
1

IBM Systems and Technology Group (STG)

© Copyright International Business Machines Corporation 2012, 2013

IBM zEnterprise EC12
CPU Facilities

Peter Relson (relson@us.ibm.com)

Dan Greiner (dgreiner@us.ibm.com)

SHARE 121, Session 14087

Wednesday, 14 August 2013, 1:30 p.m.

This presentation will discuss the major new CPU facilities added to the IBM zEnterprise EC12 system.

Earlier versions of this presentation were provided to members of the IBM Early-Support Program for the zEC12 in the
summer of 2012 and at the IBM Technical Disclosure Meeting in the autumn of 2012. This material was also presented at
SHARE 120 in February of 2013. If you attended such a presentation, please be advised that the SHARE-120 and 121
versions contain numerous corrections and clarifications from the ESP and TDM versions.

2

2SHARE 121 – Session 14087

The Legal Stuff

 The following terms are registered trademarks of the International Business Machines Corporation in the United
States, other countries, or both:

► IBM
► IBM logo

 The following terms are trademarks of the International Business Machines Corporation in the United States, other
countries, or both:

► ESA/390
► z/Architecture
► z/OS
► z/VM

 The following are trademarks or registered trademarks of other companies:
► IEEE is a trademark of the Institute of Electrical and Electronics Engineers, Inc. in the United States, other countries, or

both.
► Java is a trademark of Oracle America, Inc. in the United States, other countries, or both.
► Linux is a registered trademark of Linus Torvalds in the United States, other countries or both.
► Unicode is a registered trademark of Unicode, Incorporated in the United States, other countries, or both.
► Other trademarks and registered trademarks are the properties of their respective companies.

 All information contained in this document is subject to change without notice. The products described in this document are not
intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result in
death, bodily injury or catastrophic property damage. The information contained in this document does not affect or change IBM
product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under
the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

 While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon
for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

 The information in contained in this document is provided on an “AS IS” basis. In no event will IBM be liable for damages arising
directly or indirectly from any use of the information contained in this document.

 This publication was produced in the United States. IBM may not offer the products, services or features discussed in this
document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.

 All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent
goals and objectives only

This slide reviews the trademarks that may be shown in the presentation. Also, this slide includes various disclaimers as to the content of
the presentation.

3

3SHARE 121 – Session 14087

Topics du Jour

 Interlocked-access facility 2

DFP zoned-conversion facility

 Execution-hint facility

 Load-and-trap facility

Miscellaneous general instructions

 Enhanced-DAT facility 2

 Local-TLB-clearing facility

 Transactional-execution facility

 Processor-assist facility

For related topics, please see: Session 14255: Transactional Execution Facility – What Is It and How Can You
Use It to Your Advantage? Thursday, 15 August 2013, 1:30pm – 3:00pm, Room 313

This is an in-depth type of presentation!

If you are not comfortable with CPU architecture at the bits and bytes level, if you don’t know your LOADs from your LOAD
ADDRESSES, if you’re more comfortable writing in Java than in Assembler, and if you suddenly feel a desperate urge to be
somewhere else, there is no shame if you quietly slip out. But, if you choose to skip out, you’ll miss hearing about how we
have improved the CPU architecture – with particular emphasis on improving Java’s performance.

This slide enumerates the new CPU facilities introduced in the IBM z/Enterprise EC12. Each of these facilities will be
discussed in detail in the subsequent slides. Much of the material described in today’s presentation is related to the
characteristics of multiprocessing … particularly, in improving the performance of MP applications that share common
memory locations.

Also note that session 14255, Transactional Execution Facility - What Is It and How Can You Use It to Your Advantage? will
discuss more details on the TX facility on Thursday afternoon, 1:30-3:00 pm.

4

4SHARE 121 – Session 14087

Interlocked-Access Facility 2

 System z196 introduced the interlocked-access facility

► LOAD & ADD, LOAD & ADD LOGICAL, LOAD & AND,
LOAD & OR, LOAD & XOR, LOAD PAIR DISJOINT

► Now called interlocked-access facility 1

 Interlocked-access facility 2 provides:

► Guaranteed block-concurrent interlocked update for:

– ADD IMMEDIATE (ASI, AGSI) with aligned operands
– ADD LOGICAL IMMEDIATE (ALSI, ALGSI) with aligned operands
– AND (NI, NIY)
– OR (OI, OIY)
– EXCLUSIVE OR (XI, XIY)

► Facility indication bit 52
► Facility is available on the z196!

The interlocked-access facility was introduced in the System z196 processor in September of 2010, and included the
instructions listed on this slide.

These instructions provide improved performance for certain sequences of operations that may be executed in a
multiprocessing environment. The instructions provide a block-concurrent, interlocked update for loading, performing and
operation, and storing a result (commonly known as an atomic operation). This facility is now called the interlocked-access
facility 1.

The interlocked-access facility 2 provides an assurance that the instructions listed here will also perform in an interlocked,
block-concurrent manner. Many of these instructions such as AND (NI), EXCLUSIVE OR (XI), and OR (OI) have existed
since the original S/360, with programming notes advising that they cannot safely be used in an MP environment. The
interlocked-access facility 2 changes that, assuring that these instructions will perform in an interlocked manner.

The interlocked-access facility 2 was actually present in the System z196, but no facility indication was originally provided.
Through a firmware upgrade, the interlocked-access facility 2 indication is now provided on all z196 processors.

5

5SHARE 121 – Session 14087

DFP Zoned-Conversion Facility

 Adds instructions for converting between DFP and zoned format
► May provide substantial performance improvement for applications

that use packed-decimal data
► By converting to DFP and performing calculations using DFP

instructions, numerous storage accesses may be avoided
► Four new instructions:

– Long / extended DFP format
– To / from zoned format

► Facility indication bit 48

 Formally documents zone code 0011 binary (ASCII format)

The DFP zoned-conversion facility provides four new instructions for converting between the zoned-format in storage and a
decimal-floating-point (DFP) format value in a floating-point register.

Applications that use zoned and/or packed data formats may yield increased performance by adapting to perform the
arithmetic operations in DFP, while retaining the legacy packed or zoned formats. Also, as a part of this update, the
architecture has also been adapted to formally document the zone code of 0011 binary as representing the ASCII numeric
zone.

6

6SHARE 121 – Session 14087

DFP Zoned-Conversion Facility (2)

 CONVERT FROM ZONED

 M3 field:
0 – Sign control (S: 0=2nd operand unsigned; 1=2nd operand signed)
1 – reserved
2 – reserved
3 – reserved

 CXZT 2nd-operand can provide a length of 34 digits!

ED B2 D2 R1 M3

CDZT R1,D2(L2,B2),M3 [RSL-b] (long DFP result)

L2 AA

ED B2 D2 R1 M3

CXZT R1,D2(L2,B2),M3 [RSL-b] (extended DFP result)

L2 AB

The CONVERT FROM ZONED instructions are of the RSL instruction format (subformat b). There are instructions for
converting a zoned value that result in either a long (64-bit) DFP value or an extended (128-bit) value.

The first operand in the R1 field specifies a floating-point register into which the DFP-format result is placed.

The second operand is the address of a storage-operand containing the zoned value to be converted; the L2 field indicates
the length of the zoned value in bytes.

The M3 field contains a one-bit sign control which indicates whether the second-operand is to be treated as a signed or
unsigned value.

Note, because of the capacity of DFP number representations, CXZT is capable of accommodating a 34-digit length …
substantially larger than can be accommodated by normal packed-decimal instructions.

7

7SHARE 121 – Session 14087

DFP Zoned-Conversion Facility (3)

 CONVERT TO ZONED

 M3 field:
0 – Sign control (S: 0=2nd operand unsigned; 1=2nd operand signed)
1 – Zone control (Z: 0=zone stored as 1111; 1=zone stored as 0011)
2 – Plus-sign-code control (P: 0=plus is 1100 binary; 1=plus is 1111)
3 – Force-plus-zero control (F: 0=-0 unchanged; 1=-0 made +)

 CZXT 2nd-operand can accommodate a 34-digit result!

ED B2 D2 R1 M3

CZDT R1,D2(L2,B2),M3 [RSL-b] (long DFP source)

L2 A8

ED B2 D2 R1 M3

CZXT R1,D2(L2,B2),M3 [RSL-b] (extended DFP source)

L2 A9

The CONVERT TO ZONED instructions are of the RSL instruction format (subformat b). There are instructions for converting
either a long or extended DFP value into a zoned value.

The first operand is the R1 field specifies a floating-point register containing the DFP number to be converted.

The second operand is the address of a storage-operand into which the zoned result will be placed; the L2 field indicates the
length of the zoned value in bytes.

The M3 field contains four separate controls:

• Bit zero controls the sign of the result.

• Bit one controls the resulting zone (0 means EBCDIC, 1 means ASCII)

• Bit 2 specifies the encoding of a positive sign value in the result

• Bit 3 indicates whether a DFP -0 value should be made positive.

Note, because of the capacity of DFP number representations, CZXT is capable of accommodating a 34-digit length …
substantially larger than can be accommodated by normal packed-decimal instructions.

8

8SHARE 121 – Session 14087

Execution-Hint Facility

 Provides the following instructions:
► BRANCH PREDICTION PRELOAD
► BRANCH PREDICTION RELATIVE PRELOAD
► NEXT INSTRUCTION ACCESS INTENT

 When the facility is installed, these instructions provide hints to
the CPU as to anticipated branches and operand accesses
► May provide performance improvement (if used properly)
► May degrade performance (if abused)
► Otherwise, instructions act as no-ops, and do not affect conceptual

sequence of execution.

 Facility indication bit 49

The execution-hint facility provides three instructions which can be used to provide hints to the CPU as to various branching
conditions and the storage-access intent of a subsequent instruction. These instructions are used by IBM compilers to
optimize instruction flow in the CPU pipeline.

When properly used, these instructions may improve performance. However, when improperly used, these instructions may
actually degrade performance by mis-directing CPU branch prediction logic and prefetching controls.

However, regardless of how the instructions are used, they otherwise act as no-operation instructions (no-ops), and do not
affect the logic of program execution.

This facility – as well as several others in the zEC12 – are indicated by facility indication 49 (as stored by STORE FACILITY
LIST EXTENDED).

