
The Keys to Understanding
Locking for DB2 for zOS

Karelle Cornwell

IBM

August 12, 2013

Session 13956

Agenda

• The Basics

• How you can influence DB2 locking

• Monitoring locking

• What’s new in locking in V9 & V10

The Basics

• DB2 gets locks to preserve data integrity

• Sometimes locks can cause suspensions,

time-outs and deadlocks

• Goal: allow maximum concurrency without

jeopardizing data integrity

Concurrency Integrity

Lock State and Compatibility

• Lock state – the strength of a lock

IS IX S U SIX X

IS

IX

S

U

SIX

X

Lock State Owner

can read

data

Owner

can

update

data

Others

can

read

data

Others

can

update

data

IS – Intent

Share

IX – Intent

Exclusive

S – Share

U – Update

SIX – Share

/ Intent

Exclusive

X -

Exclusive

Lock compatibility – which locks can

be held concurrently by different

transactions.

What does DB2 lock?

Table spaces

IS, IX, S,
U,SIX, X

Tables

IS, IX, S,
U,SIX, X

Partitions

IS, IX, S,
U,SIX, X

Pages

S, U or X

Rows

S, U or X

LOBs

S or X

XMLs

S or X

table space lock

XML lock

XML table space

table space lock

LOB lock

LOB table space

Partitioned table space

(including UTS)

Partition

lock

Row

lock

Page

lock

Partition

lock

Row

lock

Page

lock

Segmented table space

(not UTS)

Table space lock

Row lock Page lock

Table lock

Lock Scope
Segmented, not partitioned

S table space

lock
S table space

lock

S row

lock
S row

lock

IX table space

lock
IX table space

lock

IS table

lock
IS table

lock

IX table

lock
IX table

lock

IS table

lock
IS table

lock

Row level locking

Table space level locking

X row

lock
X row

lock

IX table space

lock
IX table space

lock

S table

lock
S table

lock

S table

lock
S table

lock

X table

lock
X table

lock

Table level locking

S row

lock
S row

lock

Lock Scope
Partitioned, including UTS

IS partition lockIS partition lock

S page lockS page lock

IX partition lockIX partition lock

X page lockX page lock

IS partition lockIS partition lock

S page lockS page lock

Page level locking

S partition lockS partition lock S partition lockS partition lock S partition lockS partition lock

Table space level locking

How long is a lock held ?

Page and row locks

• Acquired when needed

• Fetch: released at next fetch or commit

• Update: held until commit

• Table space, table & partition locks

• Acquired when the plan is allocated (prior to V10)
or on first access

• Released at commit or when the application
terminates.

What affects lock states, duration and
size?

Subsy
stem

Param
eters

DDL

BindParameters

SQL

DDL options that affect locks

• CREATE/ALTER TABLESPACE LOCKSIZE

• Allows you to choose a locksize:
tablespace, table, page, row, LOB or XML

• A smaller lock size generally provides better
concurrency

• A larger lock size generally provides better
performance

• CREATE/ALTER TABLESPACE LOCKMAX

• Allows you to choose the number of low-level
locks (page, row, LOB or XML) per table
space or table

• Can be used to enable or disable lock
escalation

Performance Concurrency

row locks

Partition

lock

Tablespace

Table

Page

Row

Performance

Concurrency

Lock Escalation

• Occurs when the number
of lower level locks (page,
row, LOB or XML)
reaches the number
specified in LOCKMAX

• DB2 acquires a gross lock
on the table space, table
or partition and releases
the lower level locks

• IS escalates to S

• IX and SIX escalate to X

• Locks on all partitions that
are locked escalate to a
gross lock.

• Improves performance

• Can impact concurrency

Part 1

IS-lock

Part 2

IS-lock

Part 3 Part 4

IX-lock

S S S S S S X X X

Before lock escalation

Part 1

S-lock

Part 2

S-lock

Part 3 Part 4

X-lock

After lock escalation

SQL – LOCK TABLE statement

LOCK TABLE T1 IN SHARE MODE Lock out updaters

LOCK TABLE T1 IN EXCLUSIVE MODE
Lock out readers

(with some exceptions)

and updaters

LOCK TABLE T1 PARTITION(5)

IN SHARE MODE Locks a single partition

IS-lock

Table space
IS-lock

Table space

Table T2Table T2
S-lock

Table T1
S-lock

Table T1
Table T3Table T3

For classic segmented TS,

locks only the specified table

S-lock

partition 1
S-lock

partition 1

S-lock

partition 2
S-lock

partition 2

S-lock

partition 3
S-lock

partition 3

For partitioned TS, locks all

Partitions unless PARTITION

keyword used

Bind Option - ACQUIRE

• Acquire(Use)
• Get TS, table, partition lock on first access to data

• Only lock what’s touched

• Uses the least restrictive lock needed

• Acquire(Allocate)
• Valid only at PLAN level, cannot use for BIND PACKAGE

• Get all TS, table, partition locks when the plan is allocated
• Ensures that all TS, table, partition locks are available at the start of
the job

