

BIG Connectivity and Mobility with WebSphere MQ

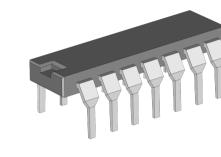
Session 13923 Wednesday 14th August 2013

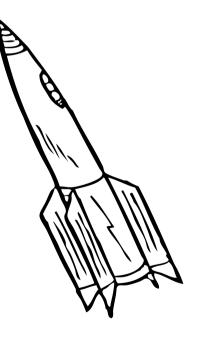
> Chris J Andrews IBM

Agenda

- Communication between Digital Devices
- MQTT
- WebSphere MQ Extended Reach (MQXR)
- MessageSight
- WebSphere MQ HTTP Bridge
- Live Demonstration of MQTT, MQXR and JavaScript

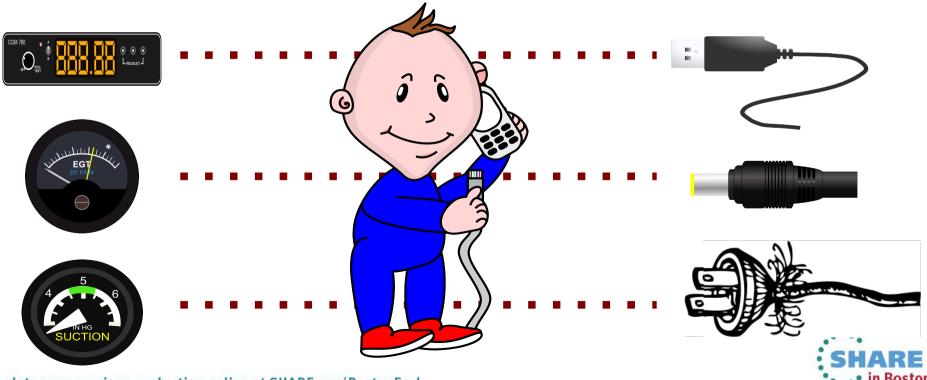
Embedded Digital Devices


Digital devices have been embedded into systems since the 1960s.


One of the earliest recorded uses was in the "Apollo Guidance Computer".

> The Inter-Continental Ballistic program of the 60s was responsible for a dramatic drop in the cost of Integrated Circuits.

For example, the 'Minuteman' missile program alone is claimed to have reduced the price of nand gate ICs to \$3 per unit, down from \$1000 at the start of the program.

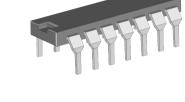

Universal Connectivity?

Until recently, common connectivity has not been high on the agenda!

For example, if you bought a sensor from manufacturer 'A', you plug it into a gauge also bought from manufacturer 'A'. The fittings and communication protocols were likely to be proprietry.

... And this has generally worked out fine.

Complete your sessions evaluation online at SHARE.org/BostonEval


Embedded and Mobile Devices

However things are rapidly changing. The proliferation of devices has risen dramatically in recent times:

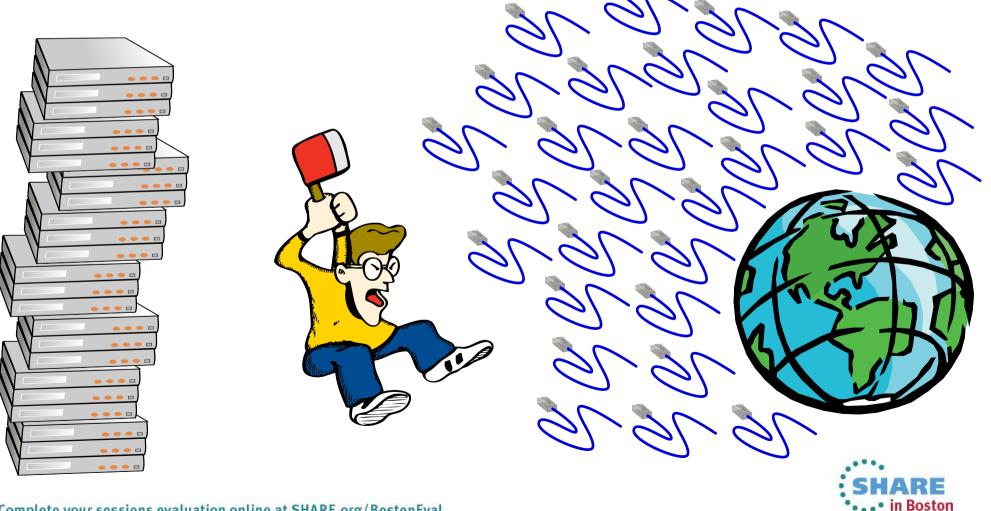
Popularisation of custom embedded circuitry

