Hitachi Dynamic Tiering for Mainframe Hitachi Tiered Storage Manager for Mainframe

Session 13979

Hitachi Dynamic Tiering, Managing Your Mainframe Storage Easily and Effectively

Ros Schulman – Data Protection Product Line Manager John Harker - Senior Product Marketing Manager

Complete your sessions evaluation online at SHARE.org/BostonEval

SHARE

Improved Performance at Reduced Cost: Data Locality and Pareto Distributions

Classic Pareto Distributions

(Also Known as the 80/20 Rule)

Actual Volume Workload

Location on Volume

Why does it work so well?

- Skew At any time, only a small address range is active
- Persistence When an address range is accessed it tends to remain so for a while

HITACHI DYNAMIC PROVISIONING FOR MAINFRAME STORAGE Architecture

onthis at officerois/ postolier

Hitachi Dynamic Tiering

automated optimized Tiered Storage Management

Before: Tiered storage and provisioning

- Labor intensive
- Data classification before tiering
- Complicated management of multiple storage tiers
- Now: Dynamic tiering and provisioning
 - Controller-based automation
 - Single, self-managed, selfhealing, efficient pool of data
 - All the benefits of dynamic provisioning
 - Optimized use of Flash storage
 - No need for data classification

Simplifies operations and data management
Reduces opex, capex, and TCO

Hitachi Dynamic Tiering Supports Virtualized Storage

- With HDT, Hitachi Virtual Storage Platform (VSP) provides automated tiered storage management and performance acceleration for multiple tiers of heterogeneous external storage
 - As an SSD accelerator
 - As a storage virtualization controller
 - Heterogeneous storage business continuity and disaster recovery solution
 - Leveraging the breadth of offerings on VSP

Hitachi Dynamic Tiering for Mainframe

Hitachi Dynamic Tiering for Mainframe and DFSMS

LIMITS OF SMS Storage Groups and ACS Routines

- 3390 volumes are "fixed" to a single tier
- To transition a volume's data to another tier requires ACS work, then migration and recall

 Stale datasets are treated the same as active ones until HSM migration

- Performance problems need intervention to migrate to "higher" storage group
- Host-based volume movement has high overhead cost

DFSMS Storage Groups (SG) and HDT for Mainframe storage

- Now with HDT for Mainframe storage, storage tiers may be combined into a single storage group
- HDT automatically moves data within a storage group to the correct tier based on Workload performance

HDT Volumes are optimally managed dynamically at the page level

DFSMS Storage Groups and HDT for Mainframe Storage

- Simplifies integration
- HDT can be applied to selected Storage Groups only
- DFSMS Horizontal Storage Groups and Dynamic Page based Tiering volumes can be aligned

DFSMS Storage Groups and HDT for mainframe storage

- With HDT for Mainframe storage policies, individual policies can be defined for volumes mapped to different storage groups
- Policies are supported based on tier ranges, analysis/migration periods, initial tier page assignments and relocation priority

			SSD Tier 1
			NL Tier 3
Online SG	Batch SG	Archive SG	HDT Pool
HDT Custom Policy Defined for Online Data Across Top 2 Tiers	HDT Policy Restricted to Tier 2 Residency	HDT Policy Restricted to Tiers 2 and 3 Residency	SHARE in Boston

HDT Operational Impact #1

		SHARE
Operation	DFSMS/HSM	Dynamic Tiering
What does it take to move between tiers?	HSM or manual; high MIPs overhead	Automated; offloads mainframe overhead
How responsive is a tier adjustment?	Slow; entire volumes are moved	Short as 30 minute cycles; only pages are moved
How to proactively avoid problems?	Static ACS routines, manual change & monitoring required	Automated; fine-grained and self-optimizing
How well does wide striping work for performance?	No wide striping	Improved performance, automatic dynamic optimization of all available spindles
Effort to effectively manage tiers with SMS and IBM [®] z/OS [®] ?	Manual calculations and programming	Automatic

•••• in Boston

HDT Operational Impact #2

	S H		
Working with Storage	Before HDT	With HDT	
Add physical capacity	Add 3390-X volumes into storage groups	Add capacity into pool	
Balance use over new capacity	Manually use HSM migration/recall	No actions are needed	
Direct specific applications to specific storage resources	Code ACS routines, follow-up with HSM migrations and recalls	Set 3390-A to an HDT policy – use same ACS routines but no HSM needed	
Address performance problems by moving datasets or volumes	Code ACS routines and use HSM migration/recall	HDT relocation has likely prevented the issue; otherwise use HDT policy	
Maintain SMS storage groups and ACS routines	Constant challenge to keep updated with rules describing exceptions	Fewer exceptions since HDT keeps tiers properly populated	
Demote data to lower tiers	HSM moves <i>datasets</i> to an ML "tier" that hasn't been <i>opened</i> for a while	HDT automatically moves pages that haven't been used	

