI HÁLÁ ULASILABILIR ANCAK

7

Who Is İŞBANK ?

Credit Cards



İşbank – zEC12 Configuration Details

2827-708 (zEC12)

8 GCP (5.5 GHz) 3 ICF,3 zIIP,1 IFL 10063 IBM PCI 10062,8 MIPS(Average RNI) 1224 MSU 1257,9 MIPS/CP 153 MSU/CP 64777 SU/sec 192 GB Memory - 160 GB Customer - 32 GB HSA **18 FICONExpress 8S** (32port- 32 FICON Channel) **10 HCA3-Fanout Cards** 20 Infiniband3 CF Link 12 OSA-Express4S 10 GbE SR 1 port 4 OSA-Express4S 1000BASE-T 4 Crypto Express4S 2 FlashExpress zAware

2827-708 (zEC12)

8 GCP (5.5 GHz) 3 ICF.3 zIIP 10063 IBM PCI 10062,8 MIPS(Average RNI) 1224 MSU 1257.9 MIPS/CP 153 MSU/CP 64777 SU/sec 192 GB Memory - 160 GB Customer - 32 GB HSA **18 FICONExpress 8S** (32port- 32 FICON Channel) **10 HCA3-Fanout Cards** 20 Infiniband3 CF Link 12 OSA-Express4S 10 GbE SR 1 port 4 OSA-Express4S 1000BASE-T 4 Crypto Express4S

Migration Steps

DATE	STEP
03.May.13	SYSY z/OS V1R13 Upgrade
18.May.13	SYSZ z/OS V1R13 Upgrade
25/26-May 2013	SYSA/SYSB z/OS V1R13 Upgrade
7-June-2013	DB2 RSU
8-June-2013	PRODCF2 zEC12 + SYSY zEC12 Upgrade
23-June-2013	PRODCF1 zEC12 + SYSZ zEC12 Upgrade
7-July-2013	SYSA/SYSB/GKP1 zEC12 Upgrade + IMS IRLM new CF + IMS QSAM new CF

- z/OS v1R11 To V1R13 Upgrade
- Software /Hardware Products Maintenance Level Check- Upgrades
- Hardware Connectivity FICONs,OSA-CC Console Network, OSA 10Gb IP Network Connections
- OSA-CC Console Definitions
- Time Checking For both zEC12 SEs.
- Adding zEC12s to STP Network
- GDPS BCPII API Definitions On zEC12 SEs
- Usta LPARS/CFs To zEC12
- Test LPARS/CFs To zEC12
- PRODCFB + SYSY LPAR To zEC12
- PRODCFA + SYSZ LPAR To zEC12
- SYSA & SYSB To zEC12

Migration Process - Hints

Use CFSizer Tool To Estimate Structure Sizes

- Not good for some structures
- Double-check Power Of 2 for Lock Structure
- Use Resourcelink website to check your missing MCLs
 - Apply all of them before go into Production
 - Several for zAWARE , one about Hyperdispatch, one important about zFlash
- After using CHPID Mapping Tool, check your CHPID numbers
 - You need to rearrange if you have rule like "odd numbers for one FICON Director and even numbers for other FICON Director". CHPID Mapping Tool Does not care about these. Better is run tool then do cabling. Not the other way.
- ICB4 to Infiniband ; Although it is said as 1-1 ,use more than one for each, we did 2ICB4 :3 Infiniband Physical connection.
- Be careful about z10 Infiniband Earlier Protocol Support- Not IFB3.

IF CF is earlier than LPAR, let loved structures stay in old CF in order not to use Infiniband instead of IC. IC is still the best.

- If you have lack of subchannel , you must use more than 1:1 anyway.
- Although it is NOW acceptable ,prefer to use one CHPID per port for Production.
- Know your workload before, so that you can have idea where your bottleneck is.

Sample RMF Overview Report That I Used In This Study


```
CLASS=A,NOTIFY=&SYSUID,MSGCLASS=X,SCHENV=SYSSYSZ,
 SMT1RMFP JOB
// USER=IS93081,PASSWORD=
//STEP1
           EXEC PGM=IFASMFDP,REGION=32M
               DSN=ISB.SMFBACK.SYSA.Y2013.A07.G15,DISP=SHR
//DUMPIN
           DD
               DSN=&&PAS,DISP=(,PASS),UNIT=SYSDA,
//DUMPOUT
           DD
           SPACE=(CYL, (500,100)), DCB=(LRECL=137, RECFM=VBA, BLKSIZE=1693)
//SYSPRINT DD
               SYSOUT=X
//SYSIN
           DD
INDD(DUMPIN, OPTIONS(DUMP))
OUTDD(DUMPOUT, TYPE(74))
START(0900)
END(1700)
//STEP2
           EXEC PGM=SORT
//SORTIN
           DD
               DSN=&&PAS,DISP=(OLD,DELETE)
//SYSOUT
           DD
               SYSOUT=X
//SORTOUT
           DD DSN=&&PASA,DISP=(,PASS),
           SPACE=(CYL,(500,100))
               SPACE=(CYL,2)
//SORTWK01_DD
               SPACE=(CYL,2)
//SORTWK02 DD
               SPACE=(CYL,2)
//SORTWK03 DD
           DD
//EXITLIB
               DSN=SYS1.LINKLIB,DISP=SHR
//SYSIN
           DD
   SORT FIELDS=(11,4,CH,A,7,4,CH,A),EQUALS
   MODS E15=(ERBPPE15,36000,,N),E35=(ERBPPE35,3000,,N)
    PRODUCE SUMMARY REPORT
//*
//*
ZZSTEP5
           EXEC PGM=ERBRMFPP, REGION=32M
               DSN=&&PASA,DISP=(OLD,DELETE)
//MFPINPUT_DD
//MFPMSGDS DD
               SYSOUT=X
//PPRPTS
               SYSOUT=X
           DD
//SYSRPTS
           DD
               SYSOUT=X
//SYSIN
            DD
ETOD(0900,1700)
STOD(0900,1700)
RTOD(0900,1700)
SYSOUT(A)
OVERVIEW(REPORT)
SUMMARY(INT,TOT)
OVW(IMSLSST(SYNCST(IMSP_IRLM)))
OVW(IMSLAST(ASYNCST(IMSP_IRLM)))
OVW(IMSLSRT(SYNCRT(IMSP_IRLM)))
OVW(IMSLART(ASYNCRT(IMSP_IRLM)
```


CPU VIEW

Effect of Migration From z10s To zEC12 CPU VIEW

Differences Between z10s & zEC12s In Our Configuration (CPU VIEW)

20	97-71	4 (z10))	20	97-71	0 (z10)				282	7-708 (zE	C12)	2827	7-708	(zEC	:12)	
		tion to the second seco															SHARE Technology - Connections - Results
		тс	OTAL N 1646				22	% Inc	rease	9		то	TAL M 20126				
		тот	AL SV				22	% Inc	rease	9		ΤΟΤΑ	AL SW 2448	MSU			
			MIPS/0 668 - 7				77-	·88%	Incre	ase		N	IIPS/C 1258				
			W MSU 81.3- 8				75	-88%	Incre	ase		SW	/ MSU 153	/CP			
		33	SU/Se 3613-36				79-	93%	Incre	ase		Ş	SU/Se 64777				
			R- Avg 2.69 – 1				%7	′ .6-% 4	41.6 li	ncrease		ITR	-Avg 17.98				
Model	# of CPs	IBM PCI	Avg RNI MIPS	Avg RNI MIPS/	MP	Low RNI MIPS	Low-Avg RNI MIPS	Avg-Hi RNI MIPS	High RNI MIPS	SU/Sec	UP SU/Sec	Common Name	Proc Grp	S/W MSUs	MIPS/ S/W	H/W MSUs	
2827-708	8	10063	10062,8		0,83	11076,5	10545,3	9487,3	8974,0	64777,3279	78048,7805	zEC12	IMLC	1224	8,2	1866	

8659,8 8061,0

7559,8 6610,6 6180,4

33613,4454

36281,1791

47619,0476 z10-EC

47619,0476 z10-EC

IMLC

IMLC

1139

875

8,2

8,1

1694

1306

ARE in Boston

668,2

710,5

0,74

0,79

10882,5

8076,7

10060,9

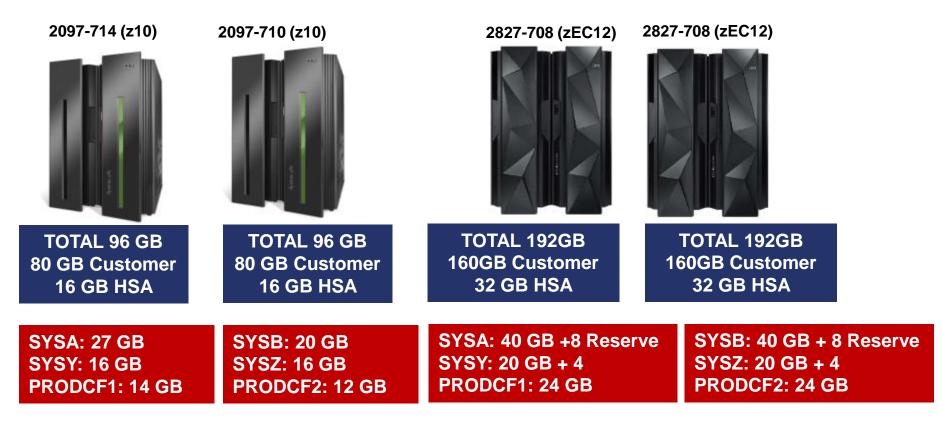
2097-714

2097-710

14

10

9355


7105

9354.6

7105,2

z10s & zEC12s Differences- Memory

Where Are My CPs, ICFs, zIIPs, IFL?

0204 05-04-13 02:05:38:96 ERM config CPU=8 SAP=8 ICF=3 IFL=1 ZAAP=0 ZIIP=3 SP=31 UKNW=0 OP=23 XSTP=0

IPU Number 00 01 02 Physical PU Number 001 002 003 PU Number 00 01 02 Opertional Mode CPU 00 01 02 ICF	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OD OE OF 10 11 12 13 5 018 01B 01C 01D 020 021 02	4 04 04 05 05 05 05 05 3 14 15 16 17 18 19 46 19 22 023 024 025 028 029 02B 02C 100 0 00 00 03 00 00 00 00 100
SAP MSAP XSAP IFL IFL				
ZAAF ZIIP Spare Unknown PU Type Dedicate		08 09 0A		
Opertional <u> </u>	<u>Y</u> <u>Y</u> <u>Y</u> <u>Y</u> <u>Y</u> <u>Y</u> <u>Y</u>	<u> </u>	Y	Y
IPU Number 1A1B 1C Physical PU Number 000002 003	03 04 04 <td< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>03 03 03 03 04 04 04</td><td>4 04 05 05 05 05 05 E 2F 30 31 32 33 34 34 22 023 025 026 029 028 020 02 0 00 07 00 00 00 00 00</td></td<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03 03 03 03 04 04 04	4 04 05 05 05 05 05 E 2F 30 31 32 33 34 34 22 023 025 026 029 028 020 02 0 00 07 00 00 00 00 00
ZIIP Spare Unknown PU Type Dedicate YY				
Opertional Y Y Y Clock Stopped Number of CPU = 8	Y	Y Y	Y	Y

Number of SAP = 8

Where Are My CPs,ICFs,zIIPs ?

