
Insert

Custom

Session

QR if

Desired.

Session #14019

Wednesday, August 14 at 1:30 pm

Hynes Convention Center Room 207

Brian J. Marshall

REXX programming for the z/OS programmer

2

Abstract and Speaker

• Rexx is a powerful yet relatively simple High Level language that provides great flexibility and power on

the z platform as well as many other platforms.

•Brian J. Marshall is the Vice President of Research and Development at Vanguard Integrity Professionals

©2011 Vanguard Integrity

Professionals, Inc.

3

Trademarks

• The following are trademarks or registered trademarks of the

International Business Machines Corporation:

• IBM Logo - OS/390

• z/OS - MVS/DFP

• MVS/ESA - RACF

• S/390 - Series z

• DB2 - IBM Business Partner emblem

• UNIX is a registered trademark of The Open Group in the United States

and other countries.

 The Start of a rexx program

 Comments

 Variables

 Operators

 Conditional Expressions

 Iterations, iterations, iterations…

 SIGNAL, EXIT, CALL, RETURN & LABEL

 Functions (built-in and user defined)

 PARSE

 Stacks and Queus

 Environments

 Execio

 Questions

Agenda

The first line of a REXX program must be a comment and must contain the

Word or at least the letters REXX

Ex:

VALID:

/* THIS IS MY FIRST REXX PROGRAM /*

/* REXX */

NOT VALID

/* This does not

Count as valid REXX program start */

How to Start a Rexx Program

Comments in REXX can start at any position and end in any position.

Comment Start is a /*

Comment End is an */

Careful with embedded comments.

USE HILITE Language: #14 (for REXX) and Coloring 3 (Both IF and DO

 Logic)

Comments

Variable names can consist of Alpha, Numerics, Special characters and DBCS

Characters when OPTIONS ETMODE is specified.

Periods should only be used in STEM Variables

Variables names should NOT BE: RC, SIGL or RESULT

Variables ARE NOT strongly typed and are NOT CASE SENSITIVE.

STEM Variables are variables that like arrays can have multiple values. The STEM

of the variable can actually be anything, usually a number where BY CONVENTION

The 0th element contains the number of elements in the variable.

Variables

When a stem is used as the target of an assignment, all possible compound

variables whose names begin with that stem receive the new value, whether they

previously had a value or not. Following the assignment, a reference to any

compound symbol with that stem returns the new value until another value is

assigned to the stem or to the individual variable.

Since Stem variables can use lots of available storage, DROP them when your done

with them.

For example:

hole. = "empty“  Initialized all elements of the stem to “empty”

hole.9 = "full"

say hole.1 hole.9 hole.anything

Drop hole.  An example of dropping the variable.

 empty full empty

Stem Variables

 + Add

 - Subtract

 * Multiply

 / Divide

 % Integer Divide

 // Modulo – Integer divide and return whole remainder

 ** Power

Order or Parenthesis, Operations, etc all apply as one would expect.

EX: Sum2Nums = Num1 + Num2

OPERATORS - Arithmetic

 & And

 | Or

 && Exclusive Or

 \ Not (Logical Negation) or caret or

Order or Parenthesis, Operations, etc all apply as one would expect.

Logical expressions return a true (1) or a false (0) value

Ex: A = 0 and B = 1

(A & B) 0 False (B && B) 0 False

(A | B) 1 True (\A) 1 True

OPERATORS – Logical or Boolean

= Equal <> Same as \=

== Strictly Equal >= GT or Equal To

\= Not Equal <= LT or Equal To

\== Strictly Not Equal \< Not Less Than

> GT \> Not Greater Than

< LT >>= Strictly greater than or equal to

\<<, ￢<< Strictly NOT less than <<= Strictly less than or equal to

\>>, ￢>> Strictly NOT greater than

Strictly vs. Not Strictly When two expressions are strictly equal, everything

including the blanks. Otherwise with an = ‘word ’ is

equal to ‘word’ but not true with ==.

Note: I have seen documented that = also ignores case. This is not true to my

knowledge.

OPERATORS – Comparison / Equality

Blank Concatenates terms and places one blank between them.

 Multiple blanks becomes a single blank.

|| or abuttal Concatenates terms without a blank. Use || as it is easier to

 read and debug later. Careful of | vs. ||

EX: output

 say “first” “second” first second

 say “first”||”second” firstsecond

 say “first””second” firstsecond

OPERATORS – Concatenation

Unary operators before Binary Operators

Binary Operators by precedence

Equal Operators Left to Right

Prefix Operations

Power

Multiple and Divide

Add or Subtract

OPERATORS – Precedence

Non compound instructions: For compound instructions:

IF expression THEN IF expression THEN

 instruction Do

ELSE instruction-1

 instruction instruction-2

 End

Nested IF/THEN/ELSE’s are allowed. Make sure to match each IF with an ELSE

and each DO with an END. Line up the DO and ENDs and have hilite turned on

For both IF and DO Logic.