• Disables selective partition locking

• Uses the most restrictive lock needed

• Deprecated in V10

Bind Option - Release

• Release(Commit) – release table space, table,
partition locks at commit

• Exception: Locks held across commit for cursor
with hold

• Release(Deallocate) – release table space,
table, partition locks when the plan completes.

• Has no effect on dynamic SQL unless
• Using KEEPDYNAMIC(YES), and subsystem
parameter CACHEDYN=YES

Bind Options: Acquire & Release

Select from T1 with RR

Insert into T2

Commit

Select from T3

Select from T4 where month = ‘May’

Commit

Update T3

Delete from T2

Commit

TSA

T1 T2 T3

TSB

Part 1

‘April’

TSB

Part 3

‘June’

TSB

Part 2

‘May’

Segmented table space TSA

With tables T1, T2 and T3

Partitioned table space TSB

With table T4

Acquire(Allocate) Release(Deallocate)

Select from T1 with RR

Insert into T2

Commit

Select from T3

Select from T4 where month = ‘May’

Commit

Update T3

Delete from T2

Commit

T4 p3

Ap
p
St
ar
t

Se
le
ct

In
se
rt

C
om
m
it

S
el
ec
t

S
e
le
ct

C
om
m
it

U
pd
at
e

C
om
m
it

A
p
p
 E
n
d
s

T1 S ---unlock

T2 IX ---unlock

T3 IX ---unlock

T4 p1

T4 p2

IS ---unlock

IS ---unlock

IS ---unlock

D
e
le
te

Acquire(Use) Release(Deallocate)

T4 p3

Ap
p
St
ar
t

Se
le
ct

In
se
rt

C
om
m
it

S
el
ec
t

S
e
le
ct

C
om
m
it

U
pd
at
e

C
om
m
it

A
p
p
 E
n
d
s

T1

T2 IX ---unlock

T3 IS -------------------------------------unlock

T4 p1

T4 p2 IS --------------------------unlock

Select from T1 with RR

Insert into T2

Commit

Select from T3

Select from T4 where month = ‘May’

Commit

Update T3

Delete from T2

Commit

D
e
le
te

Acquire(Use) Release(Commit)

Select from T1 with RR

Insert into T2

Commit

Select from T3

Select from T4 where month = ‘May’

Commit

Update T3

Delete from T2

Commit

T4 p3

T4 p1

T4 p2

Ap
p
St
ar
t

Se
le
ct

In
se
rt

C
om
m
it

S
el
ec
t

S
e
le
ct

C
om
m
it

U
pd
at
e

C
om
m
it

A
p
p
 E
n
d
s

T1

T2 IX --unlock

T3 IS ---------unlock

IS ---unlock

D
e
le
te

IX --unlock

T4 p3

Ap
p
St
ar
t

S
el
ec
t

In
se
rt

C
om
m
it

S
el
ec
t

S
e
le
ct

C
om
m
it

U
pd
at
e

C
om
m
it

A
p
p
 E
n
d
s

T1 S ---unlock

T2 IX ---unlock

T3 IX ---unlock

T4 p1

T4 p2

IS ---unlock

IS ---unlock

IS ---unlock

IX ---unlock

IS -------------------------------------unlock

IS --------------------------unlock

T2

T3

T4 p2

IX --unlockT2

IS ---------unlockT3

IS ---unlockT4 p2

Acquire(allocate)/Release(deallocate) -------------

Acquire(use)/Release(deallocate) -------------

Acquire(use)/Release(commit) -------------

IX --unlock

D
e
le
te

Isolation

Greatest

Concurrency

Greatest

Stability

ISOLATION(UR) - Uncommitted reader

ISOLATION (CS) – Cursor Stability

ISOLATION (RS) – Read Stability

ISOLATION (RR) – Repeatable Read

SELECT AVG(SALARY) FROM EMPLOYEE_TABLE WITH UR

Isolation is the degree to which one transaction is isolated from other

transactions

Can be specified

• as bind option for a plan or package

• on an SQL statement

Isolation UR

• OK to read data that is not committed

• Does not acquire table space, table, partition,

row or page locks. Does need XML locks.