9

9SHARE 121 – Session 14087

Branch Prediction (1)

 BRANCH PREDICTION PRELOAD

 BRANCH PREDICTION RELATIVE PRELOAD

 Provides branch hint to CPU
► M1 field contains branch-type code (next slide)
► 2nd operand is relative address of a branching instruction
► 3rd operand is address of expected branch location

C5 RI3RI2M1

BPRP M1,RI2,RI3 [MII]

0 8 12 24 47

C7 B3 D3 RI2M1

BPP M1,RI2,D3(B3) [SMI]

////

0 8 12 20 4716 32

BRANCH PREDICTION PRELOAD and BRANCH PREDICTION RELATIVE PRELOAD are instructions to provide the CPU’s
branch-prediction logic with a direct assertion of the programmer’s intent for a branch instruction.

In both instructions:

• The M1 field contains a code designating the type of branch instruction designated by the second operand (see the next
slide for details).

• The RI2 field contains a signed relative-immediate address (relative to the PSW instruction address) that designates the
branch instruction.

The third operand designates the anticipated branch location of the instruction designated by the second operand. For BPP,
the third operand is a classic base-and-displacement form, and for BPRP, the third operand is a 24-bit (!) signed value that is
relative to the PSW instruction address.

10

10SHARE 121 – Session 14087

Branch Prediction (2)

EXRL615

EX414

Static calling linkageBRASL613

Conditional or unconditional
branches

BRCTH, BRCL, BCTG, BXHG, BXLEG, BRXHG, BRXLG, CGRJ, CLGRJ,
CRJ, CLRJ, CGIJ, CLGIJ, CIJ, CLIJ, CGRB, CLGRB, CRB, CLRB, CGIB,
CLGIB, CIB, CLIB

612

Dynamic calling linkageBAL, BAS411

Uncond. return linkageBC410

Static calling linkageBAL, BAS, BRAS49

Cond. or uncond. branchesBC, BCT, BRXH, BRXLE, BXH, BXLE, BRC, BRCT, BRCTG, BCTGR48

Dynamic calling linkageBALR, BASR, BCR27

Returning linkageBCR26

Static calling linkageBALR, BASR, BCR25

--Reserved--1-4

Branch tableBC40

UsageCorresponding Branch Instruction (designated by RI2 field)

Inst.

Leng

M1
Code

BRANCH PREDICTION PRELOAD M1 Codes

This slide enumerates the code values that may be specified in the M1 field.

Note that the same instruction appears for different codes. For example, BALR, BASR, and BCR are used in both codes 5
and 7, and BCR also appears in code 6. Code 5 indicates that the designated branch instruction is used for calling a
subroutine, and the target location is expected to always be a single location. Code 7 also indicates that the designated
branch instruction is used for calling a subroutine, but the target location may be dynamically determined by the program.
Code 6 indicates a BCR instruction that is used to return from a called subroutine. Similar abstractions appear for codes 9
and 11.

Performance may be degraded if the second operand does not designate a branch instruction that is used in accordance
with the M1 encoding, or if the branch instruction does not branch to the location specified by the third operand.

11

11SHARE 121 – Session 14087

Next-Instruction Access Intent (3)

 NEXT INSTRUCTION ACCESS INTENT

 Provides hint to CPU as to storage use of next-sequential
instruction
► I1 corresponds to the lowest-numbered storage operand (if any)
► I2 corresponds to the 2nd-lowest-numbered storage operand (if any)
► I1 and I2 encodings:

0 – Corresponding operand may or may not be accessed
1 – Corresponding operand will be stores, and may be fetched
2 – Corresponding operand will be fetched
3 – Corresponding operand will not be accessed

NIAI I1,I2 [IE]

B2FA I1
//////// I2

0 3116 24 28

The NEXT INSTRUCTION ACCESS INTENT instruction provides a means for the program to indicate the anticipated use of
the storage locations designated by the next instruction.

The two operands are each 4-bit immediate fields that indicate the anticipated usage of the storage operand(s) of the next
sequential instruction. The I1 field represents the lowest-numbered storage operand, and the I2 field represents the second-
lowest-numbered storage operand (if any). The encodings are listed on the slide.

Performance may be degraded if the subsequent instruction uses its storage operands differently than that specified by the
respective I1 and I2 fields.

12

12SHARE 121 – Session 14087

Load-and-Trap Facility (1)

 Provides equivalent function to LOAD, LOAD HIGH, LOAD
LOGICAL, and LOAD LOGICAL 31 BITS, but …
► Causes a compare-and-trap data exception if the designated storage

operand contains zero
► PIC 0007 hex, DXC FF hex

 Facility indication bit 49

 LOAD AND TRAP

LAT R1,D2(X2,B2) [RXY-a]

E3 R1 X2 B2 DL2 DH2 9F

0 2016128 32 40 47

LGAT R1,D2(X2,B2) [RXY-a]

E3 R1 X2 B2 DL2 DH2 85

0 2016128 32 40 47

Compare-and-Trap
Data-Exception

Program Interruption
(DXC = FF hex) if

value loaded is zero.

The load-and-trap facility provides a means by which a value can be loaded from storage; if the value contains zero, then a
compare-and-trap data exception is recognized. The instructions are equivalent to executing a load instruction followed by a
compare-and-trap instruction with a comparand of zero.

Each instruction is of the RXY instruction format (subformat –a), meaning that the second operand designates a storage
location by means of a base register, an index register, and a 20-bit signed displacement field (that is, a long displacement).
The result is loaded into the register designated by the R1 field.

• LAT loads a 32-bit value into bits 32-63 of the register, and leaves the remaining bits unchanged.

• LGAT loads a 64-bit value into bits 0-63 of the register.

In either case, if the value loaded is zero, [CLICK] then a compare-and-trap data exception is recognized. The program-
interruption code is 0007, and the data-exception code is FF hex.

This facility – as well as several others in the zEC12 – are indicated by facility indication 49 (as stored by STORE FACILITY
LIST EXTENDED).

13

13SHARE 121 – Session 14087

Load-and-Trap Facility (2)

 LOAD HIGH AND TRAP

 LOAD LOGICAL AND TRAP

 LOAD LOGICAL THIRTY ONE BITS AND TRAP

LFHAT R1,D2(X2,B2) [RXY-a]

E3 R1 X2 B2 DL2 DH2 C8

0 2016128 32 40 47

LLGFAT R1,D2(X2,B2) [RXY-a]

E3 R1 X2 B2 DL2 DH2 9D

0 2016128 32 40 47

LLGTAT R1,D2(X2,B2) [RXY-a]

E3 R1 X2 B2 DL2 DH2 9C

0 2016128 32 40 47

Continuing with the load-and-trap facility:

• LFHAT loads a 32-bit value into bits 0-31 of a register, and leaves bits 32-63 unchanged.

• LLGFAT loads a 32-bit value into bits 32-63 of a register, and bits 0-31 of the register are set to zero.

• LLFTAT loads a 31-bit value (bits 1-31 of the four-byte second-operand location) into bits 33-63 of a register, and bits 0-32
of the register are set to zero.

14

14SHARE 121 – Session 14087

Miscellaneous Instruction-Extensions Facility

 Provides storage-operand form of COMPARE LOGICAL AND
TRAP:

 Provides non-condition-code-setting form of ROTATE THEN
INSERT SELECTED BITS

 Facility indication bit 49

CLT R1,M3,D2(B2) [RSY-b]

EB R1 M3 B2 DL2 DH2 23

0 2016128 32 40 47

CLGT R1,M3,D2(B2) [RSY-b]

EB R1 M3 B2 DL2 DH2 2B

0 2016128 32 40 47

RISBGN R1,R2,I3,I4[,I5] [RIE-f]

0 2416128 32 40 47

EC R1 R2 I3 59I4 I5

The miscellaneous instruction-extensions facility adds three instructions that are variations of instructions added in the
System z10. This facility – as well as several others in the zEC12 – are indicated by facility indication 49 (as stored by
STORE FACILITY LIST EXTENDED).

The z10 added the COMPARE LOGICAL AND TRAP instructions, each of which compared a value in a register with either
another register or with an immediate field in the instruction. The two new forms of the instruction compare a value a register
with a storage location; otherwise the operation is identical to the existing COMPARE LOGICAL AND TRAP instructions.

Both CLT and CLGT are of the RSY instruction format (subformat –b). The first operand contains either a 32-bit (CLT) or 64-
bit (CLGT) value in a general register which is compared with a 4- or 8-byte operand in storage. The second operand is
designated by a base register and a 20-bit signed displacement field. The trap conditions are specified by the 4-bit M3 field
(similar to the branch mask of branching instructions). Note, HLASM provides extended mnemonics for these instructions,
similar to the existing extended mnemonics for compare-and-trap instructions.

ROTATE THEN INSERT SELECTED BITS (RISBG) is one of the most powerful instructions in the CPU. Added in the z10, it
provides the means of rotating and extracting bits from a register, and setting the condition code based on the result.
Compiler- and system-development groups found that having the condition code set was not always optimal, so a separate
instruction, RISBGN, was developed which does not set the CC. Otherwise, execution is identical to the original RISBG
instruction.

15

15SHARE 121 – Session 14087

Enhanced-DAT Facility 2

 System z10 introduced the enhanced-DAT facility
► Format-1 segment-table entry (STE) defines 1 M-byte absolute segment

frame
► Access-control and fetch-protection bits in STE
► Change-bit override in STE
► Extends DAT-protection controls into region-table entries
► Now called enhanced-DAT facility 1 (EDAT-1)

 Enhanced-DAT facility 2:
► Extends EDAT-1 concepts to region-third table (RTTE)

– Format-1 RTTE defines 2 G-byte absolute region frame
– Access-control and fetch-protection bits in RTTE
– Change-bit override in RTTE
– Common-region control in RTTE

► Facility indication bit 78
► TLB redefined as a fully hierarchical structure

The System z10 introduced the enhanced-DAT (EDAT) facility, now called the enhanced-DAT facility 1 (or just EDAT-1, for
short). The features introduced by this facility are enumerated on this slide, however the one of most attention is the 1
megabyte segment-frames (often – but inaccurately – called large pages).

Enhanced-DAT facility 2 builds upon EDAT-1, providing a super-large 2 G-byte region frame. Similar to the changes made by
EDAT-1 to the segment-table entry, EDAT-2 adds new controls to the region-third table entry, providing the format control,
access- and fetch-protection controls and corresponding validity indication, change-bit override, and common-region
controls.

Facility indication bit 78 designates the presence of the EDAT facility 2.