Conditional Expressions – IF/THEN/ELSE

SELECT

 WHEN expression-1 THEN instruction-1

 WHEN expression-2 THEN instruction-2

 WHEN expression-3 THEN instruction-3

 OTHERWISE

 instruction(s)

END

Make sure you END your SELECT. Expressions should evaluate to T or F.

For THENs, multiple instructions can be used but must be encapsulated in DO

End.

For Otherwise, all instructions until the END associated with the SELECT are

 WHEN expression-1 THEN instruction-1

executed.

Conditional Expressions - Select

The DO is the simplest form of Iteration:

DO 2

 say ‘ RED SOX RULE – NOT’

End

Result:

RED SOX RULE – NOT

RED SOX RULE – NOT

Btw, Say works online and in batch. Online to terminal, batch to SYSTSPRT

Iteration, iteration, Iteration: DO

The DO is the simplest form of Iteration:

DO i = 1 to 3 DO i=1 to 10 by 3

 say i say i

END END

1 1

2 4

3 7

 10

Iteration, iteration, Iteration: DO
Controlled

The DO loop is great for filling or displaying STEM variables…

Parse arg n

Stem.0 = N

DO i=1 to N

 Stem.i = i

END

Do i=1 to stem.0

Say stem.i

End

Outputs numbers 1 to N where N is passed in via call or exec.

The DO in use with a STEM variable

The DO FOREVER is a loop that will continue until the LEAVE or EXIT

statement are encountered

DO FOREVER

 Pull Var1

 if Var1 = ‘STOP’ then Leave

 say Var1

END

Echoes output until stop or STOP is entered.

LEAVE tells Program to leave the loop, EXIT ends a rexx program

PULL will uppercase any value entered. Use PARSE PULL to avoid this if

desired.

Iteration, iteration, Iteration: DO
FOREVER

The DO WHILE is a loop that will continue WHILE the condition is TRUE

Var1 = ‘’

DO While Var1 <> ‘STOP’

 Pull Var1

 say Var1

END

Echoes output until stop or STOP is entered but will echo STOP as well

Iteration, iteration, Iteration: DO WHILE

The DO UNTIL is a loop that will continue until the condition is TRUE

Var1 = ‘’

DO UNTIL Var1 = ‘STOP’

 Pull Var1

 say Var1

END

Echoes output until stop or STOP is entered but will echo STOP as well

Note: Loops can be nested and nested and nested and nested

Iteration, iteration, Iteration: DO UNTIL

SIGNAL causes an unconditional branch to another instruction.

 Signal should really only be used with events.

EXIT Causes an exec to unconditionally end and return to where it

 was invoked. EXIT can return a value to caller as well via the

 variable RESULT

CALL causes control to be passed to an internal or external

 subroutine. Internal subroutines are referenced by a LABEL

RETURN returns control back to the calling exec and may return a

 value as well.

LABEL Symbolic name followed by a colon.

SIGNAL, EXIT, CALL, RETURN & LABEL

Rexx has a number of built in functions like most languages. See Appendix A

For explanation of each.

Arithmetic (ABS,DIGITS,FORM,FUZZ,MAX,MIN,RANDOM,SIGN,TRUNC)

Comparison (Compare, Datatype, Symbol)

Conversion (B2X, C2D, C2X, D2C, D2X, X2B, X2C, X2D)

Format (Center, Copies, Format, Justify, Left, Right, Space)

String (Abbrev, Delstr, Delword, Find, Index, Insert, Lastpos

 Length, Overlay, Pos, Reverse, Strip, Substr, Subword,

 Translate, Verify, Word, Wordindex, Wordlength, words)

Misc (Address, Arg, Bitand, Bitor, Bitxor, Condition, Date,

 Errortext, Externals, Linesize, Queued, Sourceline,

 Time, Trace, Userid, Value, Xrange)

REXX Built in Functions

Rexx allows subroutines to act as either a procedure or true function.

A Function is a callable routine that calculates and MUST return a value

A Subroutine is a set of code that accomplishes a task.

You can pass up to 20 arguments into a subroutine but return only ONE

(Stored in variable called RESULT).