• Only use if application can tolerate uncommitted

data

Isolation CS

Application

DB2

Time

Fetch Fetch

R
e

tu
rn

 r
o

w
 3

R
e

tu
rn

 r
o

w
 5

Q = stage 1 qualifying row

NQ – non-qualifying row

NQ

Row

1

NQ

Row

2

Lock

Q Row

3

NQ

Row

4

Q

Row

5

With Currentdata(no) may be

able to avoid locking

Unlock

row 3

The previous row is unlocked when the next row is fetched

Isolation RS

Application

DB2

Time

Fetch Fetch

R
e

tu
rn

 r
o

w
 3

R
e

tu
rn

 r
o

w
 6

Q = stage 1 qualifying row

NQ – non-qualifying row

NQF – non-qualifying row & lock avoidance fails

NQ

Row

1

NQ

Row

2

Lock

Q Row

3

Lock

NQF

Row

4

Lock

NQF

Row

5

Lock

Q Row

6

UnLock

NQF

Row 4

UnLock

NQF

Row 5

Locks are held until commit on all qualifying rows

Isolation RR

Application

DB2

Time

Fetch Fetch

R
e

tu
rn

 r
o

w
 3

R
e

tu
rn

 r
o

w
 6

Q = stage 1 qualifying row

NQ – non-qualifying row

Lock

NQ

Row 1

Lock

NQ

Row 2

Lock

Q Row

3

Lock

NQ

Row 4

Lock

NQ

Row 5

Lock

Q Row

6

Locks are held until commit on every row that is read

Use and Keep Locks

• Specifies the lock state for the page or row lock

• Can specify SHARE, UPDATE or EXCLUSIVE

• Can be specified on the ISOLATION clause of a
SELECT statement

• Only valid with RS and RR

SELECT * FROM T1 WITH RS

USE AND KEEP UPDATE LOCKS

Subsystem Parameters

• NUMLKUS: Locks per user
• Specifies the maximum number of row, page, LOB and XML locks a single
application can hold concurrently for all table spaces.

• NUMLKTS: Locks per table space
• Specifies the maximum number of row, page, LOB and XML locks an application
can hold at one time on a table or table space.

• RRULOCK: U-lock for RR/RS
• YES indicates the U locks are used instead of S locks when using cursor to fetch
rows for update

• XLKUPDLT: x-lock for searched updates/deletes
• DB2 uses an X-lock on qualifying rows or pages during a searched update or delete

• EVALUNC: evaluate uncommitted
• Indicates whether predicate evaluation is to be allowed on uncommitted data of
other transactions

• For isolation(cs) and isolation(rs) only

• SKIPUNCI: skip uncommitted inserts
• whether statements are to ignore a row that was inserted by another transaction if
the row has not been committed

• For isolation(cs) or isolation(rs) and row level locking

Lock states used with isolations RS and RR

Cursor SELECT

with FOR UPDATE

Non-cursor

SELECT

DELETE and

UPDATE

RRULOCK U U

USE AND KEEP

LOCKS

S,U,X S,U,X

XLKUPDLT X

For USE AND KEEP LOCKS:

S – SHARE

U – UPDATE

X - EXCLUSIVE

XLKUPDLT takes precedence over RRULOCK

USE AND KEEP takes precedence over RRULOCK

Monitoring Locking

• Catalog
• LOCKRULE column of SYSTABLESPACE gives the lock size for
the table space

• LOCKMAX column of SYSTABLESPACE gives the maximum
number of locks per user for the table or table space

• ISOLATION column of SYSPLAN and SYSPACKAGE

• RELEASE column of SYSPLAN and SYSPACKAGE

• CURRENTLYCOMMITTED column of SYSPLAN and
SYSPACKAGE

• Display Database command
• With the LOCKS option, display which table spaces are locked and
in what lock state and duration

• Explain output
• TSLOCKMODE in PLAN_TABLE gives the table space lock to be
used by the SQL statement

Monitoring Locking

• Traces

• IFCID 20 – lock summary

• IFCID 21 – lock detail

• IFCID 172 – deadlock trace

• IFCID 196 – timeout trace

What’s new in locking in V9 & V10?