Additionally, with the introduction of this facility, the structure of the translation lookaside buffer (TLB) is redefined to be a
completely hierarchical. While retaining compatibility with the former TLB structure consisting of page-table entries (PTEs)
and common-region-and-segment-table entries (CRSTEs), the new structure allows for more flexible future design.

16

16SHARE 121 – Session 14087

Enhanced-DAT Facility 2:
Region-Third-Table Entry (RTTE)

 Format-0 RTTE:

 Format-1 RTTE

Segment-Table Origin
F
C/ P / TF

C
RI TT TL

0 52 63

Explanation:

ACC Access-control bits
AV ACC/F validity bit
CO Change-bit override
CR Common-region
F Fetch-protection bit
FC Format control

I Invalid bit
P DAT-protection bit
TF Table offset
TL Table length
TT Table type

0 52 6333 47 480 52 6333 47 48

Region-Frame Absolute Address
F
C P / /

C
RI TTFACC

A
V/ / / / / / / / / / / / / /Region-Frame Absolute Address

F
C P

C
RI TT / /FACC

A
V/ / / / / / / / / / / / / /

C
O

This slide illustrates the changes to the region-third-table entry (RTTE) with EDAT-2.

The RTTE is extended to include a format control in bit 53. When bit 53 is zero, the definition of the RTTE is as originally
defined in z/Architecture, shown in the upper illustration (format-0 RTTE).

When the FC is one, the definition of the RTTE is as shown in the lower illustration which includes the following:

Bits 0-32 - Region-frame absolute address

Bit 47 - ACC and F bit validity indication

Bits 48-51 - Access-control bits for the region

Bit 52 - Fetch-protection bit for the region

Bit 53 - Format control

Bit 54 - Region-protected bit

Bit 55 - Change-bit override

Bit 58 - Invalid bit

Bit 59 - Common-region bit

Bits 60-61 - Table type (01 binary)

17

17SHARE 121 – Session 14087

Enhanced-DAT Facility 2: CRDTE

 COMPARE AND REPLACE DAT TABLE ENTRY

► Compares doubleword designated by second operand with
the contents of general register R1 (compare value)

– If equal:
● Designated doubleword replaced by the contents of R1+1 register

(replacement value)
● TLB purged of at least all entries matching replaced value.
● When the R3 field designates a register other than zero, TLB clearing

limited to ASCE designated in the register
● M4 field contains local-TLB-clearing control

♦ When zero, all TLBs on all CPUs cleared
♦ When one, only the TLB of the CPU executing the instruction is

cleared
– If not equal, the doubleword designated by the second operand

is loaded into general register R1
► Improved performance when replacing live DAT-table entry

B98F R3 M4 R1 R2

CRDTE R1,R3,R2[,M4] [RRF]

EDAT facility 2 also introduces the COMPARE AND REPLACE DAT TABLE ENTRY (CRDTE) instruction. CRDTE combines
the storage-update operations of a compare-and-swap operation with the TLB purging that is associated with INVALIDATE
DAT TABLE ENTRY or INVALIDATE PAGE TABLE ENTRY.

Normally, when an operating system needs to update the DAT table entry of an attached DAT table (that is, a table that may
actively be used by the CPU for translation), then it must first invalidate the table entry and purge any TLB entries formed
from it, make the necessary changes, and revalidate the entry. This assures that stale entries in the TLB won’t accidentally
be used by other CPUs, while one CPU makes the changes.

CRDTE combines these functions into a single instruction, improving the performance of such updates for all levels of DAT-
table entries.

18

18SHARE 121 – Session 14087

Enhanced-DAT Facility 3: CRDTE

 CRDTE operands (similar to IDTE)

Compare Value

DTT/ / / / / /

R1

Replacement ValueR1+1

Page-Table Origin (when DTT = 0)R2 / /

DTT/ / / / / / /Region- or Segment-Table Origin (when DTT = 4-7)R2 / /

RFXR2+1 RSX RTX SX PX 0000 0000 0000

DT/ / / / / / / /Region- or segment-table origin of ASCE for clearing (when R3 ¬= 0)R3 / /

L
CM4 / / /

Explanation:

DT Designation type
DTT Designated table type
LC Local-clearing control
RFX Region 1st index

RSX Region 2nd index
RTX Region 3rd index
SX Segment index
PX Page index

The operands to CRDTE are similar to those used by COMPARE AND SWAP, INVALIDATE DAT TABLE ENTRY, and
INVALIDATE PAGE TABLE ENTRY, as shown in this slide.

The first operand comprises an even / odd general register pair containing the compare value and the replacement value for
a DAT-table entry designated by the second operand.

The second operand contains an even / odd general register pair designating the location of the DAT-table entry to be
replaced. The even-numbered register contains the base address of the table, and a designated-table-type (DTT) indication.
The odd-numbered register is in the form of a virtual address; based on the DTT, the appropriate portion of the virtual
address (RFX, RSX, RTX, SX, or PX) is used to locate the entry in the table.

Assuming the comparison is equal, the table entry is replaced using a block-concurrent interlocked update, and the TLBs of
all CPUs are cleared of at least that entry and any subordinate entries.

When the R3 field is nonzero, the clearing can be restricted to a particular ASCE.

Additionally, CRDTE contains a M4 field containing a local-clearing control. When this bit is one, clearing is restricted to the
CPU on which the instruction executes. This may avoid disruptive clearing in a uniprocessor environment or in an MP where
an address space is only dispatched on a single CPU. More on local clearing in the following slides.

19

19SHARE 121 – Session 14087

Local-TLB-Clearing Facility

 Adds local-clearing control to TLB-clearing instructions:
► INVALIDATE DAT TABLE ENTRY (IDTE)

► INVALIDATE PAGE TABLE ENTRY (IPTE)

► Local-clearing control in bit 3 of the optional M4 field:

0 – perform global clearing (i.e., business as usual)
1 – perform local clearing (i.e., only on the CPU executing the instruction)

► Facility indication bit 51

– Local-clearing control ignored if facility not installed

B98E R3 M4 R1 R2

IDTE R1,R3,R2[,M4] [RRF]

B221 R3 M4 R1 R2

IPTE R1,R2[,R3[,M4]] [RRF]

The INVALIDATE DAT TABLE ENTRY and INVALIDATE PAGE TABLE ENTRY instructions have both been enhanced to
provide a local-clearing control.

In the respective instruction images shown above, this is the M4 field of the instruction. In the assembler syntax, this field is
optional, and is effectively zero if the field is not coded.

The local-clearing control operates as described on the previous slide for COMPARE AND REPLACE DAT TABLE ENTRY: if
the bit is zero, global clearing occurs on all CPUs; if the bit is one, local clearing on the CPU executing the instruction occurs.

If the local-TLB-clearing facility is not installed (as indicated by facility indication bit 51 being zero), then setting the LC bit to
one on either of these instructions is ignored.

20

20SHARE 121 – Session 14087

Transactional Execution – Overview

 Statement of Problem being Addressed

► Need for improved multiprocessing capabilities

– Issues with conventional MP serialization
► Speculative execution (e.g., for Java)

– Fall-back from partial in-lining that takes a side exit
– Null checking that results in code scheduling barriers

 Transactional execution
► Controls
► Instructions
► Processing
► Abort processing
► Constrained transactions

The majority of the slides in this presentation describe the transactional-execution facility (or TX facility, for short). We begin
with a description of two very different problems being addressed by the facility:

• The need for improved multiprocessing capabilities that address limitations in existing serialization, and

• The means by which a program can speculatively execute a code path, and – based on observed state of the program or
exceptions encountered – efficiently withdraw said execution, making it appear as if the execution never occurred.

The following slides will discuss the controls, instruction, processing, abort handling, and a special form of TX called a
constrained transaction.

21

21SHARE 121 – Session 14087

Example of a Serialized Operation:
Element Insertion at the Head of a Doubly-Linked Queue

FWD

BWD

etc.

QEL

FWD

BWD

etc.

QEL

FWD

BWD

etc.

QHEADER

R1

Use slide-show mode to make sense of this slide!

FWD

BWD

etc.

QEL

FWD

BWD

etc.

QEL

R2

FWD

BWD

etc.

QEL

This slide illustrates a doubly-linked list into which a new queue element is to be inserted at the head of queue.

The queue header (shown in green) and the existing queue elements (shown in blue) each contain a forward pointer
[CLICK].

Just to make it interesting, we’ll make this a doubly-linked list where each element also has a backward pointer. [CLICK]

Thus, in order to insert an element into the queue [CLICK], multiple discontiguous storage locations containing the existing
forward and backward pointers must be replaced [CLICK]. The following four pointers (in at least three discrete locations)
must be updated:

•[CLICK] The forward pointer of the queue header must be updated to point to the newly-inserted element.

•[CLICK] The backward pointer of original first element must be updated to point to the newly-inserted element.

•[CLICK] The forward pointer of the inserted element must point to original first element on the queue.

•[CLICK] The backward pointer of the inserted element must point queue header.

In order to maintain the integrity of the queue, all of these updates must appear to occur simultaneously as observed by
other CPUs and by the I/O subsystem. Thus, the program will usually acquire some form of serialization such as a lock (also
known as a semaphore or mutex). This technique is illustrated on the following slide.

22

22SHARE 121 – Session 14087

Example of a Serialized Operation:
Sample Code Fragment using Locks

* R1 - address of the new queue element to be inserted.

* R2 - address of the insertion point (i.e., head of queue).

NEW USING QEL,1 Make new 1st QEL addressable.

HDR USING QEL,2 Make queue header addressable.

OLD USING QEL,3 Make old 1st QEL addressable.

SETLOCK OBTAIN, … Serialize access to queue.

LG 3,HDR.QEL_FWD Point to original 1st element.

STG 1,HDR.QEL_FWD Update header’s forward pointer.

STG 1,OLD.QEL_BWD Update orig. element’s back ptr.

STG 2,NEW.QEL_BWD Update new element’s backward ptr.

STG 3,NEW.QEL_FWD Update new element’s forward ptr.

SETLOCK RELEASE, …

…

QEL DSECT Common DSECT for header or QEL.

QEL_FWD DS AD Forward pointer.

QEL_BWD DS AD Backward pointer.

DS XL48 Queue element payload.

This assembler programming example shows how the update to these four storage locations can be accomplished using
classic locking mechanisms.

Shown in the first highlighted section of code [CLICK], the SETLOCK OBTAIN macro instruction is used to illustrate any
number of locking, semaphore, or other serialization techniques that may be used to ensure that only one CPU is executing
the following code fragment at any one time.