A Subroutine suffixed with the word PROCEDURE will protect the variables in

and make them all local variables. This can be changed with

A PROCEDURE EXPOSE, where the exposed variables are not local

Ex:

subroutine1:

Subroutine2: Procedure

Subroutine3: Procedure Expose Answer

Writing your own Subroutine

A keyword instruction is one or more clauses, the first of which starts with a

keyword that identifies the instruction. Some keyword instructions affect the flow of

control, while others provide services to the programmer.

See Appendix B for a list of Keyword Instructions

Keyword Instructions

Consider the following examples:

N1=5 N1=5 N1=5

N2=10 N2=10 N2=10

Call subr call subr Call Subr

Say ans say ans say ans

Exit Exit Exit

Subr: Subr: PROCEDURE Subr: PROCEDURE EXPOSE ANS

Ans = n1 + n2 Ans = n1 + n2 n1=50

Return Return n2 =100

 ans= n1+n2

 Return

Output:

 15 Error Line: Ans=n1 +n2 150

Writing your own Subroutine

You can pass values into a Subroutine on the CALL statement by specifying

up to 20 arguments separated by commas.

You place the passed variables/values into new variables via the ARG function,

either with an ARG or definitive assignment X = ARG(1) or through the use of

ARG(1) as a variable in the subroutine.

Ex:

Call perimeter L,W Call perimeter L,W

Say “Perimeter is: “ Result Say “Perimeter is: “ Result

Exit Exit

Perimeter: Procedure Perimeter: Procedure

Arg Length, width return 2*Arg(1) + 2*Arg(2)

Return 2*length + 2* width

Pass Values into Subroutines

You can invoke a true FUNCTION without a CALL statement and again pass

up to 20 arguments separated by commas. In this case encapsulated by ()’s.

You place the passed variables/values into new variables via the ARG function,

either with an ARG or definitive assignment X = ARG(1) or through the use of

ARG(1) as a variable in the subroutine.

Ex:

X = perimeter(l,w)

Say “Perimeter is: “ x Say “Perimeter is: “perimeter(l,w)

Exit Exit

Perimeter: Procedure Perimeter: Procedure

Arg Length, width return 2*Arg(1) + 2*Arg(2)

Return 2*length + 2* width

Pass Values into a Function

REXX is an EXCELLENT language for parsing. It makes otherwise difficult

Parsing scenarios easier.

PARSE PULL reads input from data stack or terminal and assigns them

 to variables w/o Modification. PULL otherwise will uppercase

 PARSE PULL A B C

 will take three values from stack or user and place into

 Variables A B and C

PARSE ARG reads variables from calling routine and assigns them

 to variable w/o Modification. ARG otherwise will uppercase

 a=‘This’ b=‘is’

The PARSE Command

PARSE ARG reads variables from calling routine and assigns them

 to variable w/o Modification. ARG otherwise will uppercase

Var1 = ‘This’ Var1 = ‘This’

Var2 = ‘is’ Var2 = ‘is’

Var3 = ‘Passed’ Var3 = ‘Passed

Call subr Var1 Var2 Var3 Call subr Var1 Var2 var3

Exit Exit

Subr: Procedure Subr: Procedure

Parse Arg s1 s2 s3 Arg s1 s2 s3

Say s1 s2 s3 Say s1 s2 s3

Return Return

This is Passed THIS IS PASSED

The PARSE Command

PARSE VAR Parses a variable into one or more variables that follow it

ParsedString = “This is the String to be Parsed”

PARSE VAR ParsedString X1 X2 X3 X4 X5 .

Say X1 This

Say X2 is

Say X3 the

Say X4 String

Say X5 to

Exit

The period at the end or anywhere in the parse variables is used as a

Placeholder. It is a good practice when not parsing all data or potential data

in a variable to end the parse with a period.

The PARSE Command

PARSE VAR Separator

 Parses a variable into one or more variables by the Separator

ParsedString = “This is the String to be Parsed”

PARSE VAR ParsedString X1 X2 “be” X5 .

Say X1 This

Say X2 is

Say X5 Parsed

Exit

The PARSE Command

PARSE VAR (Separator)

 Parses a variable into one or more variables by a variable

 Separator .

ParsedString = “This is the String to be Parsed”

X4= “be”

PARSE VAR ParsedString X1 X2 (X4) X5 .

Say X1 This

Say X2 is

Say X5 Parsed

Exit

The PARSE Command

PARSE VAR Number

 Parses a variable into one or more variables by the nth

 character in the VARIABLE.

ParsedString = “This is the String to be Parsed”

PARSE VAR ParsedString X1 X2 =13 X5 .

Say X1 This

Say X2 is the

Say X5 String

Exit

Note:

This can be used to split a string.

The PARSE Command

.