Mobile Phones / Tablets

• Appreciation by industry as to the possibilities of making data available to the user

The Internet of Things

Billions of smart devices **instrument** our world today


6

Estimated that by 2020, there will be 24 billion mobile devices

By 2025, this number is predicted to double to 50 billion.

Connecting Billions of Devices

It is simply not practical to attempt to connect billions of devices using different proprietry solutions! This type of connectivity does not scale.

Complete your sessions evaluation online at SHARE.org/BostonEval

7

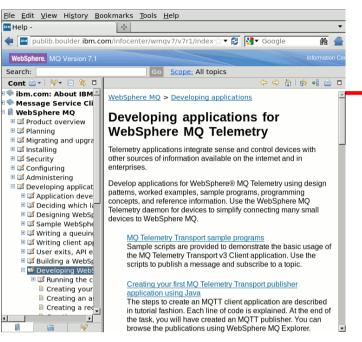
Connectivity, the Hardware Story

Thankfully, a small number of hardware standards have been granted mass popularity. For example:

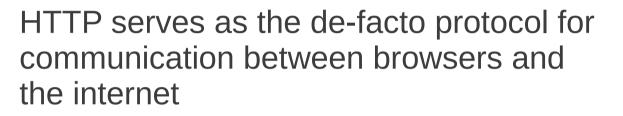
Universal Serial Bus (USB)

Wireless Communications, WiFi, Phone/Satellite comms (→ TCP/IPv4/v6)

The communication transport medium is more or less standarised. But what about the software protocols?



8



Internet Communication

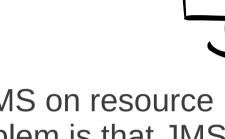
What protocol should machines use to communicate with each other?

A common Machine to Machine (M2M) protocol

Machine to Machine Communication

01001001

How about use an existing industry standard, such as the Java Message Service (JMS)?


No! There are several concerns with JMS on resource limited devices. However the main problem is that JMS is a Application Programming Interface – it makes no comment on the wire protocol itself.

What about HTTP then?

Client-Server request-response protocol, which is not optimised for:

- Intermittent Connectivity
- $\cdot\,$ High power consumption to account for server polling
- Massive scalability, millions of devices

10

Agenda

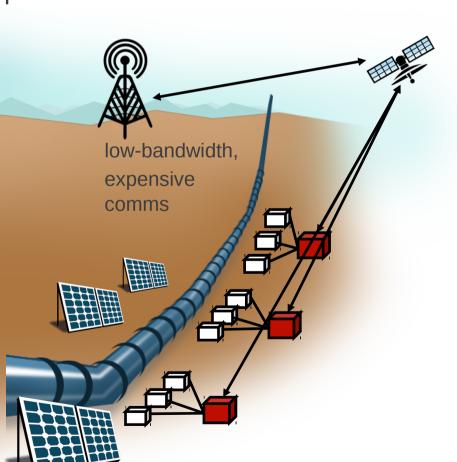
11

- Communication between Digital Devices
- MQTT
- WebSphere MQ Extended Reach (MQXR)
- MessageSight
- WebSphere MQ HTTP Bridge
- Live Demonstration of MQTT, MQXR and JavaScript

Complete your sessions evaluation online at SHARE.org/BostonEval

MQ Telemetry Transport (MQTT)

12


To save inventing a new protocol every time a new embedded device came along, a common protocol was needed.

