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The Basics

• DB2 gets locks to preserve data integrity

• Sometimes locks can cause suspensions, 

time-outs and deadlocks

• Goal: allow maximum concurrency without 

jeopardizing data integrity

Concurrency Integrity

Lock State and Compatibility

• Lock state – the strength of a lock
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What does DB2 lock?

Table spaces
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Lock Scope
Partitioned, including UTS

IS partition lockIS partition lock

S page lockS page lock

IX partition lockIX partition lock

X page lockX page lock

IS partition lockIS partition lock

S page lockS page lock

Page level locking

S partition lockS partition lock S partition lockS partition lock S partition lockS partition lock

Table space level locking

How long is a lock held ?

Page and row locks

• Acquired when needed

• Fetch: released at next fetch or commit 

• Update: held until commit

• Table space, table & partition locks

• Acquired when the plan is allocated (prior to V10) 
or on first access

• Released at commit or when the application 
terminates.



What affects lock states, duration and 
size?

Subsy
stem 

Param
eters

DDL

BindParameters

SQL

DDL options that affect locks

• CREATE/ALTER TABLESPACE LOCKSIZE

• Allows you to choose a locksize: 
tablespace, table, page, row, LOB or XML

• A smaller lock size generally provides better 
concurrency

• A larger lock size generally provides better 
performance

• CREATE/ALTER TABLESPACE LOCKMAX

• Allows you to choose the number of low-level 
locks (page, row, LOB or XML) per table 
space or table

• Can be used to enable or disable lock 
escalation
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Lock Escalation

• Occurs when the number 
of lower level locks (page, 
row, LOB or XML) 
reaches the number 
specified in LOCKMAX

• DB2 acquires a gross lock 
on the table space, table 
or partition and releases 
the lower level locks

• IS escalates to S

• IX and SIX escalate to X

• Locks on all partitions that 
are locked escalate to a 
gross lock.

• Improves performance

• Can impact concurrency
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SQL – LOCK TABLE statement

LOCK TABLE T1 IN SHARE MODE Lock out updaters

LOCK TABLE T1 IN EXCLUSIVE MODE
Lock out readers

(with some exceptions)

and updaters
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Bind Option - ACQUIRE

• Acquire(Use)
• Get TS, table, partition lock on first access to data

• Only lock what’s touched

• Uses the least restrictive lock needed

• Acquire(Allocate)
• Valid only at PLAN level, cannot use for BIND PACKAGE

• Get all TS, table, partition locks when the plan is allocated
• Ensures that all TS, table, partition locks are available at the start of 
the job

• Disables selective partition locking

• Uses the most restrictive lock needed

• Deprecated in V10

Bind Option - Release

• Release(Commit) – release table space, table, 
partition locks at commit

• Exception: Locks held across commit for cursor 
with hold

• Release(Deallocate) – release table space, 
table, partition locks when the plan completes.

• Has no effect on dynamic SQL unless
• Using KEEPDYNAMIC(YES), and subsystem 
parameter CACHEDYN=YES



Bind Options: Acquire & Release

Select from T1 with RR

Insert into T2

Commit

Select from T3

Select from T4 where month = ‘May’

Commit
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Acquire(Use) Release(Deallocate)
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Isolation

Greatest

Concurrency

Greatest

Stability

ISOLATION(UR) - Uncommitted reader

ISOLATION (CS) – Cursor Stability

ISOLATION (RS) – Read Stability

ISOLATION (RR) – Repeatable Read

SELECT AVG(SALARY) FROM EMPLOYEE_TABLE WITH UR

Isolation is the degree to which one transaction is isolated from other 

transactions

Can be specified 

• as bind option for a plan or package

• on an SQL statement



Isolation UR

• OK to read data that is not committed

• Does not acquire table space, table, partition, 

row or page locks.   Does need XML locks.

• Only use if application can tolerate uncommitted 

data
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Isolation RS
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Use and Keep Locks

• Specifies the lock state for the page or row lock

• Can specify SHARE, UPDATE or EXCLUSIVE

• Can be specified on the ISOLATION clause of a 
SELECT statement

• Only valid with RS and RR

SELECT * FROM T1 WITH RS

USE AND KEEP UPDATE LOCKS

Subsystem Parameters

• NUMLKUS: Locks per user
• Specifies the maximum number of row, page, LOB and XML locks a single 
application can hold concurrently for all table spaces.

• NUMLKTS: Locks per table space
• Specifies the maximum number of row, page, LOB and XML locks an application 
can hold at one time on a table or table space.

• RRULOCK: U-lock for RR/RS
• YES indicates the U locks are used instead of S locks when using cursor to fetch 
rows for update

• XLKUPDLT: x-lock for searched updates/deletes
• DB2 uses an X-lock on qualifying rows or pages during a searched update or delete

• EVALUNC: evaluate uncommitted
• Indicates whether predicate evaluation is to be allowed on uncommitted data of 
other transactions 

• For isolation(cs) and isolation(rs) only

• SKIPUNCI: skip uncommitted inserts
• whether statements are to ignore a row that was inserted by another transaction if 
the row has not been committed 

• For isolation(cs) or isolation(rs) and row level locking



Lock states used with isolations RS and RR

Cursor SELECT 

with FOR UPDATE

Non-cursor 

SELECT

DELETE and 

UPDATE

RRULOCK U U

USE AND KEEP 

LOCKS

S,U,X S,U,X

XLKUPDLT X

For USE AND KEEP LOCKS:

S – SHARE 

U – UPDATE

X - EXCLUSIVE

XLKUPDLT takes precedence over RRULOCK

USE AND KEEP takes precedence over RRULOCK

Monitoring Locking

• Catalog
• LOCKRULE column of SYSTABLESPACE gives the lock size for 
the table space