____ 01 01 Node Number(Phv) 01 01 01 01 01 01 01 01 01 01 01 ____ 01 01 01 01 01 01 01 01 01 00 03 03 04 04 04 00 01 ____ 03 Core Number 00 00 00 00 01 01 01 04 04 05 05 05 ____ 05 _____ OA OB OC OD OE _____ OF ____ 10 11 ____ 12 13 14 15 16 17 18 19 _____ 46 _____ 012 013 014 015 018 _____ 01A ____ 01C 01D _____ 021 022 023 024 025 028 029 02A _____ 02C 01 02 03 04 05 06 IPU Number 00 07 08 09 ____ Physical PU Number 000 001 002 003 004 005 008 009 00A 00D ____ _____ 0A 0B 00 00 00 PU Number 00 01 02 03 04 01 06 07 08 09 00 _____ 00 02 _____ 00 00 00 00 03 00 00 00 Opertional Mode CPU 00 01 02 03 04 ____ 06 08 07 ICF SAP MSAP 01 02 03 XSAP IFL ZAAP 09 ____ 0A 0B ZIIP 00 00 00 00 Spare 00 00 00 00 00 00 00 Unknown PU Type Dedicate Opertional Clock Stopped 03 03 03 03 01 02 02 02 23 24 25 26 _____ 03 03 _____ 03 03 Node Number (Phv) 03 Core Number 00 00 00 00 00 01 01 _____ 02 04 04 ____ 04 04 04 05 05 05 00 01 ____ 05
 22
 23
 24
 25
 26
 27
 28
 29
 2A
 2B
 2C
 2D
 2E
 2F
 30

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ... IPU Number 1A 1B 1C 1D 1E 1F 20 21 31 32 33 34 Physical PU Number 000 001 002 003 004 005 008 009 02A 02B 02C 02D 00 00 00 00 00 _____00_05_00_00_____00_00_06 PU Number 1A 1B 1C 00 00 04 00 00 00 00 00 00 00 00 Opertional Mode CPU ICF 1A 1B 1C SAP MSAP ______05 XSAP IFL ZAAP ZIIP 00 00 00 00 00 00 00 00 Spare Unknown PU Type _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Dedicate _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Opertional clock Stopped

0204 05-04-13 02:28:52:52 ERM config CPU=8 SAP=8 ICF=3 IFL=0 ZAAP=0 ZIIP=3 SP=32 UKNW=0 OP=22 XSTP=0

Number of CPU = 8 Number of SAP = 8 XSAP = Node Number=01 Physical PU Number=000 Number of CF = 3

2801 B	EFORE	UPU		Pro										
				LPARDesi	gn-HD-V4-T0	O LPAR D	DEFINITION	(CP) TOLE	RATION%=	=0				
			Í	wMachine 4 1	Shared-Pool									
CFG-LP-VALID?	NO		#PhyProc	14	14						1			
			#LPs (non-ICF, non-			1-	CONFIG. VAL	DATION	2 - HIPERD	ISPATCH				
achine-type	2097-714		DED)	46										
UZ	1139		Ratio LP/PP (base)	3,29			PRINT		3 - GoT	o ZXXP	Go T	o EXPER	Г	
otal Weight	1374		LSPR-AVG-V1R13-MI	9355	_									
		-				NON-HD								
PARNAME	WEIGHT	#LP	%SHARE(by pool)	"MIPS"	Guaranteed#PP	Share%/LP	MinReq#LP	Check#LP	ID-HIGH# H	D-MED# H	D-MED% HD-	LOW# #A	ctive LPs	#Report LPs
rodg1	60	7	4%	409	0,57	8%	1	OK	0	1	57,0%	6	2	1
rod1	900	14	<u>66</u> %	6128	9,02	64 %	10	ОК	8	2	51,2%	4	10	10
rod3	400	14	29%	2723	4,27	31%	5	OK	3	2	63,7%	9	5	5
estg1	3	2	0%	20	0,03	1%	1	OK	0	1	2,8%	1	2	1
est1	5	4	0%	34	0.05	1%	1	OK	0	1	4,7%	3	2	1
	_								-			-		
ta	5 1 1 AFTE	4	0% 0% PGRADE	34 7	0,05 0,01 0,01 : SY	1% 1%	1	ОК ОК	0	1 1 TESE ⁻	4,7% 0,9%	3	2	1
ta	1	4	0% 0%	34 7 Pro	0,05 0,01	1% 1% SA P	1 1 Prod3: \$	ok ok SYSZ	0 0 Test1:		4,7% 0,9%	3		
sta	1	4	0% 0%	34 7 Pro	0,05 0,01 cd1 : SY	1% 1% SA P	1 1 Prod3: \$	ok ok SYSZ	0 0 Test1:		4,7% 0,9%	3		
sta BANK0	1	4	0% 0%	34 7 Pro	0,05 0,01 0d1 : SY	1% 1% SA P	1 1 Prod3: \$	OK OK SYSZ	0 0 Test1:	TESE -	4,7% 0,9% Fest3:T	3		
sta BANKO CFG-LP-VALID?	1 1 AFTE	4	0% 0% PGRADE	34 7 Pro LPARDe WMachine 8	0,05 0,01 Dd1 : SY sign-HD-V4- Shared-Poo	1% 1% SA P	1 1 Prod3: \$	OK OK SYSZ	0 0 Test1:		4,7% 0,9% Fest3:T	3		
ta BANKO CFG-LP-VALID?	1 1 AFTE	4	0% 0% PGRADE #PhyProc	34 7 Pro LPARDe WMachine 8	0,05 0,01 Dd1 : SY sign-HD-V4- Shared-Poo	1% 1% SA P	1 1 Prod3: \$	OK OK SYSZ	0 0 Test1:	TESE -	4,7% 0,9% Fest3:T	3		
ta BANKO CFG-LP-VALID? achine-type	1 1 AFTE	4	0% 0% PGRADE #PhyProc #LPs (non-ICF, non	34 7 Pro LPARDe WMachine 8	0,05 0,01 Dd1 : SY sign-HD-V4- Shared-Poo	1% 1% SA P	1 1 Prod3: \$	OK OK SYSZ ION (CP) T	0 0 DLERATIO	TESE -	4,7% 0,9% Fest3:T	3	2	
ta BANKO CFG-LP-VALID? achine-type SU	1 1 АГТЕ 1 2827-708	4	0% 0% PGRADE #PhyProc #LPs (non-ICF, non DED)	34 7 Pro LPARDe WMachine 8 33	0,05 0,01 Dd1 : SY sign-HD-V4- Shared-Poo	1% 1% SA P	1 1 Prod3: \$ R DEFINIT	OK OK SYSZ ION (CP) T	0 0 DLERATIO	TESE T	4,7% 0,9% Fest3:T	ESG	2	
sta BANKO CFG-LP-VALID? achine-type SU	1 1 AFTE 80 2827-708 1224	4	0% 0% PGRADE #PhyProc #LPs (non-ICF, non DED) Ratio LP/PP (base)	34 7 Pro LPARDe WMachine 8 33 4,13	0,05 0,01 Dd1 : SY sign-HD-V4- Shared-Poo	1% 1% SA P	1 1 Prod3: \$ R DEFINIT 1 - CONFIG.	OK OK SYSZ ION (CP) T	0 0 DLERATIO	TESE T	4,7% 0,9% Fest3:T	ESG	2	
ta BANKO CFG-LP-VALID? chine-type U tal Weight	1 1 AFTE 80 2827-708 1224	4	0% 0% PGRADE #PhyProc #LPs (non-ICF, non DED) Ratio LP/PP (base) LSPR-AVG-V1R13-MI	34 7 Ргс ЦРАВОе ФМасhine 8 33 4,13 10063	0,05 0,01 Dd1 : SY sign-HD-V4- Shared-Poo	1% 1% SA P TOO LPA	1 1 Prod3: \$ R DEFINITI 1 - CONFIG. PRI	OK OK SYSZ ION (CP) TO VALIDATION NT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TESE T	4,7% 0,9% Fest3:T	Go To EX	2 1 (PERT	
ta BANKO CFG-LP-VALID? achine-type SU SU Stal Weight PARNAME	1 1 АГТЕ 2827-708 1224 1000 WEIGHT	R UF	0% 0% PGRADE #PhyProc #LPs (non-ICF, non DED) Ratio LP/PP (base) LSPR-AVG-V1R13-MI	34 7 Ргс ЦРАВОе ФМасhine 8 33 4,13 10063	0,05 0,01 cd1 : SY esign-HD-V4- Shared-Poo 8	1% 1% SA P TOO LPA	1 1 Prod3: \$ R DEFINITI 1 - CONFIG. PRI	OK OK SYSZ ION (CP) TO VALIDATION NT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TESE - N%=0 PERDISPATO Goto ZXXI	4,7% 0,9% Fest3:T	Go To EX	2 1 (PERT	1 1 1 ! LPs #Repo
ta BANKO CFG-LP-VALID? Ichine-type Ital Weight PARNAME Odg1	1 1 АГТЕ 2827-708 1224 1000 WEIGHT	4 1 R UF ////////////////////////////////////	0% 0% PGRADE #PhyProc #LPs (non-ICF, non DED) Ratio LP/PP (base) LSPR-AVG-V1R13-MI	34 7 Pro UPARDe WMachine 8 33 33 4,13 10063	0,05 0,01 Cod1 : SY sign-HD-V4- Shared-Poo 8 Shared-Pool 8	1% 1% SA P TOO LPA	1 1 Prod3: \$ R DEFINIT 1 - CONFIG. PRI	OK OK OK OK SYSZ OK ION (CP) TO VALIDATION NT Check#LI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TESE - N%=0 PERDISPATO Goto ZXXI	4,7% 0,9% Fest3:T H	3 0 ESG Go To EX	2 1 (PERT # #Active	1 1 1 ! ! ! !
sta BANKO CFG-LP-VALID? achine-type SU otal Weight PARNAME rodg1 rodg1	1 1 АГТЕ 2827-708 2827-708 1224 1000 WEIGHT 4	4 1 R UF 	0% 0% PGRADE #PhyProc #LPs (non-ICF, non DED) Ratio LP/PP (base) LSPR-AVG-V1R13-MI %SHARE(by pool) 4%	34 7 Pro UPARDo WMachine 8 33 4,13 10063 "MIPS" 403	0,05 0,01 Cod1 : SY ssign-HD-V4- Shared-Poo 8 Guaranteed# 0,32	1% 1% SA P TOO LPA	1 1 Prod3: \$ R DEFINIT 1 - CONFIG. PRI PRI PRI	OK OK SYSZ ION (CP) TO VALIDATION NT Check#LI OK	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TESE - N%=0 PERDISPATO Goto ZXXI	4,7% 0,9% Fest3:T H H H H J J J J J J J J J J J J J J J	3 0 ESG Go To EX HD-LOW 6	2 1 (PERT # #Active 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
est3 sta BANKO CFG-LP-VALID? achine-type SU otal Weight PARNAME rodg1 rodg1 rod3 estg1	1 1 АГТЕ 2827-708 2827-708 1224 1000 WEIGHT 4 58	4 1 R UF 	0% 0% PGRADE #PhyProc #LPs (non-ICF, non DED) Ratio LP/PP (base) LSPR-AVG-V1R13-MI %SHARE(by pool) 4% 58%	34 7 Pro UPARDo WMachine 8 33 4,13 10063 "MIPS" 403 5837	0,05 0,01 Cod1 : SY ssign-HD-V4- Shared-Poo 8 Guaranteed# 0,32 4,64	1% 1% SA P TOO LPA I NON-HE Share%A 5% 58%	1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	OK OK SYSZ ON (CP) T VALIDATION NT Check#LI OK OK	0 0 Test1: 0 DLERATIO 2 - HI 3 - 3 - 0 HD-HIGI 0 4	TESE - N%=0 PERDISPATO Goto ZXXI	4,7% 0,9% Fest3:T H H H 4 H 4 H 4 H 4 H 4 H 4 H 4 H 4 H	3 0 ESG Go To EX HD-LOW 6 3	2 1 (PERT # #Active 2 5	e LPs #Repo
sta BANKO CFG-LP-VALID? achine-type SU otal Weight PARNAME rodg1 rodd1 rodd3	1 1 АГТЕ 2827-708 2827-708 1224 1000 WEIGHT 4 58	4 1 R UF 8 0 7 0 8 0 8 2 2	0% 0% PGRADE #PhyProc #LPs (non-ICF, non DED) Ratio LP/PP (base) LSPR-AVG-V1R13-MI SSHARE(by pool) 4% 58% 32%	34 7 Pro UPARDo WMachine 8 33 4,13 10063 "MIPS" 403 5837 3220	0,05 0,01 Cd1:SY ssign-HD-V4- Shared-Poo 8 Suaranteed# 0,32 4,64 2,56	1% 1% SA P TOO LPA NON-HE Share%A 5% 58% 32%	1 1 2rod3: \$ R DEFINIT 1 - CONFIG. PRI P MinReq#LI 5 3	OK OK SYSZ ON (GP) T VALIDATION NT Check#LI OK OK OK	0 0 Test1: 0 DLERATIO 2 - HII 3 - 3 HD-HIGI 0 4 2	TESE - N%=0 PERDISPATO Goto ZXXI	4,7% 0,9% Fest3:T H H 32,0% 64,0% 56,0%	3 0 ESG Go To EX HD-LOW 6 3 5	2 1 (PERT 2 5 3	1 1 1 2 LPs #Repo 1 5 5 1
sta BANKO CFG-LP-VALID? achine-type SU otal Weight PARNAME rodg1 rodg1 rodg3 estg1	1 1 AFTE 2827-708 2827-708 1224 1000 WEIGHT 4 58 32	4 1 R UF 8 0 7 0 8 0 8 2 2	0% 0% PGRADE #PhyProc #LPs (non-ICF, non DED) Ratio LP/PP (base) LSPR-AVG-V1R13-MI %SHARE(by pool) 4% 58% 32% 0%	34 7 Pro UPARDo WMachine 8 33 4,13 10063 "MIPS" 403 5837 3220 20	0,05 0,01 Cd1 : SY ssign-HD-V4- Shared-Pool 8 Suaranteed# 0,32 4,64 2,56 0,02	1% 1% SA P TOO LPA 1 NON-HE Share%A 5% 58% 32% 1%	1 1 27Od3: \$ R DEFINIT 1 - CONFIG. 1 PRI 0 P MinReq#L1 5 3 1	OK OK SYSZ ON (CP) T VALIDATION NT Check#LI OK OK OK OK	0 0 Test1: 0 DLERATIO 2 - HII 3 - 3 HD-HIGI 0 4 2 0	TESE - N%=0 PERDISPATO Goto ZXXI	4,7% 0,9% Fest3:T H 9 # HD-MED% 32,0% 64,0% 56,0% 1,6%	3 0 ESG Go To EX HD-LOW 6 3 5 1	2 1 (PERT 2 5 3 2	ELPS #Repo

Norman Hollander – IBM Has Also One version Send email if you want it and give it a try....