Hitachi Dynamic Tiering Management

Hitachi Tiered Storage Manager for Mainframe

Management of Hitachi Dynamic Tiering

- Control relocation of data based on either most recent IO patterns or longer term averaging
- Control relocation and analysis periods (from 30 min to 24 hours), relocation priority, tier for new allocations and the range of tiers a volume can use
- User also can dynamically:
 - Add or remove Tiers
 - Expand or shrink Tiers
 - Replace media and RAID types
 - Expand LUNs
 - Move LUNs between pools
 - Add or remove any media or RAID type

Hitachi Tiered Storage Manager for Mainframe z/OS-based Management of Dynamic Tiering

Native z/OS host-based software provides:

- Online storage service level controls
 - Increase application performance
 - Improves problem avoidance
- Centralized and unified mainframe management of Hitachi Dynamic Tiering
 - Automation
 - Integration with DFSMS and storage groups
- Enables reporting and automatic notifications

Hitachi Tiered Storage Manager for Mainframe z/OS-based Dynamic Tiering Management

• in Boston

Why HTSM for mainframe?

HTSM simplifies and improves operations

- Native management from z/OS
 - Control for data location from host's point of view, not storage system's point of view – improves control and simplifies operations
 - Ability to utilize HDT performance and relocation data with other data (such as SMF records)
 - Reduced dependency on open server-based operations
- Control of storage service levels using Dynamic Tiering policies
- Linkage with z/OS SMS (storage group) speeds integration and reduces opex
- Simplify management in large-scale environments with group operations
- Flexible command-line interface (CLI) (TSO/E REXX) enables users to get the most out of Dynamic Tiering

Easy-To-Manage Target Volumes

HTSM defines target volumes as a group. A single operation for the group applies to all volumes belonging to the group (called Tiering Policy Group [TPG]). Once the group is defined, subsequent management can be done via a group operation

Linkage with z/OS DFSMS

HTSM works with SMS storage groups and ACS routines. Each Tiering Policy Group can have 1 or more SMS Storage Groups. This feature gives users the capability to manage the HDT environment from a SMS point of view and makes it easy to add Dynamic Tiering to existing operations

DFSMS and HDT and HTSM for Mainframe

- HDT can be applied to selected Storage Groups only
- HTSM for MF can be used to apply the Tiering policies by Storage Group
- DFSMS Horizontal Storage Groups and Dynamic Page based Tiering volumes can be aligned

Outline of HTSM configuration files

□ The input of HTSM for MF is CSV file. The output are TPG config and disk config.

HTSM Customization via REXX Scripting

HTSM provides a CLI (TSO/E REXX) that enables users to tailor the operation to their environments. The CLI also has the ability to cooperate with OS services (such as TSO/E service) and other products

For improved manageability HTSM for MF has separated operation procedures (REXX script) and objects (such as group definition)

HTSM for MF Reporting - Query Relocation

Tiering Policy ID: PROD Date: 11 Jul 2013 Time: 04:49:26 ******* Dynamic Pool Information - SN53004 Pool 81 ********* HDT Pool ID: 81 HDT Pool Name: MikeDak1 Monitoring Mode: Y (Automatic Execution Mode) Relocation Status: N (Relocation Finished or Stopped) **Relocation Progress: 100%** Tier 1 Tier 2 Tier 3 Media: SAS 15K SAS 10K External M Unit: PAGE PAGE PAGE Capacity: 1340 1240 1340 Used: 284 0 68 Entry Buffer: 8% 8% 8% Relocation Buffer: 2% 2% 2% Most Recent Completed Relocation (only refreshed by next Active Relocation) Relocation Start Time: 04:00 Relocation End Time: 04:17 Expected Migration: 0 Migrated: 0 Tier 2 Tier 1 Tier 3 Expected Migration T1: n/a 0 Θ from T2: 0 Ø n/a T3: 0 0 n/a Migrated T1: n/a Θ Θ Θ from T2: 0 n/a T3: 0 n/a 11 Jul 2013 04:49:26 *** Action TPG QUERY RELOCATION Successful