After obtaining the serialization, the program loads the address of the original first element on the queue into general register
3, and then proceeds to update the four key objects needed to insert the new element.

Finally, after performing the update, the SETLOCK RELEASE macro instruction (in the second highlighted section) illustrates
the releasing of the serialization.

Note: In this example, because the forward and backward pointers appear in the same location in both the queue header
and queue element, a single DSECT (QEL) is used.

23

23SHARE 121 – Session 14087

Problems with Conventional Serialization:

Coarse-grained locking
►Usually require serializing a much broader resource than

what is being actually being accessed
►With finer-grained serialization, multiple locks may be

required

– Hierarchy issues, potential dead-locks
– Natural access may not lend itself to imposed hierarchy

Various recovery issues
►Lock cannot be acquired in a timely manner
►Unexpected event encountered while locked

The problem with using classic locking techniques is that, in general, they serialize a much broader scope of resources than
is actually being accessed. For example, in the queue illustration, the queue may contain millions of elements, yet only one is
being updated. Even in a multiprocessing environment, many such data structures are serialized by coarse-grained lock,
when it is rare to have multiple CPUs update the same location. (Nonetheless, the rare case must always be handled
properly.)

Finer-grained serialization may exploit multiple levels of locking, but with such a hierarchy, there is the issue of potential
deadlocks if the locks are not acquired and released in the proper sequence. Furthermore, finer-grained serialization
imposes a regimen on the program that may be more complicated and error prone.

Additionally, the program must accommodate scenarios where either (a) the lock cannot be obtained, and (b) a task holding
a lock encounters an unexpected condition (for example, abnormal end). Often the occurrence of “b” results in “a.”

Many years ago, IBM developed the PERFORM LOCKED OPERATION (PLO) instruction which provided a means by which
separate storage locations could be updated under serialization provided by a configuration-wide lock. However, PLO does
not co-exist well with classic forms of serialization that use compare-and-swap types of updates.

24

24SHARE 121 – Session 14087

Partial Inlining in Java

foo(…)

…

call goo()

…

return

goo(…)

…

a:return

…

b:return

foo(…)

…

goo:

…

a:return

…

b:return

…

return

Full Inlining:

Inlining includes full body of goo() despite
only one path typically executed when
called from foo().

This slide illustrates a process that Java exploits to improve the performance of certain function calls.

On the left, we see the function foo() calling function goo(). Function goo() has a normal sequence of execution which returns
at location “a,” and an alternate sequence of execution which returns at location “b.”

Java may restructure the functions such that a copy of the called function goo() is contained within the calling function foo();
this operation is called in-lining, and may be beneficial in minimizing instruction-cache references. If Java performs full in-
lining of function goo(), it incorporates the function in its entirety inside the calling function foo(). This has the disadvantage of
making foo() larger than it needs to be, increasing its instruction-cache footprint.

25

25SHARE 121 – Session 14087

Partial Inlining in Java

Partial Inlining

Inlining includes only typically executed path in goo(…).

Better i-cache footprint.

Fallback to calling goo(…) if alternative path taken.

foo(…)

…

goo:

…

a:return

…

return

Side exit

calls goo(…)

foo(…)

…

call goo()

…

return

goo(…)

…

a:return

…

b:return

In this slide, we illustrate the partial in-lining of function goo(). Only the commonly-executed sequence of code is placed into
the in-lined version. This yields a better instruction-cache footprint.

However, if the execution of the partially-in-lined version of goo() determines that it needs to execute the alternate code
sequence, it must call the full version of goo() to execute that code sequence.

26

26SHARE 121 – Session 14087

Partial Inlining in Java

 Any changes to global state inside partial
inlined path of goo() need to be undone if
side exit taken

 Can be done in s/w, however overhead is
prohibitive, opportunities are limited

foo(…)

…

goo:

…

a:return

…

return

The problem with partial in-lining of the function goo() is that if the alternate code path must be called, then any state
changes made by the in-line version must be undone. This can be accomplished in software, however (a) the overhead is
prohibitive, and (b) it significantly increases the complexity of code generation.

27

27SHARE 121 – Session 14087

Partial Inlining in Java

 Wrap partial region in TBEGIN/TEND

 TABORT rolls back state on side exit

foo(…)

…

TBEGIN

goo:

…

a:return

TABORT

TEND

…

return

This code fragment illustrates the bracketing of the partially-in-lined version of goo() with new instructions that are part of the
transactional-execution facility: TRANSACTION BEGIN (TBEGIN) and TRANSACTION END (TEND).

While executing the partially-in-lined version of goo() within a transaction, any changes to storage are not visible to other
CPUs and the I/O subsystem until the TEND instruction completes.

Alternatively, if the function detects a situation which requires the calling of the full goo() function, it can execute a
TRANSACTION ABORT (TABORT) instruction to deliberately abort the transaction. In this case, all transactional stores
made during transactional execution are withdrawn, as if they never occurred.

28

28SHARE 121 – Session 14087

General Speculation in Java

 Java imposes implicit NULLCHKs on de-referenced
pointers

 NULLCHKs are strongly ordered with respect to
other global state changes and exception checks

 Strong ordering acts as a pipeline code scheduling
barrier

Another characteristic of Java is that it imposes strongly-ordered null checking on dereferenced pointers. That is, the
checking must appear to occur before any use of the pointer is attempted.

This ordering does not necessarily lend itself to efficient scheduling of instructions in the pipeline. As we will see in the next
slide, transactional execution provides a means of evading this strong ordering requirement.

29

29SHARE 121 – Session 14087

General Speculation in Java

do {
loop_start:

o = o.next;
codeA
t = o.g;
codeB

}
goto loop_start
...following code

JIT must insert implicit NULLCHK on O

 acts as scheduling barrier

 prevents codeA/codeB from scheduling
together

TBEGIN
do {
loop_start:

o = o.next;
codeA
t = o.g;
codeB

}
if (o != null) goto loop_start
TABORT

…
All normal loop exits execute TEND

NULLCHK is delayed to loop edge

 codeA/B can schedule
freely

 if O is NULL, transaction
will abort safely

In the code sequence shown in the upper left, two code fragments, codeA and codeB are shown. In between the two
fragments, a pointer “O” is dereferenced to fetch the member “g”.

Ordinarily, Java would have to insert a check of “O” to ensure it was not null, before attempting to execute codeB.

However, in the example on the lower right, Java can bracket this code sequence with a transaction. In this case, the
checking for a null value of “O” can be deferred, such that codeA and codeB can be scheduled more efficiently.
Subsequently, the value of “O” can be checked, and if null, cause the entire code sequence to be aborted.

The vast majority of the time, one expects that a non-null value of “O” will be used, thus the transaction will not be aborted. In
the rare case of an abort, the abort-handler code can deal with the null pointer.

30

30SHARE 121 – Session 14087

Transactional-Execution (TX) Mode

New CPU state:

► Introduced in the zEnterprise EC-12 CPU architecture
► Initiated by TRANSACTION BEGIN instruction
► Ended by either:

– Outermost TRANSACTION END (TEND) instruction
– Transaction abort

While in the transactional-execution mode:

► All storage accesses by the CPU appear to be block-concurrent to
other CPUs and the channel subsystem

► Transactional store accesses are either:

– Committed to storage when the outermost transaction ends normally
(via TEND), or

– Completely abandoned if the transaction is aborted

The transactional-execution (TX) facility adds a new CPU state to the processor – the transactional-execution mode.

TX mode is started by an outermost TRANSACTION BEGIN instruction. The term outermost is used, because transactional
execution can be nested (as shown on the following slide). TX mode is ended by either of the following:

• An outermost TRANSACTION END instruction being executed, or

• The transaction being aborted.

While the CPU is in the TX mode, all storage accesses by the CPU appear to be block concurrent (that is, they happen all at
once), as observed by other CPUs and by the I/O subsystem. These transactional stores are either (a) committed to storage
and made visible to other CPUs when the outermost TRANSACTION END instruction completes, or (b) completely
abandoned if the transaction is aborted.

31

31SHARE 121 – Session 14087

Nested Transactions

...0
TEND …1
...1

BR 141
...1
TEND …2
...2

BR 72
...2
TEND …3
...3
TBEGIN …2
...2

C CSECT2
BAS 7,C2
...2
TBEGIN …1

...1
B CSECT1

BAS 14,B1
...1
TBEGIN …0
...0

A CSECT
Nesting
Depth

Outermost

Transaction Innermost

Transaction

Transactional

Stores Committed

This slide illustrates the nesting of transactions, and the transaction nesting depth (TND).

Initially, when the CPU is not in the TX mode, the nesting depth is zero, as shown in the column on the left.

When control section A executes the TBEGIN instruction (that is, the outermost TBEGIN), [CLICK] the CPU enters the TX
mode, and the transaction nesting depth (TND) is set to one. Control section A then calls control section B.

CSECT B also contains transactionally-executed code. When CSECT B executes its TBEGIN, the nesting depth is
incremented to two. CSECT B then calls CSECT C.

As with B, CSECT C also contains transactionally-executed code. The execution of its TBEGIN instruction causes the TND
to be incremented to three. CSECT C then ends its transaction with a TRANSACTION END (TEND) instruction. [CLICK] In
this case, the CPU remains in the TX mode, but the nesting depth is decremented to two. CSECT C then returns to its caller.

CSECT B also executes a TEND instruction, causing the CPU to remain in the TX mode, but decrementing the nesting depth
to one. CSECT B then returns to its caller.

CSECT A also exectues a TEND instruction. This causes the nesting depth to decrement to zero, thus the CPU commits all
stores made during transactional execution to memory and then leaves the TX mode. [CLICK]

32

32SHARE 121 – Session 14087

Transactional-Execution Controls

Control Register 0 (system controls):
►Bit 8: Transactional-execution control

– Set by O/S to enable transactional execution
►Bit 9: Program-interruption filtering override

Control Register 2 (task-related controls):
►Bit 61: Transaction diagnostic scope (prob / sup)
►Bits 62-63: Transaction diagnostic control

TDBA: Address of TX diagnostic block (TDB)

TAPSW: PSW used if a transaction aborts

TND: Transaction nesting depth

Facility indication bit 73

There are several new controls affecting the transactional-execution facility:

Control register zero contains system-wide controls, as follows:

• Bit 8 indicates that the OS has enabled the TX facility. Because the facility requires OS support, this bit is set to zero by default, such that
OS’s that do not support TX can execute compatibly on a zEC12.