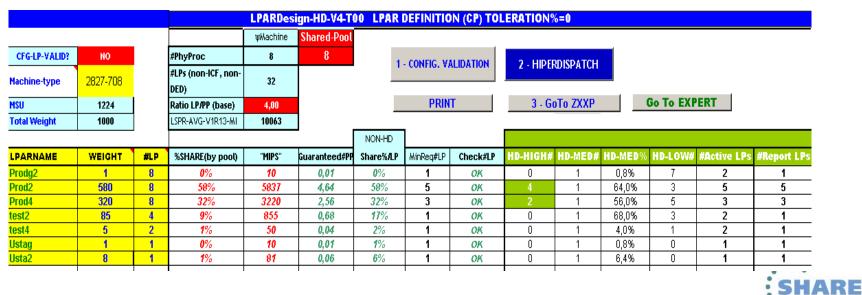
Complete your sessions evaluation online at SHARE.org/BostonEval

SHARE . •••• in Boston

LPAR Configuration Design – IBM WLM Website

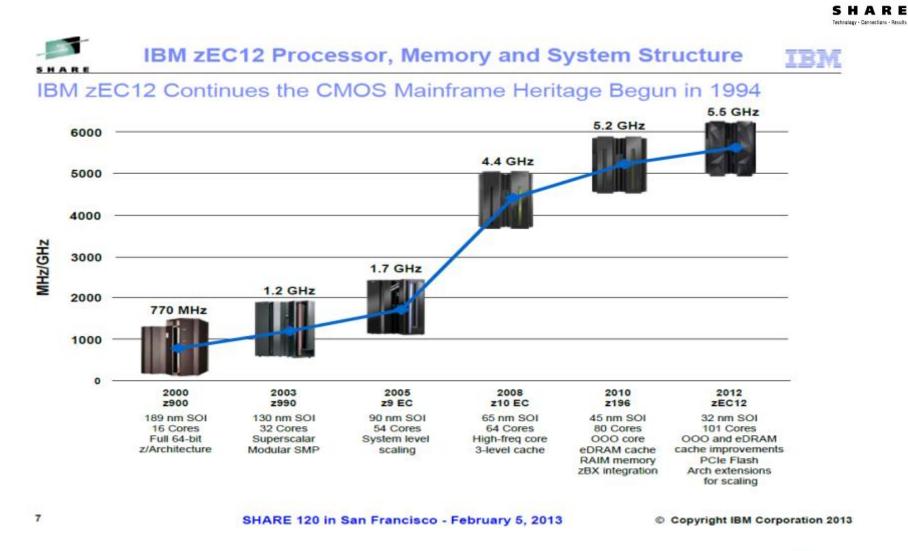
ISB02 BEFORE UPGRADE

Prod2 : SYSB Prod3: SYSZ Test2:TESD Test4:TESE



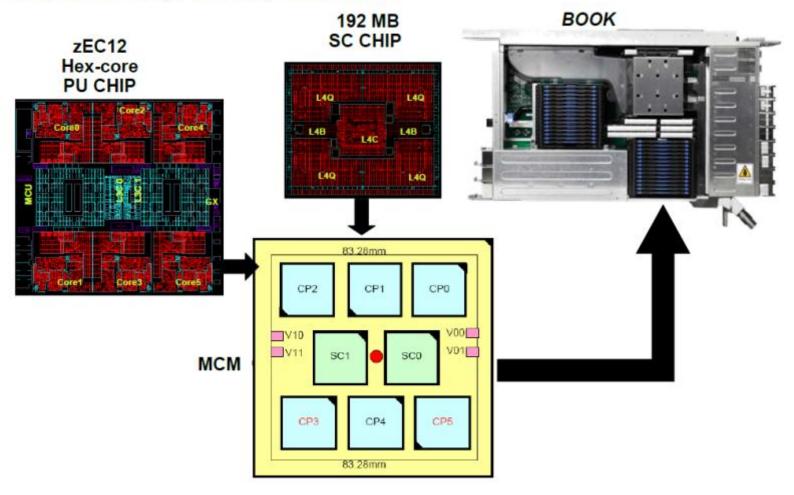
• in Boston

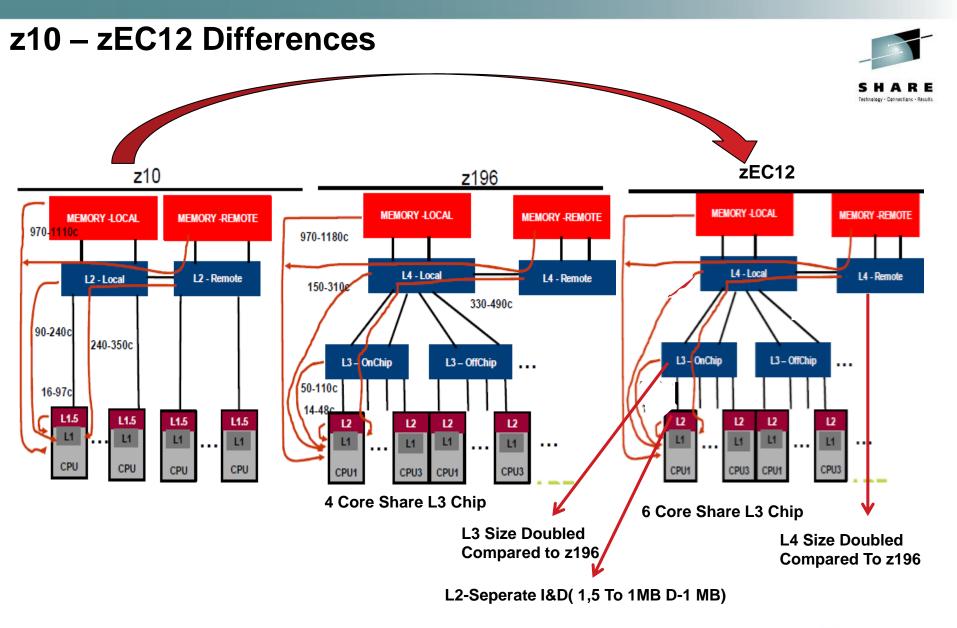
				LPARDesign-HD-V4-T00 LPAR DEFINITION (CP) TOLERATION%=0										
				ψMachine	Shared-Pool									
CFG-LP-VALID?	NO		#PhyProc	10	10	1	- CONFIG. V		а ніргі	WISPATCH				
Machine-type	2097-710		#LPs (non-ICF, non-	38			- contrid. vi		2 - HIPLI	WISPATCH				
nachine type	2007-710		DED)	50							_			
MSU	875		Ratio LP/PP (base)	3,80			PRIN	T	3 - G	oTo ZXXP		Go To EXP	ERT	
Total Weight	1000		LSPR-AVG-V1R13-MI	7105										
		•			-	NON-HD								
LPARNAME	WEIGHT	#LP	%SHARE(by pool)	"MIPS"	Guaranteed#PP	Share%/LP	MinReq#LP	Check#LP	HD-HIGH#	HD-MED#	HD-MED%	HD-LOW#	#Active LPs	#Report LPs
Prodg2	1	10	0%	- 7	0,01	0%	1	OK	0	1	1,0%	9	2	1
Prod2	390	10	39 %	2771	3,90	39 %	4	OK	3	1	90,0%	6	4	4
Prod4	380	10	38%	2700	3,80	38%	4	OK	3	1	80,0%	6	4	4
test2	110	3	11%	782	1,10	37%	2	OK	0	2	55,0%	1	2	2
test4	110	2	11 %	782	1,10	55%	2	OK	0	2	55,0%	0	2	2
Ustag	1	2	0%	1	0,01	1%	1	OK	0	1	1,0%	1	2	1
Usta2	8	1	1 %	57	0,08	8%	1	OK	0	1	8,0%	0	1	1


ISBANK02 AFTER UPGRADE

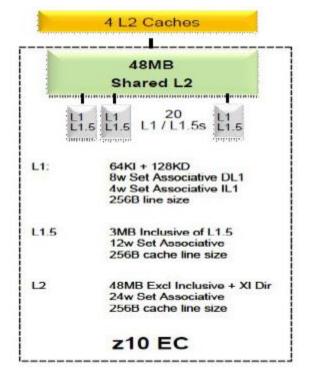
Prod2 : SYSB Prod3: SYSZ Test2:TESD Test4:TESE

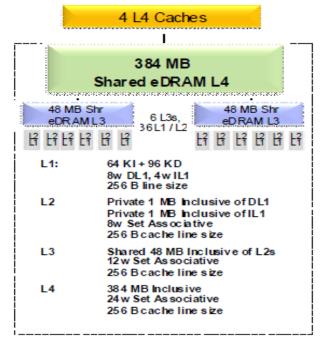
z10 – zEC12 Differences




z10 – zEC12 Differences

zEC12 PU chip, SC chip and MCM




z10 – zEC12 Differences

-	_			
	-	-	R	E
-		~	•	

CacheLEVEL	z10	zEC12
L1 Cache	64KB D-128KB I	64KB D-96KB I
L1,5 Cache	ЗМВ	N/A
L2 Cache	48MB	1MB D- 1MB-I
L3 Cache	N/A	48MB
L4 Cache	N/A	384MB

Workload Performance Is Sensitive To

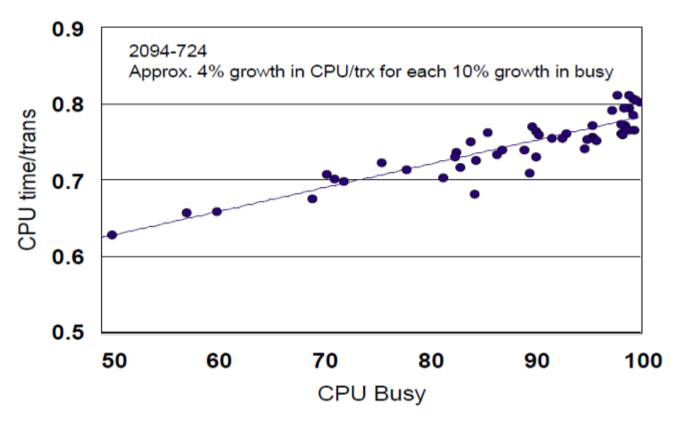
Instruction Path Length For A Transaction Or Job

Instruction Complexity(Microprocessor Design)

Memory Hierarchy Or Nest

RNI – Relative Nest Intensity

DASD IO rate has been used for many years to separate workloads into two categories: those whose DASD IO per MSU (adjusted) is <30 (or DASD IO per PCI <5) and those higher than these values. The majority of production workloads fell into the "low IO" category and a LoIO-mix workload was used to represent them. Using the same IO test, these workloads would now use the AVERAGE RNI LSPR workload. Workloads with higher IO rates may use the HIGH RNI workload or the AVG-HIGH RNI workload that is included with zPCR.


For z10 and newer processors, the CPU MF data may be used to provide a more accurate workload selection. When available, this data allows the RNI for a production workload to be calculated. Using the RNI and another value from CPU MF, the L1 cache misses per 100 instructions, a workload may be classified as LOW, AVERAGE or HIGH RNI. This classification and resulting workload selection is automated in the zPCR tool. It is highly recommended to use zPCR for capacity sizing. For those wanting to perform the workload selection by hand, the following table may be used for z10, z196 and zEC12 (note L1MP stands for L1 misses per 100 instructions and is a value that may be calculated using the CPU MF counters data):

L1MP	RNI	Workload Hint	
<3	>= 0.75 < 0.75	AVERAGE LOW	
3 to 6	>1.0 0.6 to 1.0 < 0.6	HIGH AVERAGE LOW	
>6	>= 0.75 < 0.75	HIGH AVERAGE	

Changes In CPU Time by the Effect Of Changes In CEC Utilization

OLTP Client Workload Example Growth in CPU time/trans as CPU busy increases

CPU Utilization Effect & Capacity Planning

You can estimate by using IBMs Study For Different Workload Types AND YOU CAN MEASURE !. Sync SMF 70s and SMF 113s....