HTSM for MF Reporting - Query Policy

HTSM for MF Reporting - Query TPG

UTCHOOLT						
HTSM001I		TD - 00	0.040			
HTSM001I	Tiering Policy ID: APACMC					
HTSM001I			Jul 2013			
HTSM001I		Time: 04:02:36				
HTSM001I						
	*****	*** Query	TPG Tier M	letrics ***	*********	******
HTSM001I						
HTSM001I		===========	============	============	===========	=======
HTSM001I	TPG Total or	Tier1	Tier2	Tier3	Total	
HTSM001I	SN:PoolID or	Used	Used	Used	Used	
HTSM001I	*StorGrp* or	Pages	Pages	Pages	Pages	
HTSM001I	Volser or	∕ UsedGB	∕ UsedGB	∕ UsedGB	∕ UsedGB	
HTSM001I	*StorGrp* or Volser or Volser Prefix	/ Used%	/ Used%	/ Used%	/ Used%	
HTSM001I		=========	=========	=========	=========	=======
HTSM001I	TPG Total	352	0	0	352	
HTSM001I		13.4GB	ØGB	ØGB	13.4GB	
HTSM001I		100%	Ø%	0%	100%	
HTSM001I						
HTSM001I	SN53004:81	352	0	Θ	352	
HTSM001I		13.4GB	ØGB	ØGB	13.4GB	
HTSM001I		100%	Ø%	0%	100%	
HTSM001I						
HTSM001I	Used% of Pool	26.3%	Ø%	Ø%	8.98%	
HTSM001I						
HTSM001I	Pool Pages	1340	1240	1340	3920	
HTSM001I	Pool GB	50.9GB	47.1GB	50.9GB	149GB	
HTSM001I	Tier% of Pool	34.2%	31.6%	34.2%	100%	
HTSM001I						
HTSM001I	*ALPHA*	352	0 0GB 0%	0 0GB 0%	352	
HTSM001I		13.4GB	ØGB	ØGB	13.4GB	
HTSM001I		100%	0%	0%	100%	
HTSM001I						
HTSM001I	GSE94*	352		0		
HTSM001I		13.4GB		ØGB		
HTSM001I		100%	0%	0%	100%	
HTSM001I						
HTSM001I						
HTSM001I	Action TPG_QUERY	_TIERS Suc	cessful			

HDS HTSM for Mainframe Scripting Solution

From SDSF using z/OS SYSREXX

HDT for Mainframe and HTSM for Mainframe Storage - Summary

- Enables automation and more efficient use of tiered storage – self optimizes
- Improves ability to manage SLAs
- Improves performance

Hitachi Dynamic Tiering for Mainframe

Hitachi Dynamic Tiering for Mainframe Performance Examples

HDT Performance Example 1

This example shows results from HDT testing

- Demonstrates how HDT learns your workload
- Scenario: Customer reluctant to upgrade from 300GB to 600GB HDD
- Same capacity of HDD (not Including SSD)
 - (128) 300GB SAS
 - (64) 600GB SAS + (8) 400GB SSD
- IMPORTANT NOTE: SSD drives are added to the pool after all data sets are created

Disclaimer: PAIO workload tests used only demonstrate Dynamic Tiering behavior and concept. These tests are not intended for benchmarking purposes and results may vary depending on the workload used and the systems in the environment.

Basic Configuration

Config. Name	RAID Type	LCU	DP- VOL per Pool	PAIO Data- set	Base/ Alias	Dev. Num.	Desc.
HDT3HF	RAID-6(6 D+2P)	00 - 03	256	1024	64/192	70xx	(128) 300GB SAS HDP pool
HDT6HF	RAID-6(6 D+2P)	08 – 0B	256	1024	64/192	72xx	(64) 600GB SAS HDP pool
HDT6HF Run 1 through Run 4	RAID-6(6 D+2P)	08 – 0B	256	1024	64/192	72xx	HDT pool (8) 400GB SSD (64) 600GB SAS

300Gb and 600GB HDP BaselineS have been run (NO SSD Drives)

Technology - Connections - Recult

First Run: 600GB Tier 2 + SSD Tier 1 – 0 minutes – No Learning

LET TIERING LEARN YOUR WORKLOAD

Second Run: 600GB Tier 2 + SSD Tier 1 – 30 Minutes of Rest after Run 1

LET TIERING LEARN YOUR WORKLOAD

Fourth Run: 600GB Tier 2 + SSD Tier 1 – 30 Minutes of Rest after Run 3

I FT TIFRING I FARN YOUR WORKI OAD

HDT Performance Example 2

- This example is another way to show how HDT learns your workload
- Same 600GB tier as previous experiment except at a steady state of 24K IOPS
 - (64) 600GB SAS drives + (8) 400GB SSD
- IMPORTANT NOTE: SSDs are added to the pool after all data sets are created

24K IOP Steady State

LET TIERING LEARN YOUR WORKLOAD

Observations

- After HDT "learned" the access patterns, the throughput doubled on a smaller storage footprint
- 90% of the active dataset area was migrated to Tier 1
 - 10% of data did not meet the Tier 1 IO/hour criteria
- HDT can resolve HDD sibling pend contention
 - Migrate to a 2-tier HDT configuration
 - The VSP will learn and migrate pages that will benefit from SSD performance in HDT structure
 - A single SSD parity group can improve performance in a short time

@Hitachi Data Systems

Questions and Discussion

Contact the speakers:

Ros.Schulman at hds.com

John.Harker at hds.com

OHITACHI Data Systems

Thank you

Contact the speakers:

Ros.Schulman@hds.com

John.Harker@hds.com