• Bit 9 is used in conjunction with program-interruption filtering, to be discussed later. The OS can override any program interruption filtering.

Control register two contains task-related controls used in the debugging of a transaction. These bits are set by various system-level
debuggers.

• Bit 61 indicates the scope of control for the transaction-diagnostic control in bits 62-63 (that is, whether the control affects only problem state
or both problem state and supervisor state).

• Bits 62-63 contain a diagnostic control. When nonzero, the diagnostic control causes various random aborts of transactions, thus allowing the
testing of their abort handler.

An outermost TBEGIN instruction can specify the address of a transaction diagnostic block (TDB) into which various information is stored if the
transaction is aborted. The address of this block is maintained in the TDB address (TDBA).

When an outermost transaction begins, it sets a transaction abort PSW (TAPSW) that is loaded if the transaction is aborted. More on this later.

The transaction nesting depth (TND) may be inspected by the program regardless of whether or not the CPU is in the TX mode.

The availability of the TX facility is indicated by facility bit 73 (as stored by STORE FACILITY LIST EXTENDED). Note, even though a processor
may provide the transactional-execution facility to logical partitions (LPARs), the facility may not be available when running in a virtual machine
under the z/VM operating system.

33

33SHARE 121 – Session 14087

TX Facility Instructions

 EXTRACT TRANSACTION NESTING DEPTH (ETND)
► Retrieves current nesting depth

 NONTRANSACTIONAL STORE (NTSTG)
► Performs a store that will be committed regardless of whether the

transaction aborts
► Leaves “bread crumbs” for diagnostic purposes

 TRANSACTION ABORT (TABORT)
► Deliberately causes a transaction to be aborted
► User-defined abort code

 TRANSACTION BEGIN
► Initiates (or continues) transactional execution

– Nonconstrained transaction: TBEGIN
– Constrained transaction: TBEGINC

 TRANSACTION END (TEND)
► Outermost TEND causes transactional stores to be committed.

This slide summarizes the new instructions provided by the TX facility. Each of these will be described in detail in the
following slides.

34

34SHARE 121 – Session 14087

EXTRACT TRANSACTION NESTING DEPTH

ETND R1 [RRE]

‘B2EC’ //////// R1 ////

//////////////////////////////// 0000000000000000 TNDR1

 Current transaction-nesting depth (TND) placed in bits 48-63 of register R1

 Zero means not in transactional-execution mode

 Bits 0-31 of R1 unchanged; bits 32-47 set to zeros

 Condition code is unchanged

 Exceptions:

 PIC 0013 if transactional-execution control (CR0.8) is zero

 PIC 0018 if issued in the constrained TX mode

The EXTRACT TRANSACTION NESTING DEPTH (ETND) instruction provides a means by which the program can inspect
the current transaction nesting depth (TND).

ETND is an RRE-format instruction with a single general register operand. The current nesting depth is placed in bits 48-63
of the register, and zeros are placed in bits 32-47; bits 0-31 of the register are unmodified. Also, the condition code remains
unchanged.

As will be seen in most of the TX instructions, there is a special-operation exception recognized if the OS has not enabled
the TX facility (in CR0.8).

Also described here is a new program exception, the transaction-constraint exception, if the instruction is executed while the
CPU is in the constrained TX mode. More on nonconstrained versus constrained towards the end of this presentation.

35

35SHARE 121 – Session 14087

NONTRANSACTIONAL STORE

NTSTG R1,D2(X2,B2) [RXY]

 First-operand register stored

nontransactionally at the second-

operand location

 Leaves “bread crumbs” on abort

 Condition code is unchanged

 Exceptions:

 PIC-0006 if 2nd operand not doubleword aligned

 PIC-0018 if issued in constrained TX mode

DL2R1‘E3’ X2 B2 DH2 ‘25’

Doubleword in storage

R1

The astute observer will have noticed that debugging transactional execution may prove to be challenging. This is because
when a transaction is aborted, all evidence of transactional stores vanish.

As we will shortly see, there is the possibility of having some diagnostic information retained in registers, however additional
information in storage would also be useful.

The NONTRANSACTIONAL STORE (NTSTG) instruction provides a means by which stores are retained following the abort
of a transaction.

NTSTG is very similar to a regular STORE (STG) instruction. It is an RXY-format instruction, with the first operand
designating a 64-bit register to be stored, and the second operand using a base, index, and long displacement to designate
a storage location.

NTSTG differs from STG as follows:

• The storage operand must be on a doubleword boundary; otherwise, a specification exception is recognized.

• If NTSTG is executed in the constrained TX mode, a transaction-constraint exception is recognized. Regular STG can be
used in the constrained TX mode.

• Stores made by NTSTG are retained if a transaction aborts; stores made by STG disappear.

36

36SHARE 121 – Session 14087

TRANSACTION ABORT

TABORT D2(B2) [S]

‘B2FC’ D2B2

 Transactional execution aborted with code specified by second-operand

address

 Condition code of the transaction-abort PSW (TAPSW) set as follows:

 Bit 0 set to 1

 Bit 1 set to bit 63 of the 2nd-operand address (abort code)

 Exceptions:

 PIC 0003 if target of execute-type instruction

 PIC 0006 if abort code < 256

 PIC 0013 if transactional-execution control (CR0.8) is zero

 PIC 0018 if issued in constrained TX mode

Abort Code

The TRANSACTION ABORT instruction provides the program with the means of deliberately aborting a transaction. It may
be used, for example, to implement Java’s partial in-lining or null-check reordering, described earlier.

TABORT is an S-format instruction, having a second-operand address designated by a base register and 12-bit unsigned
displacement. However the operand address is not used to access storage; rather, the address forms the transaction abort
code that is stored into any transaction diagnostic block (TDB) designated by the outermost TBEGIN instruction.

TX architecture reserves abort codes 0-255 for use by the CPU. If the abort code in the second-operand address is less than
256, then a specification exception is recognized.

When a transaction is aborted, the condition code in the transaction-abort PSW indicates the likelihood of successful
execution if the transaction is attempted again. CC2 means there is a potential for successful completion, and CC3 means
that there is little potential for successful completion. TABORT sets bit 18 of the transaction-abort PSW to one, and bit 19 of
the transaction-abort PSW is set to bit 63 of the second-operand address. Thus, the condition code is set to either 2 or 3,
depending on whether the rightmost bit of the address is 0 or 1, respectively.

TABORT is unusual in that an execute exception (program interruption code 0003 hex) is recognized if TABORT is the target
of an execute-type instruction (EX or EXRL).

37

37SHARE 121 – Session 14087

TRANSACTION BEGIN (TBEGIN)

TBEGIN D1(B1),I2 [SIL]

D1‘E560’ B1 I2

Storage location (if B1 0)

Transaction

Diagnostic

Block

GRSM //// AFPF

The TRANSACTION BEGIN instruction is used to initiate or continue the execution of a nonconstrained transaction. We’ll
discuss nonconstrained versus constrained more in a later section.

TBEGIN is a SIL-format instruction having a storage operand designated by a base register and 12-bit unsigned
displacement, and an immediate field containing various controls.

The operands are described further on the next slide.

38

38SHARE 121 – Session 14087

TBEGIN Operands

When B1 0, first operand of the outermost TBEGIN designates
location of the transaction diagnostic block

► Various diagnostic information stored on abort

 I2 field contains various controls:

► GRSM General-register (pair) save mask
♦ Designates GR pairs to be restored on abort

► A: Allow AR modification control
► F: Allow floating-point-operation control
► PIFC: Program-interruption filtering control

0 – no filtering
1 – limited filtering
2 – moderate filtering

When an outermost TBEGIN is executed, and the base register of the first operand designates a register other than general
register zero, the transaction-diagnostic-block address (TDBA) is set. If the transaction is aborted, diagnostic information will
be (nontransactionally) saved in this location. If the B1 field of the instruction is zero, the TDBA is considered to be invalid,
and no program-specified diagnostic information is saved.

The I2 field contains controls, as follows:

• The first 8 bits of the I2 field contain the general register save mask (GRSM). This field applies only to the outermost
TBEGIN, and it is ignored for inner TBEGIN instructions. Each bit represents an even/odd pair of registers. If the bit is one,
the contents of the register pair are preserved at the beginning of TX mode, and restored if the transaction is aborted. If the
bit is zero, the register pair is neither saved nor restored.

• General register are the only registers that may be saved, and if the transaction aborts, restored. Access registers and
floating-point registers are not restored on an abort. The A and F controls, bits 12 and 13 of the I2 field, respectively, provide
a means by which the program can prohibit a transaction from altering ARs or using FP instructions. Unlike the GRSM (which
applies only to the outermost TBEGIN), the A and F controls assume effective values for each nested level of a transaction.

• Finally, bits 14-15 of the I2 field contain a program-interruption filtering control. More on filtering in later slides.

39

39SHARE 121 – Session 14087

TBEGIN Processing

 If TND = 0 (i.e., not in TX mode at beginning):

► If B1 ≠ 0, transaction-diagnostic-block address (TDBA) set from 1st

operand address

► Transaction-abort PSW set to next-sequential instruction address

► General register pairs designated by I2 field are saved in model-
dependent location

– Not directly accessible by the program

 Effective PIFC, A, & F controls computed

► Effective A = TBEGIN A & any outer A

► Effective F = TBEGIN F & any outer F

► Effective PIFC = max(TBEGIN PIFC, any outer PIFC)

This slide described the step-by-step processing that occurs during the execution of a TBEGIN instruction.

If the transaction-nesting depth (TND) is zero (that is, the CPU is not in the TX mode), then the following occurs:

1. If the B1 field designates a register other than zero, the transaction-diagnostic-block address (TDBA) is set. If the B1 field
is zero, the TDBA is considered to be invalid.

2. The transaction-abort PSW is set to point to the instruction following the outermost TBEGIN.

3. Any general register pairs designated by the GRSM field of the instruction are saved in a model-dependent location that
is not accessible by the program.

Regardless of whether the TND is zero, effective AR-modification, FR-modification, and program-interruption-filtering controls
are computed, as follows.

• The effective A and F controls are the logical AND of the controls in the TBEGIN instruction and the respective controls
in any outer TBEGIN instruction.

• The effective PIFC is the maximum of the control in the TBEGIN instruction and any outer TBEGIN instruction.