CPU Utilization Impact to Capacity Planning When Using MIPS

- Impact to capacity planning comes in two flavors
 - may have less headroom on the box than you think
 - when moving a workload, it may not fit in the new container

Example

- assume a workload is running at 50% busy on a 2000 MIPS box
 - without factoring in utilization effect, it will be called a 1000 MIPS workload
 - in fact, it may be an 1200 MIPS workload when running at the efficiency of a 90% busy box
- caution #1: there is NOT room to double this workload on the current box
- caution #2: if moved to a new box or LPAR, it will likely need a 1200 MIPS container (not 1000 MIPS) to fit
- Estimating the impact conservative approach
 - For a change in utilization of 10%, plan for the capacity effect to be
 - 3% for LOW RNI workloads
 - 4% for AVERAGE RNI workloads
 - 5% for HIGH RNI workloads

ZPCR STUDY

Capacity & PERFORMANCE Planning LPAR Configuration Planning ZPCR STUDY

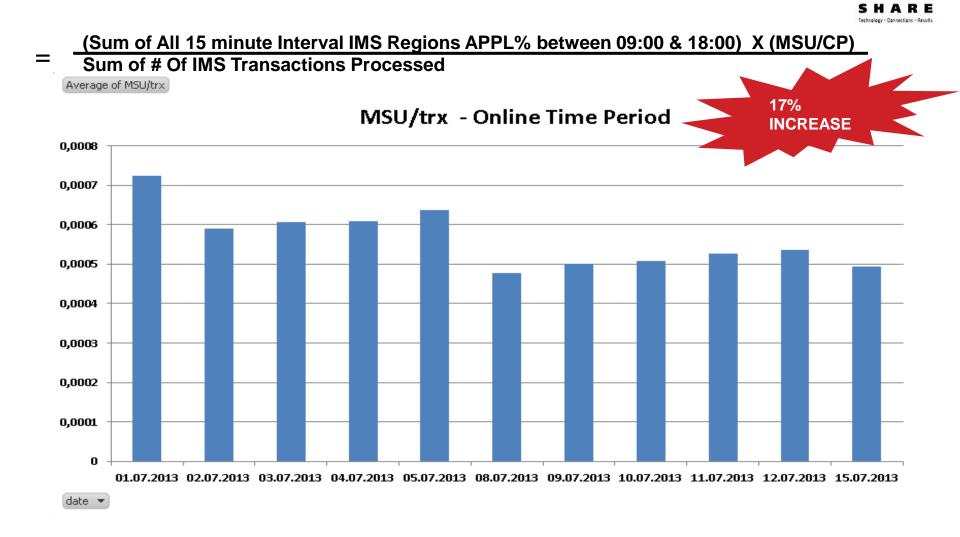
zPCR Is NOT ONLY CAPACITY PLANNING PRODUCT Please use zPCR!.

zPCR STUDY – ISBANK01 – First CEC – Move From z10 -714 To zEC12- 708

In Host Capacity Summary	·					_					
🕑 🔚 🔛 🥑							zPCR V8.2b				
	LPAR Host Capacity Summary Report Study ID: Meral-Temel-ZPCR-Study2-ISBANK Capacity basis: 2094-701 @ 1,000 for a shared single-partition configuration Capacity for z/OS on z10 and later processors is represented with HiperDispatch turned ON										
	LPAR Configuration		Full CPC C	apacity (bas	ed on usable	e RCP count)					
Identity	Hardware	GP	zAAP	zIIP	IFL	ICF	Total				
#1 🛕 Configuration #1	2097-E26/700: GP=14 zIIP=2 ICF=2	15,704		2,247		2,708	20,659				
#2 🛕 Configuration #2	2827-H43/700: GP=8 zIIP=3 IFL=1 ICF=3	16,012		6,123		5,753	27,887				
Content Control		Show capacit	y as								
Show Cap	Show Capacity Deltas ⓐ Based on "Configuration #1" ⓑ Incremental ⓑ Incremental ⓑ Single-CP ⓑ Si										
	For significant configuration changes, capacity comparisons should be considered to have a +/-5% margin-of-error. Upgrading the processor family is considered a significant configuration change. IBM does not guarantee the results from this tool. This information is provided "as is", without warranty, expressed or implied. You are responsible for the results obtained from your use of this tool.										

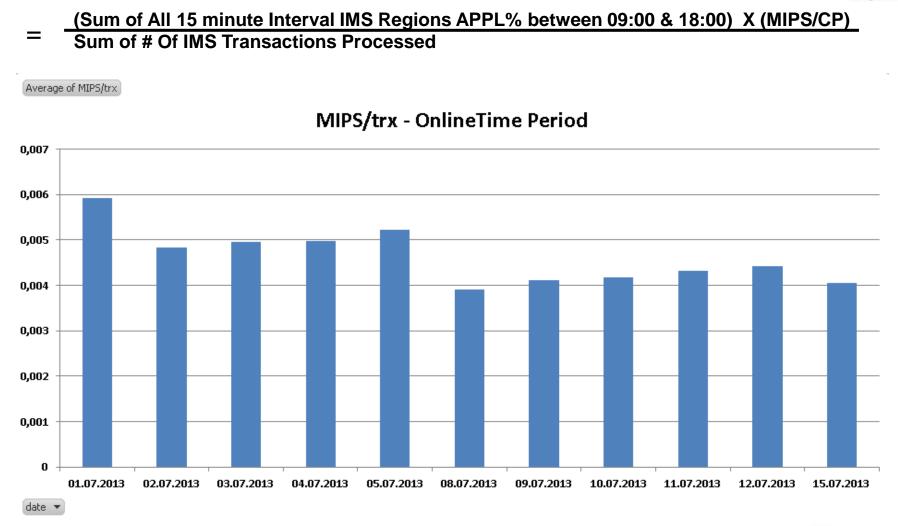
Only 1.9% ITR Increase

zPCR STUDY – ISBANK02 – Second CEC – Move From z10 -710 To zEC12- 708



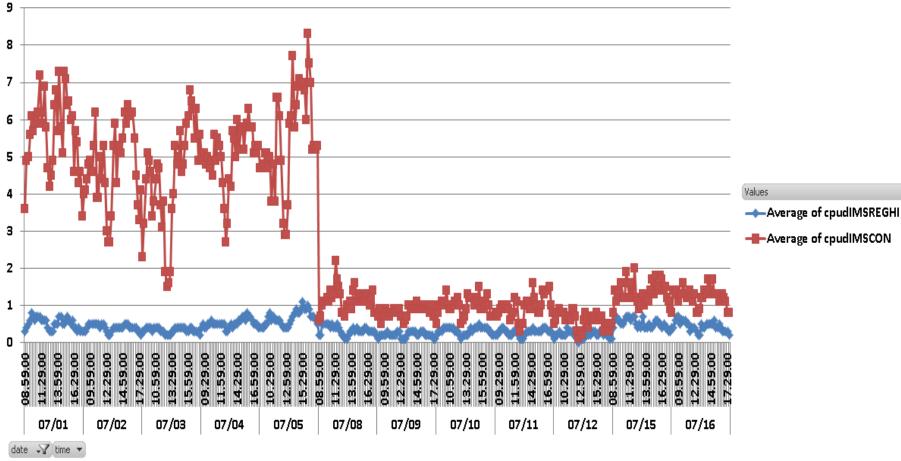
📊 Host Capacity Summary										
3 🖬 🗟 🥑							zPCR V8.2b			
LPAR Host Capacity Summary Report Study ID: Meral-Temel-ZPCR-Study1-ISBANK Capacity basis: 2094-701 @ 1,000 for a shared single-partition configuration Capacity for z/OS on z10 and later processors is represented with HiperDispatch turned ON										
	LPAR Configuration		Full CPC (Capacity (bas	ed on usable	e RCP count)				
Identity	Hardware	GP	zAAP	zIIP	IFL	ICF	Total			
#1🛕 Configuration #1	2097-E26/700: GP=10 zIIP=2 ICF=2	11,639		2,381		2,744	16,765			
#2 🛕 Configuration #2	2827-H43/700: GP=8 zIIP=3 ICF=3	16,238		6,164		5,751	28,153			
Content Contro	Based on "Configuration #1"	Show capacil	PC			39.5% INCREASI	k			
	For significant configuration changes, capacity comparisons Upgrading the processor family is conside IBM does not guarantee the results from this tool. Thi expressed or implied. You are responsible for th	red a significan s information is	t configuration provided "as	n change. is", without wai	rranty,					

SHARE zPCR LAB Sessions – John Burg



Effect Of CPU Efficiency To MSUs Consumed

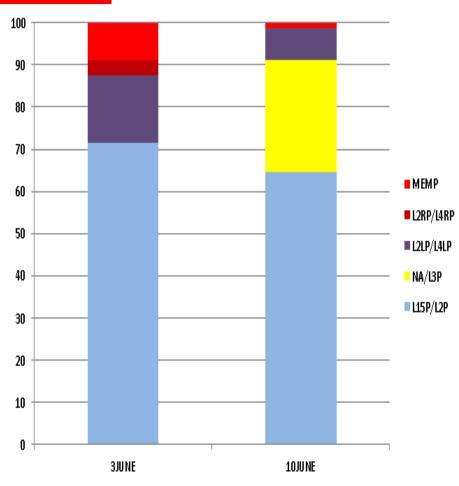
Effect Of CPU Efficiency To MIPS Consumed



Effect to CPU Delays Of IMS Regions

CPU Delay % Of SYSA -IMS –IREGHI Service Class CPU Delay % Of SYSA- IMSConnect Address Space Service Class

Average of cpudIMSREGHI Average of cpudIMSCON


SMF113 Study - SYSY System

10 JUNE / 3 JUNE SYSY ONLINE WORKLOAD TIME (09:00-18:00) COMPARISON

Cycle Per Instruction Decreased By %49

DATE	3JUNE	1011 INE	DECREASE%
CPI			
	7,46	3,81	49
L1MP	4,26	4,85	
L15P	71,58	NA	
L2P	NA	64,48	
L2LP	15,90	NA	
L2RP	3,84	NA	
L3P	NA	26,58	
L4LP	NA	7,74	
L4RP	NA	0,03	
LPARBUSY	7,89	54,67	
МЕМР	8,68	1,16	87
MIPSEXEC	46,73	791,00	
ESTICCPI	3,07	2,10	32
ESTFINCP	4,40	1,71	61
ESTSCP1M	103,40	35,23	66
RNI	0,90	0,65	
EFFGHZ	4,40	5,50	
TLB1MISS	8,10	5,62	31
TLB1CYCL	79,49	27,28	66
ртерстмі	36,74	27,57	25

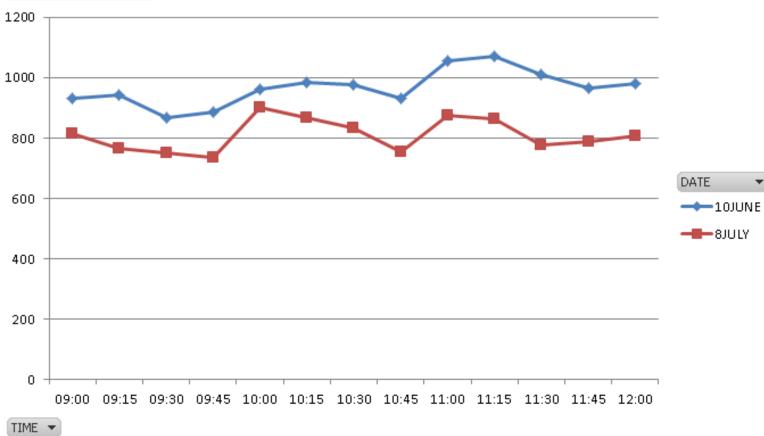
SMF113 Study - SYSA & SYSB System

%40 DECREASE In CPI (Cycle Per Instruction) = THIS IS OUR MIPS that we gain back!

	SYSA	SYSA			SYSB	SYSB	
ITEM	10JUNE	8JULY	%DECREASE	ITEM	10JUNE	8JULY	%DECREASE
СРІ	7,79	4,62	40,6	СРІ	8,12	4,35	46,4
ЦМР	4,91	5,60		L1MP	5,23	5,13	
L15P/L2P	71,07	64,10	9,8	L15P/L2P	72,74	66,87	8,1
L2LP/L4LP	21,82	7,11	67,4	L2LP/L4LP	22,63	4,93	78,2
L2RP/L4RP	3,07	0,44	85,5	L2RP/L4RP	0,09	0,13	
L3P		27,14		L3P		27,01	
LPARBUSY	53,23	335,97		LPARBUSY	40,58	191,48	
МЕМР	4,04	1,21	70,2	MEMP	4,55	1,07	76,5
MIPSEXEC	301,53	3999,24		MIPSEXEC	220,07	2436,59	
ESTICCPI	4,02	2,55	36,5	ESTICCPI	4,35	2,73	37,2
ESTFINCP	3,76	2,07	44,9	ESTFINCP	3,77	1,62	56,9
ESTSCP1M	76,74	37,10	51,6	EST SCP1M	72,06	31,73	56,0
RNI	0,60	0,67		RNI	0,57	0,57	
EFFGHZ	4,40	5,50		EFFGHZ	4,40	5,50	
TLB1MISS	6,07	6,20		TLB1MISS	6,06	5,66	
TLB1CYCL	55,47	33,73	39,2	TLB1CYCL	54,65	31,04	43,2
ртерстмі	35,26	37,01		РТЕРСТМІ	36,13	32,17	