Skip lo
cked d

ata

LO
B lo

ckin
g im

pro
vem

ent
s

Cur
ren
tly c

om
mit
tedRemove ACQUIRE(ALLOCATE)

Row locks in the catalog

Changes to zParms

XML

Skip Locked Data (V9)

• Skip data that is incompatibly locked by another transaction

• Applies to SELECT, searched DELETE and searched
UPDATE

• Must be ISO(CS) or ISO(RS)

• Must use row or page locks

1 AAAA

2 BBBB

3 CCCC

4 DDDD

5 EEEE

SELECT * FROM T1 SKIP LOCKED DATA;

Locksize row

All rows returned except row 3

Locksize page

1 AAAA

2 BBBB

3 CCCC

4 DDDD

5 EEEE

No rows returned

LOB locking improvements

Prior to V9 V9 & V10

Insert/Update X-lock LOB

Hold until commit

X-lock LOB Release

when insert/update

completes

Delete S-lock LOB

Hold until commit

No LOB locks

Select with RR, RS or

CS

S-lock LOB

Hold until commit

No LOB locks

Select with UR S-lock LOB

Hold until commit

S-lock LOB Release lock

immediately

XML locking

• V9 – XML data type
introduced

• V10 – XML versioning

• XML data is stored in a
separate table space

• XML table space is
locked separately from
the base table space

XML Table space

XML

Locking hierarchy

Data row

Base table XML table space

XML data

XML locking

V9 V10 (XML versioning)

Insert/Update X-lock XML

Hold until commit

X-lock XML

Hold until commit

Delete X-lock XML

Hold until commit

X-lock XML

Hold until commit

Select S-lock XML

Release lock on next

fetch

No XML lock for

ISO(CS), ISO(RS),

ISO(RR). S-lock for

ISO(UR), if needed.

ACQUIRE(ALLOCATE) (V10)

• Deprecated in V10

• Goes hand-in-hand with the disallowing DBRMs bound

into plans

• All plans and packages will be treated as ACQUIRE(USE)

BIND PLAN(PL147) PKLIST(PK01.D119746) ACQUIRE(ALLOCATE)

Subsystem Parameters

• NUMLKTS: Locks per table space

• Default changes from 1000 to 2000 (V10)

• RRULOCK: U-lock for RR/RS

• Default changes from NO to YES (V10)

• RELCURHL: release page/row locks for cursors defined

WITH HOLD

• Deprecated in V9

Currently Committed (V10)

• Allows a query transaction to access the currently

committed image of data if this query hits a row locked by

any INSERT or DELETE

• Helps to avoid time-outs and waits for locks

• Universal Table space (UTS) only

• Isolation(CS) or isolation(RS)

• Page level or row level locking

• Cannot be used if updater holds a gross lock on the

partition

Currently Committed and Uncommitted Insert

CREATE T1 (COL1 CHAR(1),

COL2 INT,

COL3 CHAR(1));

Transaction A:

INSERT INTO T1 VALUES ('D', 2, 'Y'); not committed

Transaction B:

SELECT * FROM T1 WHERE COL1 = 'D';

Transaction B finds that the row where COL1 = ‘D’ is locked. With

Currently Committed, it skips the row (just like zParm SKIPUNCI).

No rows returned.

No waiting for a lock.

Currently Committed and
Uncommitted Delete

CREATE T1 (COL1 CHAR(1),

COL2 INT,

COL3 CHAR(1));

Transaction A:

DELETE FROM T1 WHERE COL1=‘D’; not committed

Transaction B:

SELECT * FROM T1 WHERE COL1 = 'D';

Transaction B finds that the row where COL1 = ‘D’ is locked. With

Currently Committed, it determines that the delete is not committed.

Returns the row.

No waiting for a lock.

Reader must be ISO(CS) Currentdata(No)

Where to specify Currently Committed

• As an attribute of a PREPARE statement
• USE CURRENTLY COMMITTED

• WAIT FOR OUTCOME

• As a option on BIND & REBIND PLAN, BIND & REBIND
PACKAGE, REBIND TRIGGER PACKAGE
• CONCURRENTACCESSRESOLUTION

• USECURRENTLYCOMMITTED

• WAITFOROUTCOME

• As an option on CREATE & ALTER PROCEDURE,
CREATE & ALTER FUNCTION
• CONCURRENT ACCESS RESOLUTION

• USE CURRENTLY COMMITTED

• WAIT FOR OUTCOME

Currently Committed and
Skip Uncommitted Insert

SKIPUNCI CONCURRENTACCESSRESOLUTION ACTION

YES USECURRENTLYCOMMITTED Skip uncommitted inserts

YES WAITFOROUTCOME Wait for COMMIT or ROLLBACK

YES Not specified Skip uncommitted inserts

NO USECURRENTLYCOMMITTED Skip uncommitted inserts

NO WAITFOROUTCOME Wait for COMMIT or ROLLBACK

NO Not specified Wait for COMMIT or ROLLBACK

Conclusion

• You need not do anything. DB2 will lock for you.

• If you have concurrency issues such as time-outs,

deadlocks, lots of suspensions, DB2 provides various

tuning options.