40

40SHARE 121 – Session 14087

TBEGIN Processing

 Transaction nesting depth (TND) incremented

 If TND transitions from 0 to 1, CPU enters the transactional-execution
mode

► Otherwise, CPU remains in transactional-execution mode

 Condition code set to zero

► When instruction following TBEGIN receives control:

– TBEGIN success indicated by CC0

– Aborted transaction indicated by nonzero CC

 Exceptions:
► Abort code 13 if nesting depth exceeded
► PIC 0003 if target of execute-type instruction
► PIC 0006 if either

– PIFC is invalid (value of 3)
– First-operand address not doubleword aligned

► PIC 0013 if transactional-execution control (CR0.8) is zero
► PIC 0018 if issued in constrained TX mode

Continuing with TBEGIN processing:

The transaction nesting depth (TND) is incremented. If the TND transitions from zero to one, the CPU enters the TX mode;
otherwise, the CPU remains in the TX mode.

The condition code is set to zero.

Note, when a nonconstrained transaction aborts, control is passed to the transaction-abort PSW (TAPSW), the instruction
address of which points past the outermost TBEGIN instruction. The condition code in the TAPSW will either be 2 or 3. Thus,
the instruction following the outermost TBEGIN instruction is expected to be a conditional branch instruction. If the CC is
zero, then it means that the transaction successfully initiated, and control is expected to fall through to the next instruction. If
the CC is nonzero, then it means that the transaction was aborted, and control is passed to an abort handler.

As shown on this slide, there are various exception conditions. Of note:

• There is an abort condition if the maximum nesting depth of 16 is exceeded.

• A specification exception is recognized if a reserved PIFC value is coded, or if the first-operand address is not on a
doubleword boundary.

• An execute exception is recognized if the instruction is the target of an execute-type instruction.

• If attempted in the constrained TX mode, a transaction-constraint exception is recognized.

41

41SHARE 121 – Session 14087

TRANSACTION END

TEND D2(B2) [S]

‘B2F8’ ////////////////

 If CPU is in the TX mode, transaction-nesting depth decremented

 If resulting TND is zero, CPU leaves the TX mode

 All transactional and nontransactional stores are committed to storage

 Effective A, F, and PIFC controls returned to previous nesting-depth’s values

 Condition code

0 – CPU in TX mode at beginning of instruction

1 –

2 – CPU not in TX mode at beginning of instruction

3 –

 Exceptions:

 PIC 0003 if target of execute-type instruction

 PIC 0013 if transactional-execution control (CR0.8) is zero

The TRANSACTION END (TEND) instruction is used to end a section of code that is executing in the TX mode. It is an S-
format instruction, but has no operands.

If the CPU is in the TX mode, the transaction nesting depth (TND) is decremented.

If the resulting TND is zero, then the CPU leaves the TX mode, committing all stores to memory. Otherwise, the effective A,
F, and PIFC control return to the value of the previous nesting-depth values.

TEND may be executed even if the CPU is not in the TX mode. The condition code indicates whether the CPU was in the TX
mode (0) or not (2).

As with certain other TX-facility instructions, TEND may not be the target of an execute-type instruction.

42

42SHARE 121 – Session 14087

TX Facility Restricted Instructions

All control and I/O instructions

Any instruction that causes tracing or monitor-event counting

 SUPERVISOR CALL

Any instruction that requires HW coprocessor assistance (e.g.,
message-security assists, compression call)

Any instruction that is intercepted by the hypervisor

 Subject to the A & F controls (I2 operand of TBEGIN):
► Any instruction that modifies an access register
► Any floating-point instruction.

 Transaction is aborted if a restricted instruction is executed
► Abort code 11

The TX facility imposes numerous restrictions on the instructions that can be executed when the CPU is in the TX mode.
Each of these are enumerated on this slide.

If a restricted instruction is attempted, the transaction is aborted with abort code 11 (see later slides for a complete list of
abort codes).

43

43SHARE 121 – Session 14087

TX Operation

 TX initiation
► Following successful execution of outermost TBEGIN, CPU

enters the TX mode
– Transaction-abort PSW set to address of next-sequential inst.
– CC0 set to indicate successful execution.

 TX normal ending
► As a result of successful execution of outermost TEND, all

stores performed in TX mode are committed
– Visible to other CPUs and channel subsystem

► Registers are not restored!

 TX abort
► Execution resumes at the TX-abort PSW

– Nonconstrained TX: Points past TBEGIN
– Constrained TX: Points at TBEGINC !!

► General registers designated by outermost TBEGIN’s GRSM
are restored

– Other GRs, all ARs and all FPRs are not restored!

This slide reviews the operation of the CPU while in the TX mode. Of particular note:

When a transaction completes normally, there is no restoration of general registers, access registers, or floating-point
registers.

When a transaction aborts, registers designated by the GRSM field of the outermost TBEGIN instruction are restored; all
other GRs, and all ARs and FRs and the floating-point control register (FPCR) are not restored.

44

44SHARE 121 – Session 14087

Reasons for a Transaction Abort

 Any interruption
► External (2) text in parentheses is the abort code
► Program (unfiltered, 4; filtered, 12)
► Machine check (5)
► I/O (6)

 Conflict (with other CPU)
► Fetch (7)
► Store (8)

 Overflow
► Fetch (9)
► Store (10)

 Restricted instruction attempted (11)

 Nesting-depth exceeded (13)

 Cache-related
► Fetch (14)
► Store (15)
► Other (16)

 Miscellaneous causes (255)
► Millicode timer, quiesce operation, SIE exit, operator intervention or SIGP equivalent, &c.)

 TABORT instruction (> 255)

This slide enumerates the various reasons that a transaction may be aborted. The numbers shown in the parentheses are
the abort code.

Conflict conditions (codes 7, 8, and 14-16) represent cases where other CPUs have attempted to fetch from or store into
locations that the transaction has stored into or fetched from, respectively.

Note that a transaction may be aborted due to any interruption, including an external interruption (such as a time-slice
ending) or an I/O interruption. Thus, it is never assured that a transaction will complete on its first execution. Examples of re-
driving an aborted transaction are shown below.

45

45SHARE 121 – Session 14087

TX Abort Action

Most transactional activity discarded:
► All transactional stores discarded
► General registers designated by GRSM restored to values

prior to outermost transaction

 Stuff that persists following an abort:
► Nontransactional stores (NTSTG instruction[s])
► ARs & FPRs retain any modifications
► GRs not designated by GRSM retain any modifications

 PSW set from TX-abort PSW
► Points to instruction following TBEGIN instruction
► Condition code set to indicate reason
► When aborted due to interruption, TX-abort PSW stored as

interruption-old PSW (with CC indicating cause)

 If outermost TBEGIN B1 field is nonzero, TDB is stored

When a transaction is aborted, all transactional stores are discarded … not just as observed by other CPUs, but by the CPU
executing the transaction as well. Thus, it’s as if the stores never occurred. (There may be some lingering hints of stores
having occurred, such as change bits remaining set in the storage keys, but as far as an application is concerned, there’s no
evidence.)

Additionally, any general register pairs that are specified in the general register save mask are restored to their pre-TX-mode
contents. If all eight register pairs (that is, all 16 GPRs) are specified, then all contents of the registers are restored. Note,
saving and restoring registers does consume CPU cycles, so specifying the minimum register set is recommended.

Things that are retained following a transaction’s abort include any nontransactional stores made by the NTSTG instruction.
Also, any ARs or FRs that were modified by the transaction retain their changes.

The transaction-abort PSW that was set by the outermost TBEGIN instruction, with a condition code set to indicate the
severity of the abort, becomes effective. Thus, the instruction following the TBEGIN receives control following the abort of a
nonconstrained transaction (or the TBEGINC instruction receives control following the abort of a constrained transaction …
more on this later).

Finally, if the B1 field of the outermost TBEGIN instruction was nonzero, then a program-specified TDB is stored. Note, if the
transaction is aborted due to program interruption conditions, then a program-interruption TDB is also saved in the prefix
area of low storage.

46

46SHARE 121 – Session 14087

Abort Handling

For nonconstrained transaction, the instruction
following the TBEGIN receives control
►CC1 – should never occur (TDB became inaccessible after

initial accessibility check)
►CC2 – transient condition; re-execution of transaction may

be successful
– May want to limit number of re-drives

►CC3 – persistent condition; re-execution of transaction not
likely to be successful

– May want to branch to fall-back path that uses conventional
serialization techniques

– NOTE: If fall-back path uses C&S-type locks, transaction
should also check availability of lock!

The condition code that is set in the transaction-abort PSW is always a nonzero value. Thus, the instruction following the
outermost TBEGIN can determine whether it is being executed due to the successful execution of TBEGIN, or if it is the
result of a transaction being aborted.

CC1 represents an extremely rare condition that should never occur. This indicates that the program-specified TDB (the
accessibility of which is checked during the execution of the outermost TBEGIN) has become inaccessible during the
execution of the transaction. This can only happen due to unexpected key changes made by the operating system – and
should never occur.

CC2 represents a transient condition such as a conflict with another CPU. This condition is likely to be temporary, thus a
repeated attempt at executing the transaction is likely to produce a successful completion.

CC3 represents a persistent condition, such as having exceeded the nesting depth or encountering an operation exception.
Without program intervention, these conditions are not likely to go away on their own. Thus repeated attempts at executing
the transaction are likely to continue to abort.

One special condition is worth mentioning. If TX is being used for lock elision (that is, to avoid using a lock), but the fall-back
code path uses a lock word, then the transactional execution code path should test the accessibility of the lock to ensure that
it’s free. That way, the TX code path can co-exist with any non-TX code paths that attempt to serialize on the same
resources.

47

47SHARE 121 – Session 14087

Transaction Diagnostic Block (TDB)

Program-Specified: When outermost TBEGIN B1 field
is nonzero, program-designated block in storage
►When outermost TBEGIN B1 field is zero, no program-

designated TDB is stored on abort

Program-exception conditions:
►For program interruptions, prefix TDB stored at real location

6,144 – 6,399 (1800-18FF hex)
►For certain SIE interceptions due to program-interruption

condition, interception TDB stored at location designated by
bytes 488-495 of the state description

The transaction diagnostic block is a 256-byte area in memory. There are three types of TDBs, of which zero, one, or two
may be stored when a transaction aborts.

• When the transaction diagnostic-block address (TDBA) is valid – that is, when the B1 field of the outermost TBEGIN
instruction is nonzero – then a program-designated TDB is stored if a transaction is aborted.