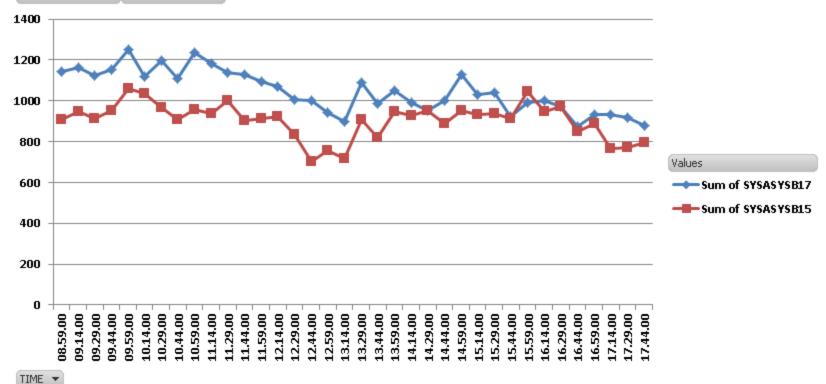
SYSA & SYSB MSU Decrease

%14 - %23 Decrease In MSU for nearly same amount of Workload


										SYSA+SYSBActual					
DATE	TIME	SYSAactualMSU	dayaverage	decrease%	DATE	TIME	SYSBactualMSU	U DATE	TIME	SYSA+SYSBActi dayav	ragdecrease:	%	Time	IntervalCo	mparison
8JULY	09:00	490	516		8JULY	09:00	326	8JULY	09:00	816	10		09:00	12,35	
8JULY	09:15	483			8JULY	09:15	281	8JULY	09:15	764			09:15	18,81	
8JULY	09:30	504			8JULY	09:30	248	8JULY	09:30	752			09:30	13,26	
8JULY	09:45	481			8JULY	09:45	254	8JULY	09:45	735			09:45	16,95	
8JULY	10:00	580			8JULY	10:00	322	8JULY	10:00	902			10:00	6,14	
8JULY	10:15	565			8JULY	10:15	301	8JULY	10:15	866			10:15	11,99	
8JULY	10:30	524			8JULY	10:30	310	8JULY	10:30	834			10:30	14,55	
8JULY	10:45	476			8JULY	10:45	278	8JULY	10:45	754			10:45	18,92	
8JULY	11:00	555			8JULY	11:00	318	8JULY	11:00	873			11:00	17,41	
8JULY	11:15	564			8JULY	11:15	301	8JULY	11:15	865			11:15	19,31	
8JULY	11:30	498			8JULY	11:30	278	8JULY	11:30	776			11:30	23,09	
8JULY	11:45	485			8JULY	11:45	302	8JULY	11:45	787			11:45	18,53	
8JULY	12:00	503			8JULY	12:00	305	8JULY	12:00	808			12:00	17,72	
10JUNE	09:00	552	605	14,7	10JUNE	09:00	379	10JUNE	09:00	931	66 16,2	12,35			
10JUNE	09:15	569			10JUNE	09:15	372	10JUNE	09:15	941		18,81			
10JUNE	09:30	495			10JUNE	09:30	372	10JUNE	09:30	867		13,26			
10JUNE	09:45	535			10JUNE	09:45	350	10JUNE	09:45	885		16,95			
10JUNE	10:00	587			10JUNE	10:00	374	10JUNE	10:00	961		6,14			
10JUNE	10:15	615			10JUNE	10:15	369	10JUNE	10:15	984		11,99			
10JUNE	10:30	595			10JUNE	10:30	381	10JUNE	10:30	976		14,55			
10JUNE	10:45	591			10JUNE	10:45	339	10JUNE	10:45	930		18,92			
10JUNE	11:00	699			10JUNE	11:00	358	10JUNE	11:00	1057		17,41			
10JUNE	11:15	679			10JUNE	11:15	393	10JUNE	11:15	1072		19,31			
10JUNE	11:30	639			10JUNE	11:30	370	10JUNE	11:30	1009		23,09			
10JUNE	11:45	637			10JUNE	11:45	329	10JUNE	11:45	966		18,53			
10JUNE	12:00	667		ļ	10JUNE	12:00	315	10JUNE	12:00	982		17,72			

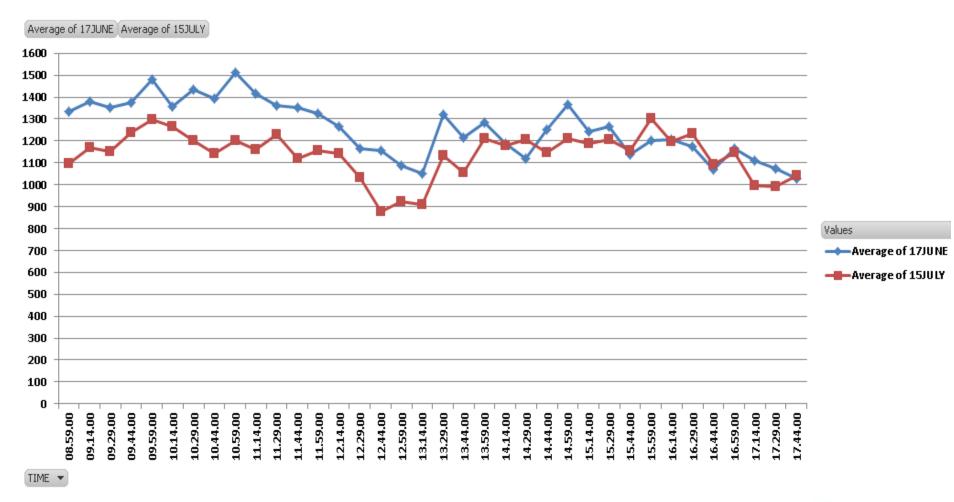
SYSA & SYSB MSU Decrease

Sum of SYSA+SYSBActual



SHARE in Boston

Peak Day SYSA & SYSB MSU Decrease %15 Although 15 July Is The Record Breaking Day For # Of Transactions


Sum of SYSASYSB17 Sum of SYSASYSB15

SYS	A & SYSB TOTA	AL ACTUAL MSU	(Average)
PERIOD	17June	15July	%DIFFERENCE
09-12	1395	1189	85
14-18	1180	1157	98

Peak Day SYSA & SYSB MSU Decrease %15 Although 15 July Is The Record Breaking Day For # Of Transactions

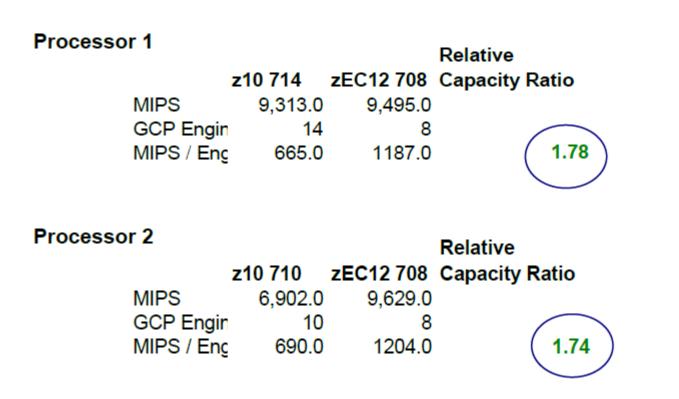
· Connections · Result

IMSCON Address Spaces' Service Units & CpuTime

TIME	TOTAL-SU-10June	TOTAL-SU-8July	%DIFFERENCE
09:00	6040549	5096530	15,63
09:15	6812501	5966145	12,42
09:30	7108471	6565781	7,63
09:45	7379635	7024891	4,81
10:00	8010046	7653798	4,45
10:15	8200481	7785963	5,05
10:30	8026827	7583087	5,53
10:45	8213571	7536075	8,25
11:00	9466314	7924118	16,29
11:15	9049287	7778164	14,05
11:30	9016012	7740987	14,14
11:45	8694807	7617411	12,39

	IMSCON AS CPUTIME (in seconds)												
time	tot10june	tot8july	%DECREASE										
09:00	173,867	79,391	54,3										
09:15	196,31	92,095	53,1										
09:30	204,125	101,352	50,3										
09:45	211,709	108,445	48,8										
10:00	230,696	118,147	48,8										
10:15	237,257	120,199	49,3										
10:30	232,276	117,059	49,6										
10:45	237,786	116,338	51,1										
11:00	274,394	122,338	55,4										
11:15	261,751	120,075	54,1										
11:30	261,421	119,493	54,3										
11:45	252,42	117,595	53,4										
12:00	256,096	118,286	53,8										

John Burg's Analysis


IBM WSC – JOHN BURG's ANALYSIS Special Thanks To John Burg For This Study

zPCR used to set Expectations based on actual configuration

- Accuracy of zPCR is within +/- 5%
 - Measurement is Average for all workloads
 - Capacity Levels set with z9-701 set to 593 MIPS

zEC12-708 Processor 1 Performance Vs Expectation

Overall the zEC12 appears to be performing above expectations by 22% to 23%

Prime 9 AM to Noon		SMF 113	SMF 112	5MF 70	s SMF 70s	SMF 72s			zPCR GCP Expectation				SMF 72s			SMF 70e		SMF 113	SMF 113
	LPAR	AVG GCP CPI	Median GCP CPI	AVG PLATE ITR	Median IRATE ITS					Measured LPAR: Median GCP ITR Vs Expectation		S Total LPAR CPU	Weighted LPARs Median GCP ITR V Expectation	DASD SSCHa	DASD VO Resp	Measured LPARs Weighted Actual "After" IRATE ITR Vs Expectation	Weighted		Weighted Actual CPI ITR Vs Expectation
zEC12-708	SYSA SYSY	2.1	5 2.2 6 0.9	2	25 2.3 06 1.4	2.24 1.41	2.24	2.22	1.7	14	302.1 0.1						1.25 1.25 1.20	12	1.23
	Avg/Sum ==>		1.6	7 1.	66 1.5	3	1.74	1.70			302		۰ 1.2	5 0.00	0.81	1.1	ıs 1.25	1.0	1.23
											Average	z8012 Box Lower Utilization Amount Vs z10 - "Low" workload 4.9	Lower Utilization Effect (LUE) Factor 6 0.98				0.965		0.905
												LUE Adjusted Weighted Actual 25012 GCP ITR Vs Expectation	1.2	\sim			1.23	>	1.22

zEC12-708 Processor 2 Performance Vs Expectation

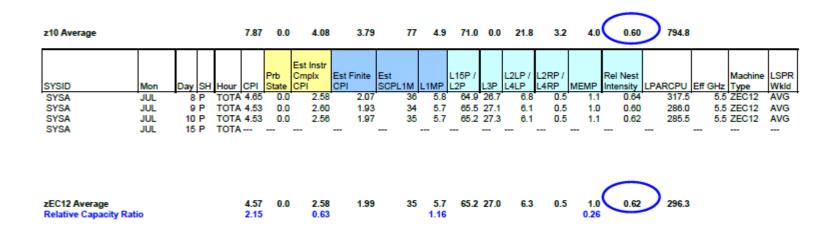
Overall the zEC12 appears to be performing above expectations by 15% to 26%

Prime 9 AM to Noon		SMF 113	SMF 11	3 SMF 70	s SMF 70s	SMF 72			zPCR GCP Expectation				SMF 72a			SMF 70s Weakured		SMF 113 Measured	SMF 113
	LPAR	AVG GCP CPI	Median GCP CF		Median IRATE IT		I Avg GCP			Measured LPARs Median GCP ITR Vs Expectation		% Total LPAR CPU	Weighted LPARa Median GCP ITR 1 Expectation	SSCH		LPARs Weighted Actual "After" IRATE ITR Vs Expectation	Weighted Actual 20012 IRATE ITR Vs Expectation		Weighted Actual CPI ITR Vs Expectation
	5Y58 5Y52		0.00 2.		09 2. 20 2.	17 2.2			1.7	1.2	62.3	23.61		42 1.1 27 1.2	0 1.1	5 1.2	\$ 0.30	1.2	
	AvgSum ++>			21 2.	14 2.		2.9	6 2.04	•		253.0 Average	25012 Box Lower Utilization Amount Vs 210 - "Low" workload 1021	Lower Utilization Effect (LUE) Facto		6 1.1) 12	0.970		0.970
												LUE Adjusted Weighted Actual 2E012 GCP ITR Vs Expectation	(1.1	5			1.15		1.26

LEM

Performance Summary Vs zPCR Expectations

- Summary
 - Both zEC12s appear to be performing better than expectations
 - zEC12 Processor 1 by 22% to 23%
 - zEC12 Processor 2 by 15% to 26%
 - As suggested by <u>3 independent metrics SMF 70s</u>, SMF 72s and SMF 113s


	SMF 72	SMF 70 IRATE ITR Vs	SMF 113	
	GCP ITR Vs Expect	ctation Expectation	CPI ITR V	s Expectation
zEC12-708 SYSA		1.23	1.23	1.22
zEC12-708 SYSB / SYSZ		1.15	1.15	1.26
zPCR Expectation	1.00			

CPU MF Characteristics - SYSA

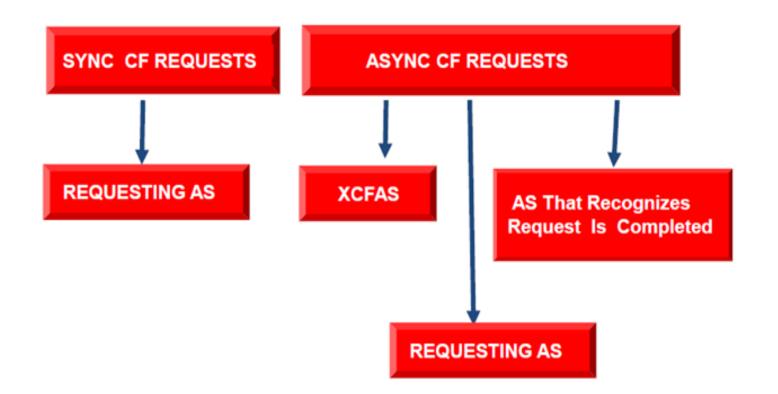
							Est Instr Cmplx	Est Finite	Fst		L15P /		L2LP /	L2RP/		Rel Nest			Machine	ISPR
SYSID	Mon	Day	SH	Hour	CPI	State			SCPL1M	L1MP							LPARCPU			Wkld
zEC12-708				-														•	•	
Prime 9 AM to	Noon																			
SYSA																				
SYSA	JUN	17	P	TOTA	7.96	0.0	3.91	4.06	84	4.8	69.4	0.0	22.5	3.4	4.8	0.67	962.9	4.4	Z10	AVG
SYSA	JUN	18	P	TOTA	8.25	0.0	4.52	3.72	74	5.0	71.6	0.0	21.6	3.2	3.7	0.57	732.9	4.4	Z10	LOW
SYSA	JUN	19	P	TOTA	7.40	0.0	3.80	3.60	73	4.9	72.1	0.0	21.2	3.1	3.6	0.56	688.6	4.4	Z10	LOW