• LOCKMAX column of SYSTABLESPACE gives the maximum 
number of locks per user for the table or table space

• ISOLATION column of SYSPLAN and SYSPACKAGE

• RELEASE column of SYSPLAN and SYSPACKAGE

• CURRENTLYCOMMITTED column of SYSPLAN and 
SYSPACKAGE

• Display Database command
• With the LOCKS option, display which table spaces are locked and
in what lock state and duration

• Explain output
• TSLOCKMODE in PLAN_TABLE gives the table space lock to be 
used by the SQL statement



Monitoring Locking

• Traces

• IFCID 20 – lock summary

• IFCID 21 – lock detail

• IFCID 172 – deadlock trace 

• IFCID 196 – timeout trace

What’s new in locking in V9 & V10?
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Skip Locked Data (V9)

• Skip data that is incompatibly locked by another transaction

• Applies to SELECT, searched DELETE and searched 
UPDATE

• Must be ISO(CS) or ISO(RS)

• Must use row or page locks

1 AAAA

2 BBBB

3 CCCC

4 DDDD

5 EEEE

SELECT * FROM T1 SKIP LOCKED DATA;

Locksize row

All rows returned except row 3

Locksize page

1 AAAA

2 BBBB

3 CCCC

4 DDDD

5 EEEE

No rows returned

LOB locking improvements

Prior to V9 V9 & V10

Insert/Update X-lock LOB

Hold until commit

X-lock LOB Release 

when insert/update 

completes

Delete S-lock LOB

Hold until commit

No LOB locks

Select with RR, RS or 

CS

S-lock LOB

Hold until commit

No LOB locks

Select with UR S-lock LOB

Hold until commit

S-lock LOB Release lock 

immediately



XML locking

• V9 – XML data type 
introduced

• V10 – XML versioning

• XML data is stored in a 
separate table space

• XML table space is 
locked separately from 
the base table space

XML Table space

XML

Locking hierarchy

Data row

Base table XML table space

XML data

XML locking

V9 V10 (XML versioning)

Insert/Update X-lock XML

Hold until commit

X-lock XML

Hold until commit

Delete X-lock XML

Hold until commit

X-lock XML

Hold until commit

Select S-lock XML

Release lock on next 

fetch

No XML lock for 

ISO(CS), ISO(RS), 

ISO(RR).  S-lock for 

ISO(UR), if needed.



ACQUIRE(ALLOCATE) (V10)

• Deprecated in V10

• Goes hand-in-hand with the disallowing DBRMs bound 

into plans

• All plans and packages will be treated as ACQUIRE(USE)

BIND PLAN(PL147) PKLIST(PK01.D119746) ACQUIRE(ALLOCATE)

Subsystem Parameters

• NUMLKTS: Locks per table space

• Default changes from 1000 to 2000 (V10)

• RRULOCK: U-lock for RR/RS

• Default changes from NO to YES (V10)

• RELCURHL: release page/row locks for cursors defined 

WITH HOLD

• Deprecated in V9



Currently Committed (V10)

• Allows a query transaction to access the currently 

committed image of data if this query hits a row locked by 

any INSERT or DELETE

• Helps to avoid time-outs and waits for locks

• Universal Table space (UTS) only

• Isolation(CS) or isolation(RS)

• Page level or row level locking

• Cannot be used if updater holds a gross lock on the 

partition

Currently Committed and Uncommitted Insert

CREATE T1 (COL1 CHAR(1),

COL2 INT,

COL3 CHAR(1));

Transaction A:

INSERT INTO T1 VALUES ('D', 2, 'Y');  not committed

Transaction B:

SELECT * FROM T1 WHERE COL1 = 'D';

Transaction B finds that the row where COL1 = ‘D’ is locked.  With 

Currently Committed, it skips the row (just like zParm SKIPUNCI).  

No rows returned.

No waiting for a lock.



Currently Committed and
Uncommitted Delete

CREATE T1 (COL1 CHAR(1),

COL2 INT,

COL3 CHAR(1));

Transaction A:

DELETE FROM T1 WHERE COL1=‘D’;  not committed

Transaction B:

SELECT * FROM T1 WHERE COL1 = 'D';

Transaction B finds that the row where COL1 = ‘D’ is locked.  With 

Currently Committed, it determines that the delete is not committed. 

Returns the row.

No waiting for a lock.

Reader must be ISO(CS) Currentdata(No)

Where to specify Currently Committed

• As an attribute of a PREPARE statement
• USE CURRENTLY COMMITTED

• WAIT FOR OUTCOME

• As a option on BIND & REBIND PLAN, BIND & REBIND 
PACKAGE,  REBIND TRIGGER PACKAGE
• CONCURRENTACCESSRESOLUTION 

• USECURRENTLYCOMMITTED

• WAITFOROUTCOME

• As an option on CREATE & ALTER PROCEDURE, 
CREATE & ALTER FUNCTION
• CONCURRENT ACCESS RESOLUTION 

• USE CURRENTLY COMMITTED 

• WAIT FOR OUTCOME



Currently Committed and
Skip Uncommitted Insert

SKIPUNCI CONCURRENTACCESSRESOLUTION ACTION

YES USECURRENTLYCOMMITTED Skip uncommitted inserts

YES WAITFOROUTCOME Wait for COMMIT or ROLLBACK

YES Not specified Skip uncommitted inserts

NO USECURRENTLYCOMMITTED Skip uncommitted inserts

NO WAITFOROUTCOME Wait for COMMIT or ROLLBACK

NO Not specified Wait for COMMIT or ROLLBACK

Conclusion

• You need not do anything.  DB2 will lock for you.

• If you have concurrency issues such as time-outs, 

deadlocks, lots of suspensions, DB2 provides various 

tuning options.