• For program interruptions, a TDB exists in the prefix area at locations 1800-18FF hex. A subset of the TDB information
is saved in the prefix-area TDB (only a subset is saved, because some information in the TDB such as the program-
interruption ID is already saved in other prefix-area locations).

• For conditions that cause the CPU to leave the interpretive-execution state (called SIE interceptions), an interception
TDB is stored at a location designated by the hypervisor (that is, LPAR or z/VM).

48

48SHARE 121 – Session 14087

TDB Contents:

Transaction Abort Code

Format Flags Reserved Trans Nest. Depth

Program Interruption ID

Aborted Transaction Instruction Address

Reserved

Conflict Token

Model-Dependent Diagnostic Information

General Registers

Reserved

0

8

16

24

EAID DXC32

112

56

128

248

Breaking-Event Address48

Translation Exception ID40

The contents of the TDB are shown here.

• Format: When zero, the remaining fields of the TDB are unpredictable. When one, the fields are as shown in this slide.

• Flags: Bit 0 indicates that the conflict token (bytes 16-23) is valid. Bit 1 indicates that the CPU was in the constrained TX
mode when the abort occurred.

• TND: The transaction-nesting depth at the time of the abort.

• Transaction Abort Code: The CPU-generated code or second operand of the TABORT instruction.

• Conflict Token: The logical address at which a conflict was detected. This field is valid only if flag bit 1 is one.

• Aborted-Transaction Instruction Address: The instruction address at which the abort was detected.

• EAID, DXC, program-interruption ID (PIID), translation-exception ID (TEID), and breaking-event-address register (BEAR)
are only stored for in the program-specified TDB for transactions that are aborted due to program interruptions, and some of
these fields are only stored for certain program interruptions. See the z/Architecture Principles of Operation (SA22-7832-09)
for details on these fields.

• Model-Dependent Diagnostic Information: IBM internal-use diagnostic information.

• General Registers: The contents of all 16 general registers at the time of the abort.

Note that the EAID, DXC, PIID, TEID, and BEAR are not saved in a program-interruption TDB as these fields are already
stored in the prefix area during a program interruption.

49

49SHARE 121 – Session 14087

Transaction Diagnostic Controls

 Task-specific controls in CR2
►CR2.61 – Transaction-diagnostic scope (TDS):

0 – TDC applies regardless of whether CPU is in the problem or
supervisor state

1 – TDC applies only when CPU in the problem state
►CR2.62-63 – Transaction-Diagnostic Control (TDC):

0 – Normal operation; no random aborts
1 – Abort every transaction at a random instruction, but before

execution of outermost TEND
2 – Abort random transaction at a random instruction
3 – Reserved

 Allows debugger to drive fall-back path
►SCP interface TBD

Control register 2 contains information that is unique to a task (sometimes called process or dispatchable unit). z/OS alters
CRs for each task that is dispatched.

Two new fields are added to CR2 in support of debugging a transaction:

Bits 62-63 contain a transaction diagnostic control (TDC):

0 - means that transactional execution will not be randomly aborted … at least, not due to the TDC.

1 - means that every transaction will be aborted at a random instruction, but before the TEND instruction.

2 – means that random transactions are aborted at random instructions.

The TDC allows a debugger to deliberately cause a transaction to be aborted, thus allowing the testing of the abort-handler
fall-back code path (that is, the path branched to by a nonzero condition code in the instruction following the TBEGIN).

Bit 61 contains the transaction diagnostic scope (TDS). This bit controls the effectiveness of the TDC (in bits 62-63). When
the TDS is zero, the TDC applies to both the supervisor and problem states; when the TDS is one, the TDC applies only to
the problem state.

50

50SHARE 121 – Session 14087

Program-Interruption Filtering

Application program can request that certain program-exception
conditions not result in interruption
► PIFC operand in the I2 field of TBEGIN
► Effective PIFC is highest of all nested TBEGINs

0 – no filtering; all program-exception conditions result in interruption
1 – limited filtering
2 – moderate filtering

 Program can handle exception condition on abort … without
ESTAE, ESPIE, FRR, &c.
► Potentially useful in speculative execution
► Caveat emptor: Program can block interruptions necessary for its

forward progress! (e.g., page-translation exception)

O/S can override TBEGIN-specified PIFC with PIFC-override
control (CR0.9)

One of the very powerful features of transactional execution is program-interruption filtering. By means of the program-
interruption-filtering control (PIFC, bits 14-15 of the I2 field of the TBEGIN instruction), the program can request that certain
classes of program-exception conditions that occur during TX not result in a program interruption. Rather, the transaction is
simply aborted, and control is passed to the abort-handler transaction-abort PSW.

Thus, without establishing any elaborate recovery environment (such as using the z/OS ESPIE or ESTAE macros), the
program can efficiently receive control if it causes an exception. This may be particularly useful in a speculative-execution
environment, for example, the Java null-checking scenario. If an access exception is recognized dereferencing a pointer,
then the transaction aborts, and the program can try a more conservative code path instead.

However, the program can cause program exceptions to be filtered that are otherwise necessary for it to make progress. For
example, if page-translation exceptions are filtered, then the OS may not see the exception and cause the page frame to be
migrated in from auxiliary storage. Therefore, a transaction’s fall-back path may need to reference storage locations that
cause protection or translation exceptions in order to allow the OS to resolve the exceptions.

The OS has the ability to completely override program-interruption filtering by means of the program-interruption filtering
override – bit 9 of control register 0.

51

51SHARE 121 – Session 14087

Example of a Transaction used for Lock Elision:
Sample Code Fragment

* R1 - address of the new queue element to be inserted.

* R2 - address of the insertion point; new element is inserted before

the element pointed to by R2.

NEW USING QEL,1 Make new 1st QEL addressable.

HDR USING QEL,2 Make queue header addressable.

OLD USING QEL,3 Make old 1st QEL addressable.

LHI R15,6 Load retry count.

LOOP TBEGIN TDB,X’C000’ Begin transaction (save GRs 0-3)

JNZ ABORTED Nonzero CC means aborted.

LG 3,HDR.QEL_FWD Point to original 1st element.

STG 1,HDR.QEL_FWD Update header's forward pointer.

STG 1,OLD.QEL_BWD Update orig. element's back ptr.

STG 2,NEW.QEL_BWD Update new element's backward ptr.

STG 3,NEW.QEL_FWD Update new element's forward ptr.

TEND End transaction.

...

ABORTED JC B’0101’,NO_RETRY CC1 or CC3 – don’t bother retrying.

JCT R15,LOOP Retry transaction a few times.

J NO_RETRY No joy after 10x; do it the hard way.

This assembler program fragment illustrates the same code sequence as originally shown on slide 17.

In this example, the SETLOCK macro instructions are replaced with TBEGIN [CLICK] and TEND [CLICK] instructions, as
shown in the first two highlighted areas. The code fragment uses general register 15 as an abort counter.

If the transaction is aborted, the code branches to the label ABORTED, [CLICK] where a determination is made as to
whether the transaction should be re-driven. For condition codes 1 or 3, there is little chance of recovery, so the code is not
reattempted (it branches to NO_RETRY). However, if the condition code is 2, the count in general register 15 is
decremented, and, if nonzero, the transaction is attempted again.

The retry count of 6 is somewhat arbitrary, based on how many CPU cycles are to be consumed attempting the update
transactionally before falling back to the traditional non-transactional code. In a subsequent slide, we’ll discuss the
PERFORM PROCESSOR ASSIST instruction that can help improve a nonconstrained transactions chances of successful
recovery when being redriven.

Also, as discussed on the next slide, this example is somewhat simplified, as it does not attempt to ensure that another CPU
is not currently attempting non-transactional update by using a lock. A simple fetch of the lockword that might be used by
other CPUs would be sufficient to fulfill this requirement.

52

52SHARE 121 – Session 14087

General Comments

 If the transaction is used for lock elision, and the fall-back path
uses a lock, the transaction must (at least) fetch the lock word to
see that it’s available.
► Ensures that the transaction aborts if another CPU accesses the

lock non-transactionally.

Coding of both transactional and fall-back path adds to the
complexity of the code
► Hence, constrained transactions for small updates (see next

slides)

 If transactions are nested, outermost transaction must account
for unanticipated abort conditions that occur in the inner
transaction
► E.g., modified, but unrestored GRs, ARs, FPRs

As noted earlier, a transaction that is used for lock elision – but has a fall-back path or other code paths that use a
conventional lock – should check to see if the lock is available, and if not, end and branch to an abort handler. This ensures
that the transactional and conventional code can successfully co-exist.

Also, coding of a transaction may be quite simple, but having both transactional and fall-back code paths may be more
complicated and require additional testing. Constrained transactions, to be discussed shortly, address this limitation by
eliminating the fall-back path completely.

When transactions are nested, an outermost transaction might encounter aborts due to unanticipated conditions discovered
in an inner transaction. For example, an outermost transaction might set the GRSM to save registers 0-3, saving only those
registers that it modified. However, if this code called some other function – perhaps a library routine – that modified other
registers, and then the transaction aborted, the program may be unprepared to deal with other changed registers that were
altered by the called program.

53

53SHARE 121 – Session 14087

Constrained Transaction

 Specialized TX mode:
► Intended for extremely compact function (à la PLO)
► No fall-back path!
► Constrained TX facility indicated by facility bit 50

 Constraints:
► No more than 32 executed instructions
► No more than 256 bytes of instruction text
► No nesting! Maximum transaction-nesting-depth = 1
► No looping!! Forward relative-branching instructions only
► Many more restricted instructions

– All instructions implemented in Millicode
– All SS-format instructions (i.e., no MVC, CLC, &c.)
– All floating-point instructions

► No more than four octowords of storage accessed (4x32)
► No operand accesses to instruction stream
► No address-space remapping
► Integral-boundary alignment requirements

Coding a fall-back code path introduces a fair amount of complexity into transactional execution. The constrained transaction
minimizes that complexity by eliminating the need for a fall-back path. However, the constrained transaction has significant
additional restrictions (constraints), as enumerated on this slide.

Even though a constrained transaction may initially abort, it is assured of eventual completion.

Thus far, when we have discussed transactional execution, we have been discussing the nonconstrained TX mode (as
initiated by a TBEGIN instruction). The following discussion describes an additional constrained TX mode (as initiated by the
TBEGINC instruction).

A constrained transaction is just that – subject to numerous (additional) constraints beyond those of a nonconstrained
transaction. This slide summarizes most of the constraints … details are in the z/Architecture Principles of Operation. A note
about address-space remapping: This refers to attempts to access the same physical storage location using different
translation paths; for example, real location x is mapped to virtual location y in one virtual space virtual location z in another
address space.