RNI metric is consistent between Processors .60 Vs .62

Observations

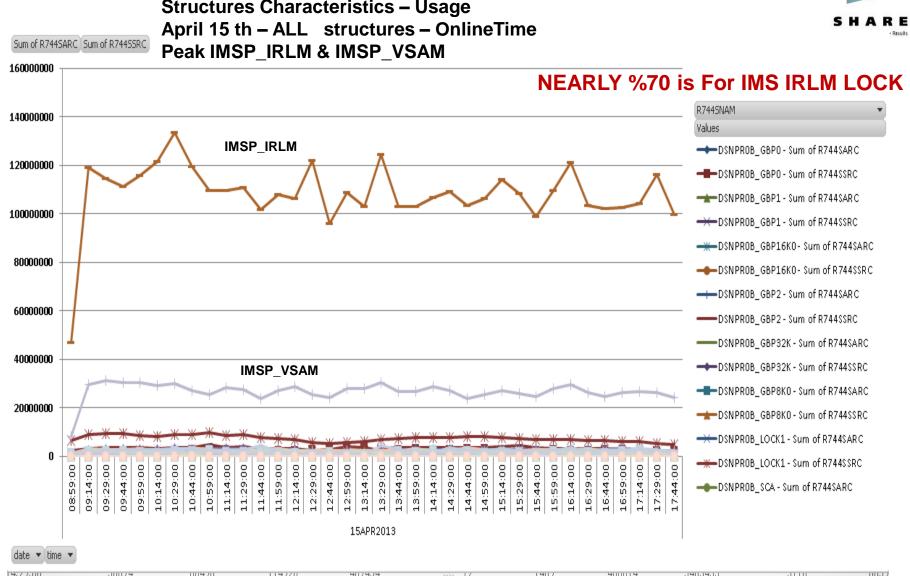
Observations

- Both zEC12s appear to be performing better than expectations
 - zEC12 Processor 1 by 22% to 23%
 - zEC12 Processor 2 by 15% to 26%
- RNI metrics are consistent across 2 processor generations
 - SYSA and SYSB
- IS Bank benefitted from zEC12 Processor Architecture Vs z10
 - GHz, Larger Caches and Enhanced Out-Of-Order Execution


CF VIEW

HOW IS MY CF WORKLOAD EFFECTED ? CF VIEW

Sync/Async Conversion


NON-HEURISTIC HEURISTIC

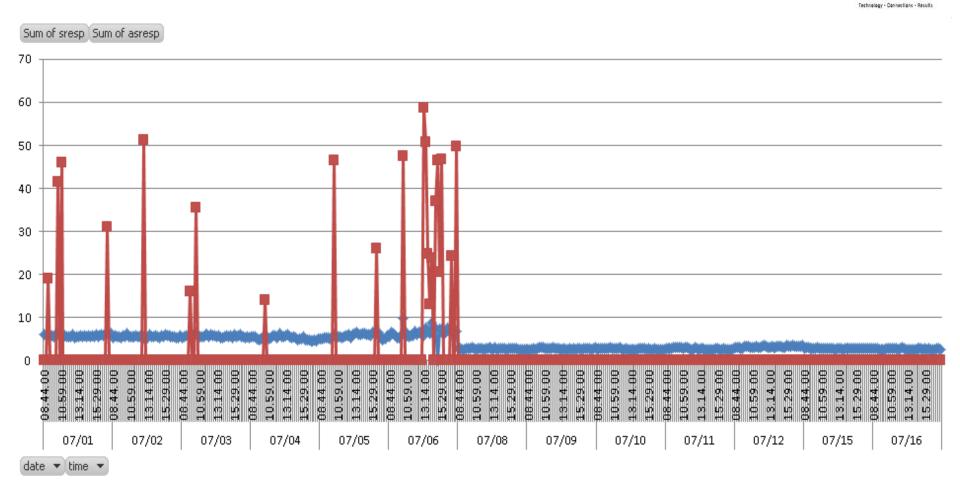
- Subchannel Busy Condition
- Path Busy Condition
- Serialized List or Lock Contention

Introduced with z/OS v1r2...

- CF Link Technology
- Types Of Workload Variable Workload Amount
- Range Of CF Utilization, Shared CP or not,...
- Actual Observed Sync Request Service Time
- Amount Of Data That Needs To Be Transfered
- Other items that effect CF response ex:Distance
- Moving Weighted Averages Of Actual CF Requests
- Every 1 of N Request not converted and send as Sync

OUR CF WORKLOAD CHARACTERISTICS

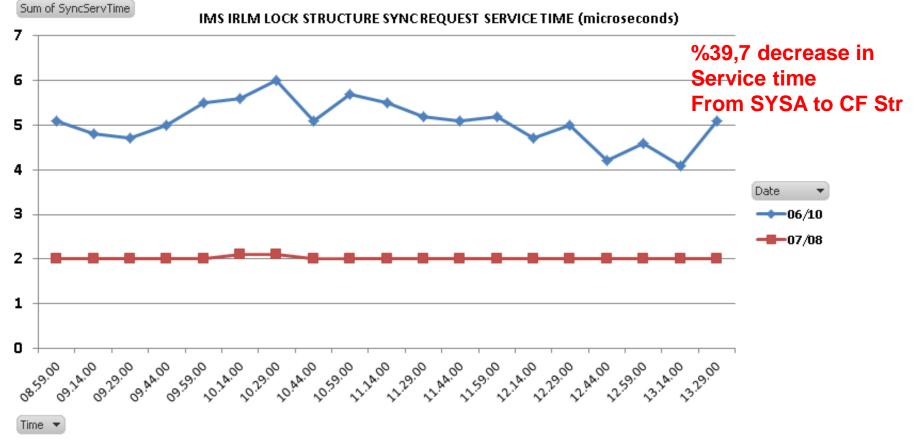
Structures Characteristics – Usage



In Boston

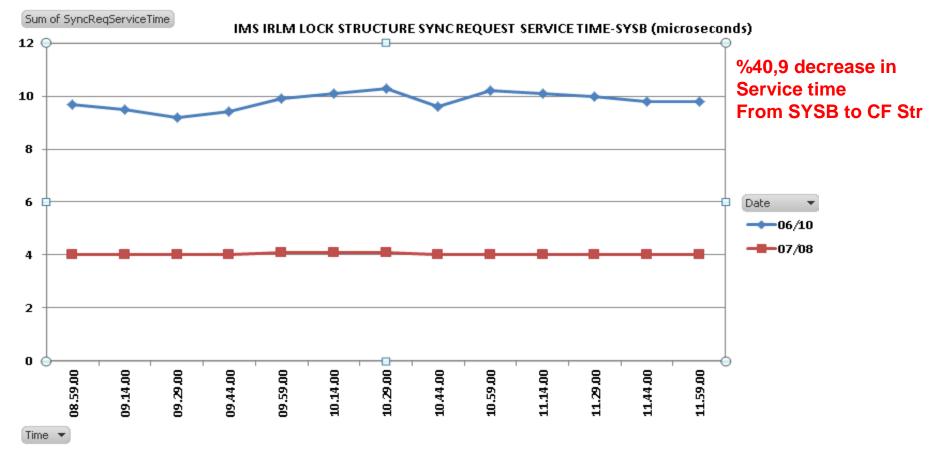
Effect to CF Request Service Times for IMS IRLM Lock Structure

Effect to CF Request Service Times for IMS IRLM Lock Structure - Sync Req Service Time & Async Req Service Time (microseconds)s H A R E



IC Links Performance Improvement CF Request Service Times for IRLM Lock Structure

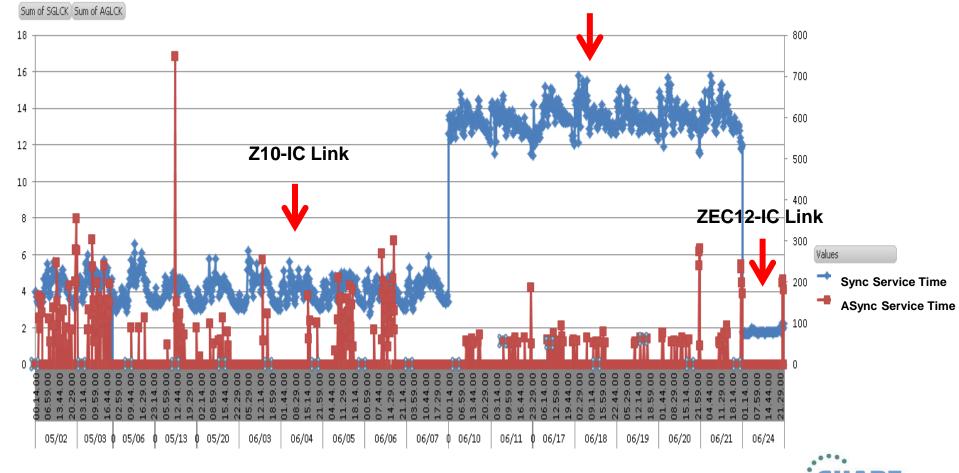
Z10 IC Link – ZEC12 IC Link Performance Improvement This is Seen For IMS Lock Structure Access from SYSA


CF Processor Speed & 2 ICFs to 3 ICFs (1 CF to 2 CFs for production) increase also causes this result

ICB4 To Infiniband Links Change Effect to Performance CF Request Service Times for IRLM Lock Structure

Z10 2 ICB4 Links – ZEC12 3 Infiniband Links Performance Improvement This is Seen For IMS Lock Structure Access from SYSB

CF Processor Speed & 2 ICFs to 3 ICFs (1 CF to 2 CFs for production) increase also causes this result



Effect to CF Request Service Times for DB2 Lock Structure

SYSY – DB2 Lock Structure Sync & Async ServiceTime (microseconds) %50 DECREASED ServiceTime

Because z10 Supports Only Earlier InfinibandProtokol-This Was Something We Have Expected

Z10-zEC12 InfinibandProtokol

SHARE Technology - Connections - Result

in Boston

SHARE Technology - Centerlieus - Results

DataSharing Cost Value Changes Estimated To Be Changed From %10 To %11

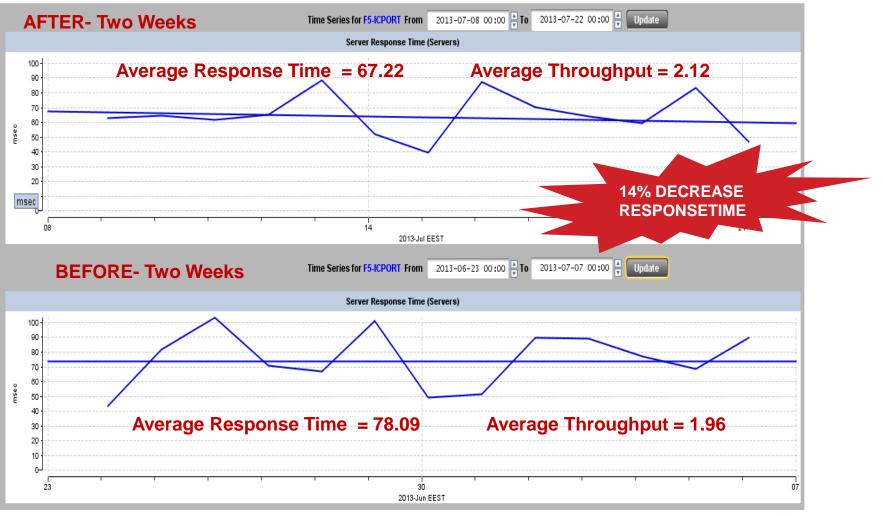
Coupling Technology versus Host Processor Speed

Host effect with primary application involved in data sharing Chart below is based on 9 CF ops/Mi - may be scaled linearly for other rates

CF\Host	z10 BC	z10 EC	z114	z196	zEnterprise EC12
z10 BC ISC3	16%	18%	17%	21%	24%
z10 BC 1x IFB	13%	14%	14%	17%	19%
z10 BC 12x IFB	12%	13%	13%	15%	17%
z10 BC ICB4	10%	11%	NA	NA	NA
z10 EC ISC3	16%	17%	17%	21%	Z4%
z10 EC 1x IFB	13%	14%	14%	17%	19%
z10 EC 12x IFB	11%	12%	12%	14%	16%
z10 EC ICB4	10%	10%	NA	NA	NA
z114 ISC3	16%	18%	17%	21%	24%
z114 1x IFB	13%	14%	14%	17%	19%
z114 12x IFB	12%	13%	12%	15%	17%
z114 12x IFB3	NA	NA	10%	12%	13%
z196 ISC3	16%	17%	17%	21%	24%
z196 1x IFB	13%	14%	13%	16%	18%
z196 12x IFB	11%	12%	11%	14%	15%
z196 12x IFB3	NA	NA	9%	11%	12%
zEnterprise EC12 ISC3	16%	17%	17%	21%	24%
zEnterprise EC12 1x IFB	13%	13%	13%	16%	18%
zEnterprise EC12 12x IFB	11%	11%	11%	13%	15%
zEnterprise EC12 12x IFB3	9%	9%	9%	10%	11%