PARSE VALUE WITH

 Parses a value into a set of variables using the blank as a

 separator

Parse Value “This is the String to be parsed” with X1 X2 X3 X4 X5 . X6

Say x1 This

Say x2 is

Say x3 the

Say x4 String

Say x5 to

Say x6 parsed

exit

The PARSE Command

REXX in TSO/E uses an expandable data structure called a data stack to store

information. The data stack combines characteristics of a conventional stack and

queue.

Stacks and queues are similar types of data structures used to temporarily hold data

items (elements) until needed. When elements are needed, they are removed from

the top of the data structure.

The basic difference between a stack and a queue is where elements are added.

 Elements are added to the top of a stack and to the bottom of a queue.

STACKS and QUEUES

PUSH - puts one item of data on the top of the data stack. There is virtually no limit

to the length of the data item.

elem1 = 'String 1 for the data stack'

PUSH elem1

QUEUE - puts one item of data on the bottom of the data stack. Again, there is

virtually no limit to the length of the data item.

elemA = 'String A for the data stack'

QUEUE elemA

STACKS and QUEUES

To remove data elements from the Stack we use PULL

PULL stackitem

SAY stackitem

If you do not want the values uppercased then use:

PARSE PULL stackitem

SAY stackitem

STACKS and QUEUES

When an exec calls a routine (subroutine or function) and both the exec and the

routine use the data stack, the stack becomes a way to share information. However,

execs and routines that do not purposely share information from the data stack,

might unintentionally do so and end in error. To help prevent this, TSO/E provides the

MAKEBUF command that creates a buffer, which you can think of as an extension to

the stack, and the DROPBUF command that deletes the buffer and all elements

within it.

Although the buffer does not prevent the PULL instruction from accessing elements

placed on the stack before the buffer was created, it is a way for an exec to create a

temporary extension to the stack. The buffer allows an exec to:

Use the QUEUE instruction to insert elements in FIFO order on a stack that already

contains elements.

Have temporary storage that it can delete easily with the DROPBUF command.

An exec can create multiple buffers before dropping them. Every time MAKEBUF

creates a new buffer, the REXX special variable RC is set with the number of the

buffer created. Thus if an exec issues three MAKEBUF commands, RC is set to 3

after the third MAKEBUF command

STACKS and QUEUES

Sometime a STACK is NOT meant to be shared. If this is the case then

‘NEWSTACK’ is better suited as opposed to MAKEBUF

To protect elements on the data stack, you can create a new data stack with the

TSO/E REXX NEWSTACK command.

Any routine that uses ‘NEWSTACK’ should issue a DELSTACK for each stack

created

The DELSTACK command removes the most recently created data stack. If no stack

was previously created with the NEWSTACK command, DELSTACK removes all

the elements from the original stack. (THIS CAN HURT)

STACKS and QUEUES

Rexx can run in a number of different environments. Here is a sample of them

The environment you are running in dictates the commands that are available.

You can move between environments using the ADDRESS command

ADDRESS TSO Will put you in a TSO environment (assuming one is

 available)

ADDRESS ISPEXEC Will put you into an ISPF environment

ADDRESS ISREDIT Execute a macro

ADDRESS MVS Will put you into an MVS environment

ADDRESS SYSCALL Unix commands.

ADDRESS SH Unix Shell

ADDRESS() Will return you your current environment

Environments

EXECIO Is a method to read z/OS PDS members and Sequential files.

 DISKR Open and read from a file (read only)

 DISKRU Open and read from a file (update allowed)

 DISKW Open and write to a file

“EXECIO xxx DISKR(U) INDD yyy (FINIS”

 (OPEN”

 (STEM stem.”

 (LIFO”

 (FIFO”

 (SKIP”

xxx is the number of lines to READ. * means read to EOF

yyy is the starting line a which to begin READING from (optional, defaults

 to either beginning of file or last line read +1)

INDD FILE DD to read from

OPEN OPEN dataset and position before first record

STEM Specifies the stem variable into which the records will be placed.

 If not specified, records will be placed onto the Datastack

FINIS Close the dataset after reading

LIFO, FIFO and SKIP – PUSH or QUEUE onto STACK or SKIP xxx lines

EXECIO DISKR DISKRU

EXECIO Is a method to write to z/OS PDS members and Sequential file

 DISKW Open and write to a file

“EXECIO xxx DISKW OUTDD (FINIS”

 (OPEN”

 (STEM stem.”

xxx is the number of lines to Write. * means write all from stack or STEM

OUTDD File DD to write to

OPEN OPEN dataset and position before first record

STEM Specifies the stem variable from which records are read from and

 written to the file.