54

54SHARE 121 – Session 14087

Constrained Transactions
TRANSACTION BEGIN (TBEGINC)

TBEGINC D1(B1),I2 [SIL]

D1‘E561’ B1 I2

No TDB storage operand!

B1 field must contain zero.

GRSM //// A///

TBEGINC initiates constrained transaction

or continues nonconstrained transaction.

This slide illustrates the TBEGINC instruction, a variant of TRANSACTION BEGIN that is used to initiate the constrained
transaction. TBEGINC is similar to TBEGIN, except as follows:

1. There is no abort handler!

2. Since there is no abort handler, there is no need for a program-specified transaction-diagnostic block (TDB). The B1

field of the TBEGINC instruction must contain zero!

3. The controls in the I2 field are limited: there are no floating-point control (F) or program-interruption-filtering control
(PIFC) bits.

55

55SHARE 121 – Session 14087

Constrained Transactions
TRANSACTION BEGIN (TBEGINC)

 If already in the constrained-TX mode, transaction-
constraint exception recognized

 If current TND > 0, execution proceeds as if
nonconstrained transaction
► Effective F control set to zero
► Effective PIFC is unchanged
► Allows outer nonconstrained TX to call service function that

may or may not use constrained TX.

 If current TND = 0:
► Transaction-diagnostic-block address is invalid

– No instruction-specified TDB stored on abort
► Transaction-abort PSW set to address of TBEGINC!

– Not the next sequential instruction
► General-register pairs designated by GRSM saved in a

model-dependent location not accessible by program

Execution of TBEGINC is as follows.

1. Nesting within a constrained transaction is not permitted. If the CPU is already in the constrained TX mode, then a
transaction-constraint program interruption is recognized (program interruption code 0018 hex).

2. If the transaction nesting depth is already greater than zero (meaning the CPU is in the nonconstrained TX mode), then
execution simply proceeds as if this was a nonconstrained transaction. In this case, the effective F control is zeroed,
and the effective PIFC remains unchanged. This allows an outer, nonconstrained transaction to call a service function
that may or may not use constrained TX mode.

3. If the current TND is zero, then:

1. The TDBA is marked as invalid (since there is no abort handler, there is no need for a transaction diagnostic
block)

2. The transaction-abort PSW is set to point directly at the TBEGINC instruction! This means that if the
transaction is aborted, it will be re-driven – without attempting to branch to an abort handler.

3. Any general registers specified by the GRSM are saved.

56

56SHARE 121 – Session 14087

Constrained Transactions
TRANSACTION BEGIN (TBEGINC)

 Effective A = TBEGINC A & any outer A

 TND incremented

► If TND transitions from 0 to 1, CPU enters the constrained TX
mode

► Otherwise, CPU remains in the nonconstrained TX mode

 Instruction completes with CC0

 Exceptions:

► Abort code 13 if nesting depth exceeded

► PIC 0006 is B1 field is nonzero

► PIC 0013 if transactional-execution control (CR0.8) is zero
► PIC 0018 if issued in constrained TX mode

Continuing with TBEGINC execution:

1. The effective A control (allowing AR modification) is set to the control on the TBEGINC instruction logically ANDed with
any outer value of A.

2. The transaction nesting depth is incremented. If the result is 1, then the CPU enters the constrained TX mode;
otherwise, the CPU remains in the nonconstrained TX mode.

3. The instruction completes with CC0.

Various exception conditions may be recognized, as listed on this slide. Note, although a constrained transaction may only
have a nesting depth of 1, the instruction recognizes an abort if the maximum TND is exceeded. This can occur if the
CPU is already in the nonconstrained mode when TBEGINC is executed.

57

57SHARE 121 – Session 14087

Constrained Transaction

Abort conditions in constrained transaction:
► Abort PSW points to TBEGINC instruction!

– NOT the instruction following it!!
– Abort condition causes entire TX to be re-driven!

● No fail path!!
– Re-execution of TBEGINC resets the condition code, thus branch

immediately following TBEGINC is not productive
► CPU takes special measures to ensure successful completion on

re-drive
► Assuming no persistent conflict, interrupt, or constraint violation,

the transaction is assured of eventual completion.

Constraint violation:
► PIC 0018 – indicates violation of transaction constraint
► Or, transaction runs as if non-constrained
► ASMAXCTX (HLASM exit) warns of static constraint violations

The astute reader may ponder, what prevents my CPU from looping forever in a constrained TX … aborting and redriving
forever?

If any of the constraints are violated, this is possible. So, the constrained transaction must be carefully coded. HLASM
provides an exit, ASMAXCTX, that helps in identifying constraint violations.

However, in the absence of constraint violations, there may still be causes for an abort, for example, if multiple CPUs
repeatedly access the same storage locations. The CPU takes special measures to ensure that the redrive of an aborted
constrained transaction will eventually complete.

58

58SHARE 121 – Session 14087

Processor-Assist Facility (1)

 Interface for program to request CPU assistance

► Facility indication bit 49
► M3 field indicates which processor assist to perform

– Currently, only the transaction-abort assist implemented
(M3 = 1)

● May be invoked after nonconstrained transaction is aborted.
● Bits 32-63 of general register R1 contain abort count.
● Bits 0-31 of general register R1 and all of general register R2 ignored.
● CPU takes actions to improve likelihood of successful re-execution

of nonconstrained transaction

► Processor assist otherwise acts as a no-op

– No visible change to the conceptual sequence

B2E8 M3 //// R1 R2

PPA R1,R2,M3 [RRF]

What about nonconstrained transactions? Is there any CPU tricks that can help them to complete successfully?

The processor-assist facility provides an instruction that can be used following the abort of a nonconstrained transaction. It
provides a hint to the CPU as to how many times the transaction has aborted, and the CPU may take certain measures to
help ensure that a subsequent execution of the transaction will succeed.

PPA is an RRF-format instruction designed to accommodate future assist functions; initially, only the transaction-abort assist
is implemented, as indicated by an M3 value of 1.

Bits 32-63 of the general register designated by the R1 field contain a program-specified count of how many times a
nonconstrained transaction has been aborted; initially, bits 32-63 of this register should contain zero. Bits 0-31 of general
register R1 and all of general register R2 are ignored.

Other than the actions described above, PPA acts as a no-operation.

Note, the program should not attempt to “cheat” the recovery action by specifying a higher abort count than has actually
occurred. A higher count does not necessarily provide a higher chance of successful redrive, and it may hurt program
performance.

59

59SHARE 121 – Session 14087

Processor-Assist Facility (2)

Example of use:

LHI 15,0 Zero counter.
LOOP TBEGIN TDB,X’F000’ Restore GRs 0-7 if aborted.

JNZ ABORTED Branch if aborted.
:
: Transactional-execution code
:
TEND End of transaction

ABORTED JC B’0101’,NO_RETRY CC 1 or 3; not worth retrying.
AHI 15,1 Increment counter.
CIJNL 15,6,NO_RETRY Give up after 6 attempts.
PPA 15,0,1 Request CPU assistance.
J LOOP Once more … with feeling.

NO_RETRY DS 0H

This slide shows an assembler program’s use of the PPA instruction. [CLICK] The first block of highlighted code shows the
transactional-execution code; prior to this block, general register 15 is zeroed.

[CLICK] In the ABORTED section of code, we again check the condition code to see if there is a chance of recovery; if not,
the code branches to NO_RETRY. Next, the count in general register 15 is incremented, and if it has exceeded a threshold
(six, in this case), we also branch to NO_RETRY. Otherwise, the PPA instruction is executed, as shown in the second
section of highlighted code, and the program branches back to attempt to re-execute the transaction.

60

60SHARE 121 – Session 14087

Transactional-Execution Summary

Benefits:
► Efficient means of updating multiple, discontiguous objects in

memory
– Without classic (coarse-grained) serialization such as locking
– Potential for significant MP performance improvement

► Speculative execution without onerous recovery setup
► Constrained TX for simple, small-footprint updates

– As long as constraints met, assured of eventual completion

Caveats:
► Nonconstrained transaction may require more development /

testing
– Fall-back path required to accommodate aborted TX

► Constrained TX has significant limitations
– If coded incorrectly, code could loop forever

Transactional execution has enormous potential in reducing overhead associated with classic coarse-grained serialization
such as locking. Already IBM lab tests have shown extremely promising improvement in certain workloads that would
otherwise suffer MP effects with more processors.

Transactional execution also holds promise in implementing speculative forms of execution, and may simplify many coding
paths that would otherwise need cumbersome recovery environments (like ESTAE and ESPIE).

For quick multiple-location updates with a small memory footprint, the constrained transaction provides an effective means of
high-performance processing.

However, there may be additional development required to develop and test nonconstrained transactions, and constrained
transactions have very stringent coding requirements.

61

61SHARE 121 – Session 14087

zEnterprise EC12 CPU-Facility Summary

 Improved facilities for multiprocessing
► Interlocked-access facility 2
► Transactional-execution facility
► Processor-assist facility

 Improvements for programs using zoned & packed data
► DFP zoned-conversion facility

 Various CPU facilities for code optimization
► Execution-hint facility
► Load-and-trap facility
► Miscellaneous general instructions

 Improved DAT function
► Enhanced-DAT facility 2
► Local-TLB-clearing facility

 Potential for substantial performance improvements in selected
workloads

The IBM zEnterprise EC12 system introduces several powerful new CPU facilities as enumerated on this slide. The most
significant of these changes is the transactional-execution facility which provides a game-changing paradigm in
multiprocessor serialization, and has the potential of providing significant performance improvement for selected workloads.
The interlocked-access facility 2 makes it significantly easier to manipulate shared data – without the bother of using locks or
compare-and-swap type of operations.

Other enhancements provide improvements in legacy workload handling (DFP zoned-conversion facility), pipeline
optimization (execution hint facility and miscellaneous-general-instructions facility), data validation (load-and-trap facility), and
virtual-storage management (EDAT-2).

In combination, these facilities set the stage for improved CPU throughput.

62

62SHARE 121 – Session 14087

So, What’s

your

question?

For those in the audience, (a) give yourself a pat on the back for enduring an intense hour of discussion on the zEC12, and
(b) I will gladly entertain any questions now.

For those reading this from the SHARE web site, if you have further questions, you are welcome to e-mail me at
dgreiner@us.ibm.com.