With z/OS 1.2 and above, synch->asynch conversion caps values in table at about 18% IC links scale with speed of host technology and would provide an 8% effect in each case

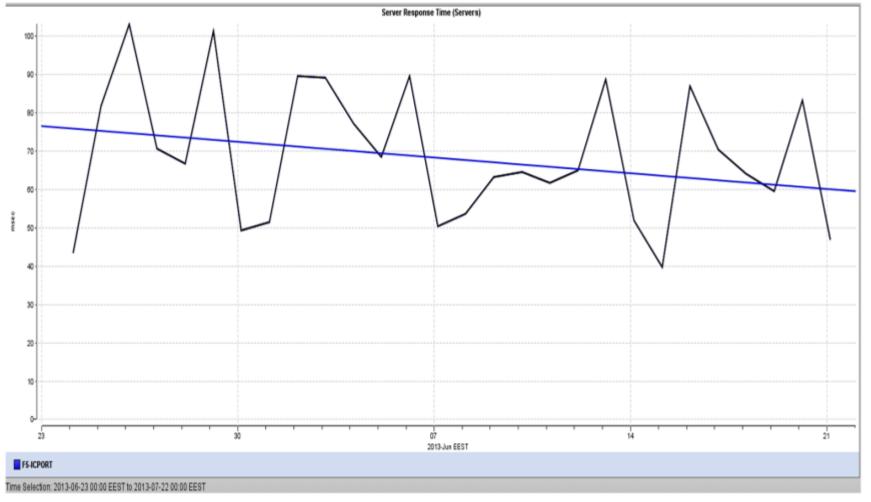
End User VIEW



How Are My End Users Effected ? End User View

How Did Upgrade Effect End Users?

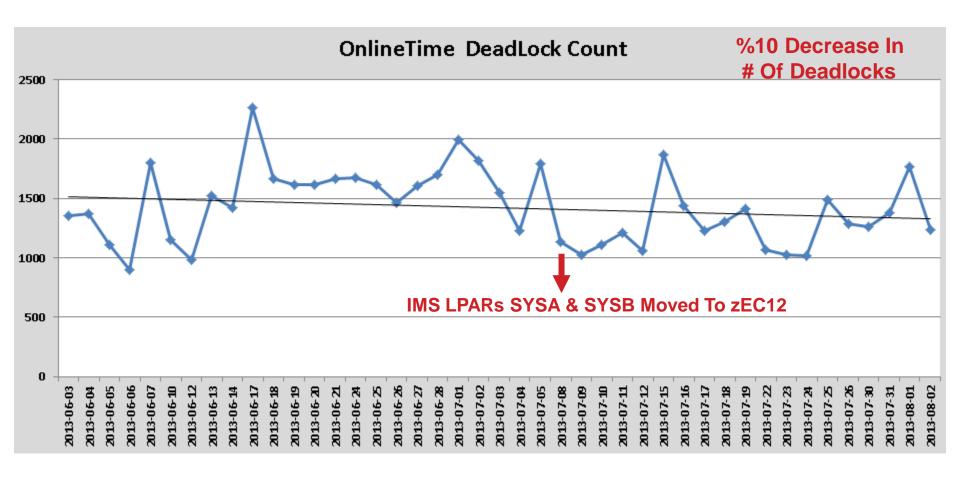
14 % DECREASE IN RESPONSETIME THAT IS SEEN FROM OUTSIDE OF MAINFRAME



How Did Upgrade Effect End Users?

TREND VIEW - RESPONSETIME

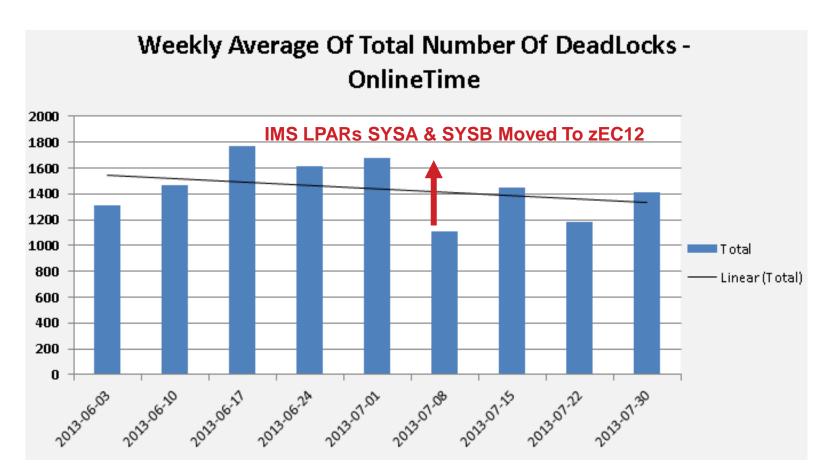
Side Effect ?



Are There Any Side Effects ?

Checking Side Effects

When We Checked 2 months of Data ,we realize that it is not a Side Effect! . Just opposite = There is nearly 10 % Decrease In # Of IMS Deadlocks

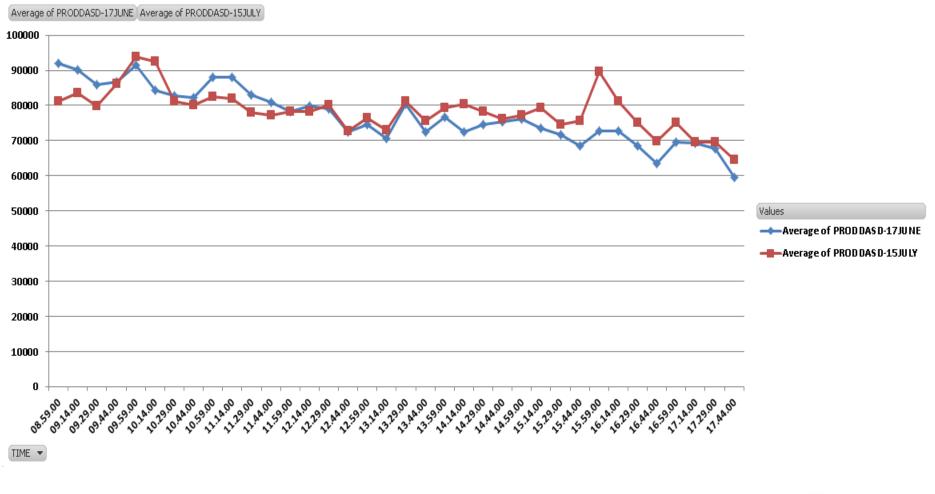


Checking Side Effects

Checked and realize that it is not Side Effect! .

Just opposite = There is nearly 10 % Decrease In # Of IMS Deadlocks

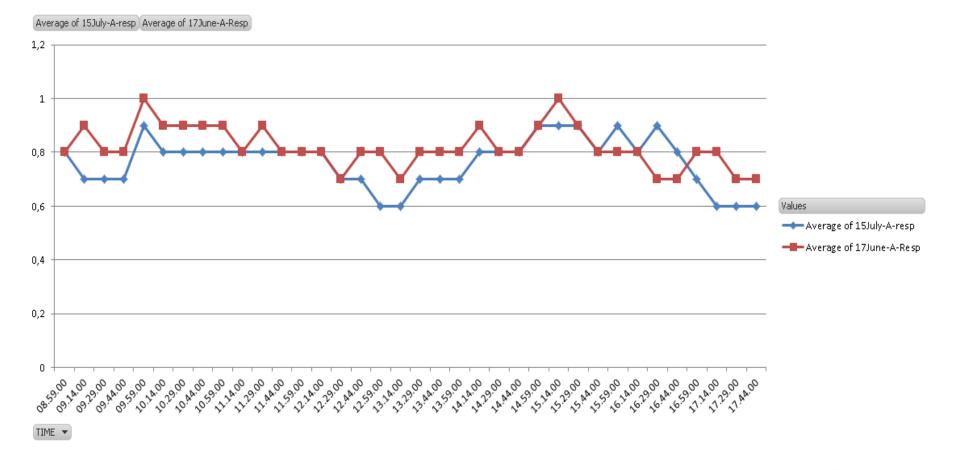
DASD I/O VIEW



PEAK DAY COMPARISON DASD I/O View (Also Side Effect Check)

Production Total DASD RATE Online Time

We were not high utilized in z10s, So not that much increase in DASD Rate + Not cause any bottleneck



Production SYSA DASD ResponseTime (millisecs) Online Time

Started Using New I/O Response Time Component – zEC12 Feature I/O Interrupt Delay – (Not like other components)

Continuing Processes & Future Plans

CPENABLE & RMPTTOM parameter changes DFSORT Parameters – More To Update (More zIIP usage) DB2 Local Buffer Pool Increase WLM Policy Rearrangements COBOL Compile Parameters Performance Items Study # Of IMS LPARs increase effect study IMS usage of ECSA Usage Study COBOL Version Upgrade To Use Latest system z Instructions zFlash Implementation zBNA Study

Others: zAWARE Implementation zEC12 GA2 Implementation – ABSOLUTE CAPPING + zEDC z/OS V2R1 Implementation – MANY GREATE FEATURES!

Useful Links & More Information

For Sure SHARE Website

Great sessions in This SHARE as well as previous SHARE sessions – MVS Program

Resourcelink Website

https://www-304.ibm.com/servers/resourcelink/svc03100.nsf?Opendatabase

Exception Letter, CPU MF Counter document, PR/SM Planning, HMC & SE Users Guide and many more....

LSPR

https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprindex?OpenDocument&pathID=

zPCR Download Website

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1381?OpenDocument&TableRow=4.1.0#4.1.

IBM WSC Website - Techdocs

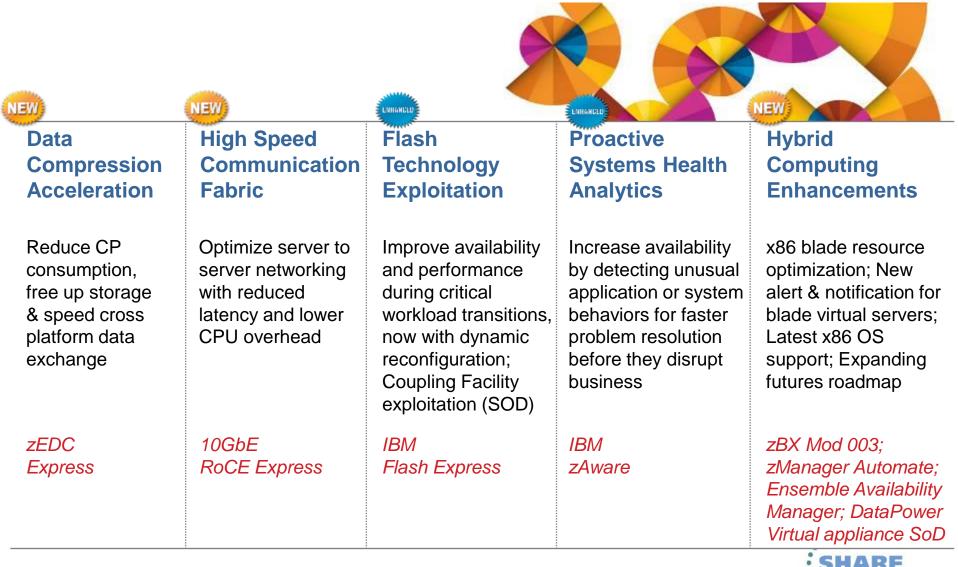
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Web/TechDocs

IBM WLM – LPAR DESIGN TOOL DOWNLOAD

http://www-03.ibm.com/systems/z/os/zos/features/wlm/tools/WLMsetupdesigntools.html

RMF User Guide – Chapter 15 Overview And Exception conditions

2011-SHARE –Anaheim Using and Getting Benefit From SMF113 Records :Customer Experience 2012-SHARE-Atlanta Migrating From z10 ICBs To z196 Infiniband –Detail Performance Study 2012-SHARE-Atlanta Analyzing/Monitoring/Measuring Memory Usage And Understanding z/OS Memory Management : Performance View


zEC12 GA2 And Other ENHANCEMENTS Thanks To Harv Emery – IBM WSC

New innovations available on zBC12 and zEC12

In Boston

zEnterprise Data Compression (zEDC) - can help to reduce CPU and storage

Every day 2.5 quintillion bytes of data are created

SHARE Technology - Connections - Results

Compress your data

4X* (efficient system data compression)

Up to 118X reduction in CPU and up to 24X throughput improvement when zlib uses zEDC **

71

Efficiently compress active data by providing a low CPU, high performance, dedicated compression accelerator

Industry standard compliance compression for cross platform data distribution **

Typical Client Use Cases:

Significant disk savings with trivial CPU cost for large BSAM/QSAM sequential files ***