 If not specified, records will be placed onto the Datastack

FINIS Close the dataset after writing. Forces i/o completion.

EXECIO DISKW

“ALLOC FI(INDD) DA(‘my.input.dataset’) SHR REUSE”

“ALLOC FI(OUTDD) DA(‘my.output.dataset’) SHR REUSE”

Stem.0 = 0

Myrc = 0 /* assume 0 return code */

Execio * DISKR INDD (Stem stem.” /* read entire file into stem. Variable*/

If rc > 4 then call ERRORRTN “READING FILE”

Execio * DISKW OUTFF (STEM stem.” /* writes entire STEM to file */

If rc > 4 then call ERRORTN “WRITING FILE”

Exit:

 “EXECIO 0 DISKW OUTDD (FINIS” /* closes files */

 “EXECIO 0 DISKR INDD (FINIS”

EXIT

ERRORTN:

ARG S1

 say “ An Error occurred during “ S1

 myrc = 12

 return myrc

Return /* never executed*/

Quick Example

©2013 Vanguard Integrity

Professionals, Inc. 45

Questions?

©2013 Vanguard Integrity

Professionals, Inc.
46

Appendix A

©2013 Vanguard Integrity

Professionals, Inc.
47

Appendix A

ADDRESS temporarily or permanently changes the destination of commands.

Commands are strings sent to an external environment. You can send commands by

specifying clauses consisting of only an expression or by using the ADDRESS

instruction

ARG retrieves the argument strings provided to a program or internal routine and

assigns them to variables. It is a short form of the instruction: PARSE UPPER ARG

CALL calls a routine (if you specify name) or controls the trapping of certain

conditions (if you specify ON or OFF).

DO groups instructions together and optionally processes them repetitively. During

repetitive execution, a control variable (name) can be stepped through some range

of values.

DROP "unassigns" variables, that is, restores them to their original uninitialized state.

If name is not enclosed in parentheses, it identifies a variable you want to drop and

must be a symbol that is a valid variable name, separated from any other name by

one or more blanks or comments

Appendix B Keyword Instructions

EXIT leaves a program unconditionally. Optionally EXIT returns a character string to

the caller.

IF conditionally processes an instruction or group of instructions depending on the

evaluation of the expression. The expression is evaluated and must result in 0 or 1.

INTERPRET processes instructions that have been built dynamically by evaluating

expression.

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other

than that with a simple DO).

LEAVE causes an immediate exit from one or more repetitive DO loops (that is, any

DO construct other than a simple DO).

NOP is a dummy instruction that has no effect. It can be useful as the target of a

THEN or ELSE clause

Appendix B Keyword Instructions

NUMERIC changes the way in which a program carries out arithmetic operations

OPTIONS passes special requests or parameters to the language processor. For

example, these may be language processor options or perhaps define a special

character set.

according to the rules of parsing.

PROCEDURE, within an internal routine (subroutine or function), protects variables

by making them unknown to the instructions that follow it. After a RETURN

instruction is processed, the original variables environment is restored and any

variables used in the routine (that were not exposed) are dropped.

PULL reads a string from the head of the external data queue

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In,

First Out) onto the external data queue.

Appendix B Keyword Instructions

QUEUE appends the string resulting from expression to the tail of the external data

queue. That is, it is added FIFO (First In, First Out).

RETURN returns control (and possibly a result) from a REXX program or internal

routine to the point of its invocation

SAY writes a line to the output stream.

SELECT conditionally calls one of several alternative instructions

SIGNAL causes an unusual change in the flow of control (if you specify labelname

or VALUE expression), or controls the trapping of certain conditions

TRACE controls the tracing action

UPPER translates the contents of one or more variables to uppercase. The

variables are translated in sequence from left to right.

Appendix B Keyword Instructions

//STEP1 EXEC PGM=IRXJCL,PARM='MYEXEC A1 b2 C3 d4'

//*

//STEPLIB

//* Next DD is the data set equivalent to terminal input

//SYSTSIN DD DSN=xxx.xxx.xxx,DISP=SHR,...

//*

//* Next DD is the data set equivalent to terminal output

//SYSTSPRT DD DSN=xxx.xxx.xxx,DISP=OLD,...

//*

//* Next DD points to a library of execs

//* that include MYEXEC

//SYSEXEC DD DSN=xxx.xxx.xxx,DISP=SHR

Appendix C Batch JCL

Most of the data for this presentation was taken from the following manual:

http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ib

m.zos.r13.ikjc300%2Fikj4c310.htm

Appendix D Manual

http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.ikjc300%2Fikj4c310.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.ikjc300%2Fikj4c310.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.ikjc300%2Fikj4c310.htm