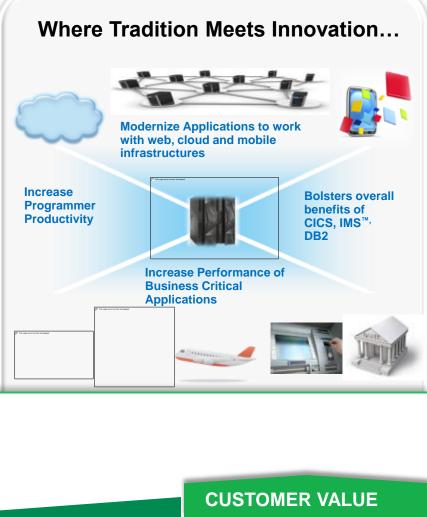
More efficiently store audit data in application logs

Reduce the amount of data needed for data migration and backup/restore **

Transparent acceleration of Java compressed applications **

NEW ZEDC Express

* The amount of data sent to an SMF logstream can be reduced by up to 75% using zEDC compression – reducing logger overhead ** These results are based on projections and measurements completed in a controlled environment. Results may vary by customer based on individual


* These results are based on projections and measurements completed in a controlled environment. Results may vary by customer based on individuation workload, configuration and software levels

*** All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

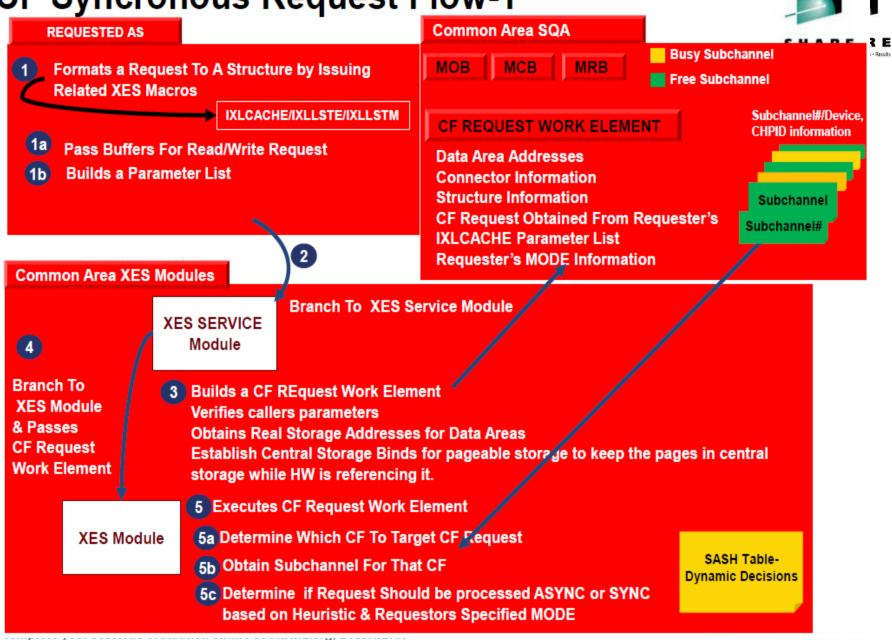
Enterprise COBOL for z/OS v5.1

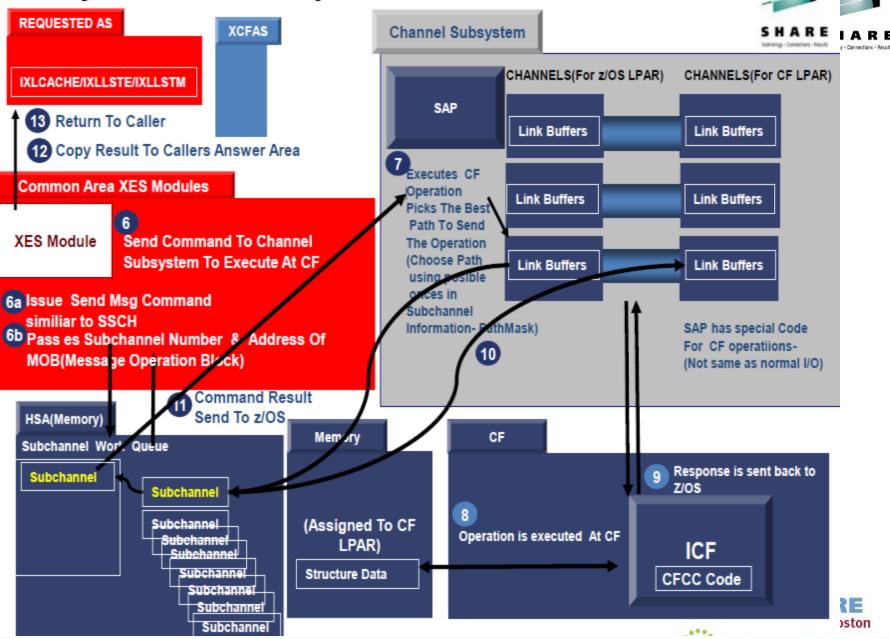
The key to supercharging IBM System z Applications

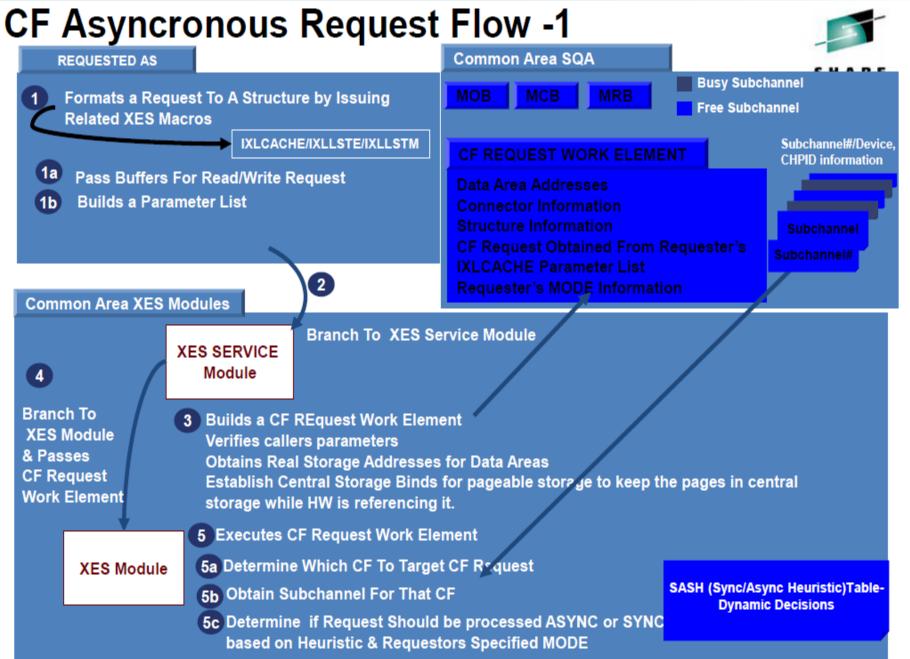
- Advanced technology designed to optimize COBOL programs and fully exploit System z hardware
 - Delivers greater than 10% performance improvement over Enterprise COBOL v4 for well structured, CPUintensive batch applications on System z¹
 - Many numerically intensive programs have shown . performance increases greater than 20%¹
 - Maintains compatibility with previous COBOL releases
- New programming and application modernization capabilities.
 - Enables users to deliver enhancements to business critical applications quicker with less cost and lower risk
- Allows users, who implement sub-capacity
- stasking the educe administrative overhead development tools supplied by IBM and ISVs.

•••• in Boston

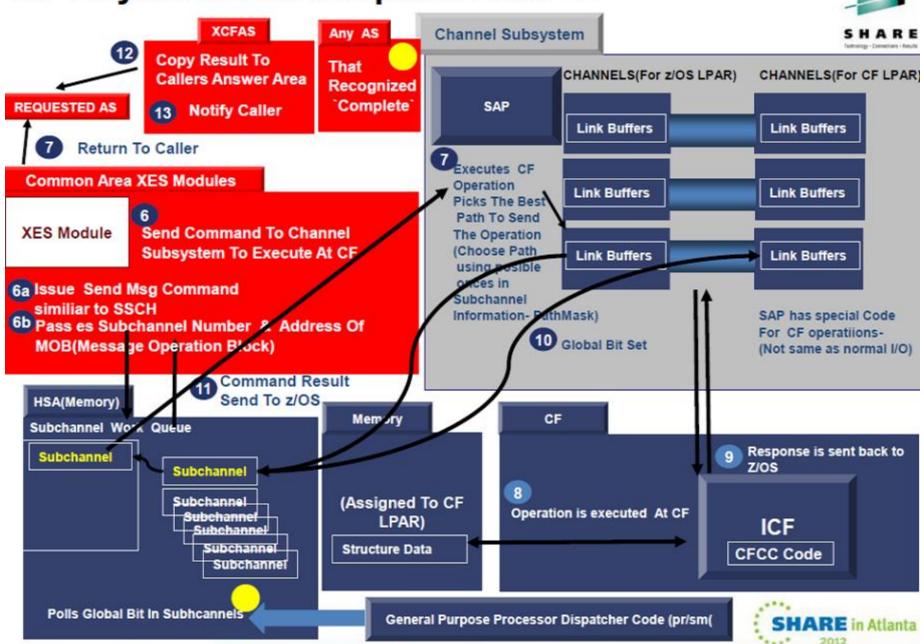
GARY KING - IBM Performance JOHN BURG – IBM WSC GEORGETTE KURT – IBM Parallel Sysplex HORST SINRAM – IBM WLM HARV EMERY – IBM WSC


Backup Slides

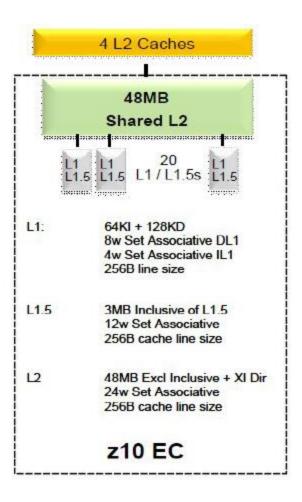

Backup Slides

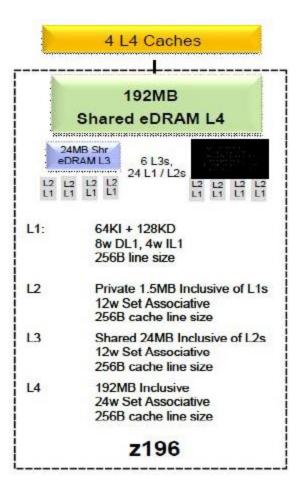


CF Syncronous Request Flow-1



CF Syncronous Request Flow-2




CF Asyncronous Request Flow -2

Backup Slide z10 – z196 Differences

Backup Slide z196 – zEC12 Differences

z196 EC MCM vs zEC12 MCM Comparison

z196 MCM

MCM

-96mm x 96mm in size

-6 PU chips per MCM

Quad core chips with 3 or 4 active cores PU Chip size 23.7 mm x 21.5 mm 5.2 GHz Superscalar, OoO execution L1: 64 KB I / 128 KB D private/core L2: 1.5 MB I+D private/core L3: 24 MB/chip – shared

-2 SC chips per MCM L4: 2 x 96 MB = 192 MB L4 per book SC Chip size 24.5 mm x 20.5 mm

-1800 Watts

zEC12 MCM

MCM

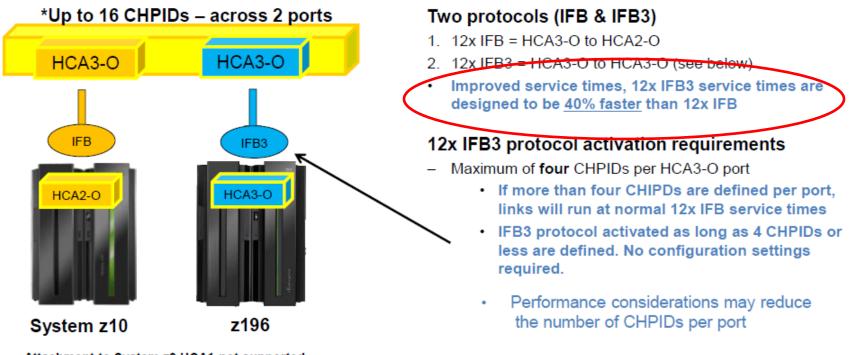
–96mm x 96mm in size

-6 PU chips per MCM

Hex-core chips with 4 to 6 active cores PU Chip size 23.7 mm x 25.2 mm 5.5 GHz Improved superscalar and OoO execution

- L1: 64 KB I / 96 KB D private/core
- L2: 1 MB I / 1 MB D private/core
- L3: 48 MB/chip shared

-2 SC chips per MCM


L4: 2 x 192 MB = 384 MB L4 per book SC Chip size 26.72 mm x 19.67 mm

-1800 Watts

New 12x InfiniBand fanout cards, exclusive to z196 and z114

Attachment to System z9 HCA1 not supported

Note: The InfiniBand link data rates of 6 GBps, 3 GBps, 2.5 Gbps, or 5 Gbps do not represent the performance of the link. The actual performance is dependent upon many factors including latency through the adapters, cable lengths, and the type of workload.