MQTT is that protocol. It traces its roots back to 1999, where Dr Andy Stanford-Clark of IBM, and Arlen Nipper of Arcom (now Eurotech) devised the protocol.

Design goals of MQTT:

- Works over unreliable communication networks
- Minimal data overhead (low bandwidth)
- Capable of supporting large numbers of devices
- Simple to interface the data with the traditional IT world
- Simple to developers to write applications to use

MQ Telemetry Transport (MQTT)

- Expect and cater for frequent network disruption – built for *low bandwidth*, *high latency*, *unreliable*, *high cost* networks
- Expect that client applications may have very *limited resources* available.
- Publish/subscribe messaging paradigm as required by the majority of SCADA and sensor applications.
- Provide traditional messaging *qualities of* service where the environment allows.
- Published protocol for ease of adoption by device vendors and third-party client software.

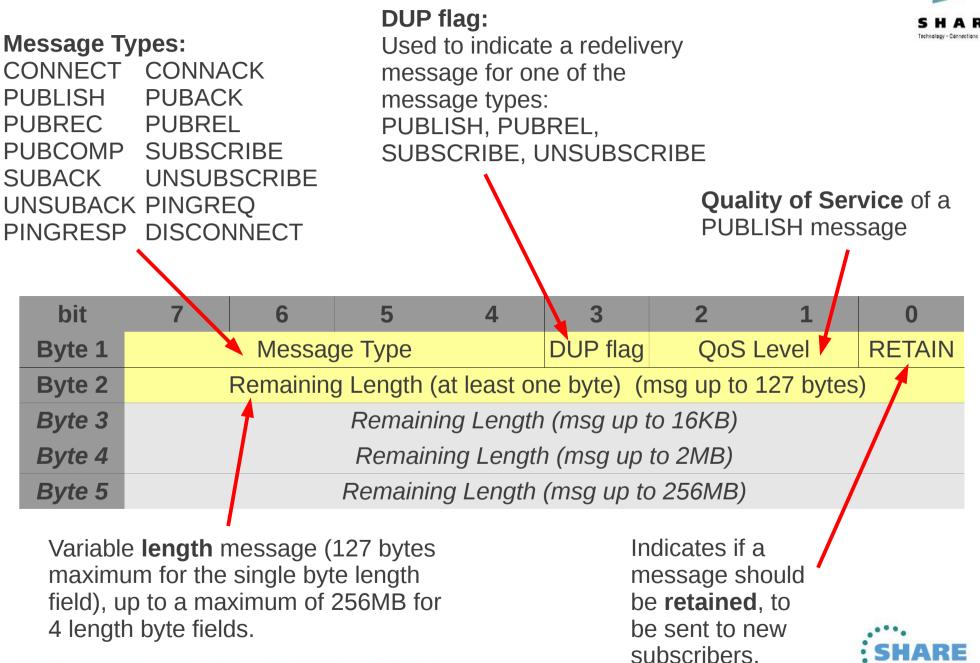
13

MQTT Header

14

MQTT Header could be as little as 2 bytes! Structure is:

bit	7	6	5	4	3	2	1	0
Byte 1	Message Type			DUP flag	QoS	Level	RETAIN	
Byte 2	Remaining Length (at least one byte)							


Contrast with WebSphere MQ MQMD header structure:

struct tag MOMD { MOCHAR4 Strucld; // Structure identifier MOLONG Version; // Structure version number MOLONG Report: // Options for report messages MQLONG MsgType; // Message type MOLONG Expiry; // Message lifetime MOLONG Feedback: // Feedback or reason code MQLONG Encoding; // Numeric encoding of message data MOLONG CodedCharSetId: // Character set identifier of message data MOCHAR8 Format: // Format name of message data MOLONG Priority; // Message priority MOLONG Persistence; // Message persistence MOBYTE24 Msgld; // Message identifier // Correlation identifier MOBYTE24 Correlld: MQLONG BackoutCount; // Backout counter MQCHAR48 ReplyToQ; // Name of reply queue // Name of reply queue manager MQCHAR48 ReplyToQMgr; MOCHAR12 UserIdentifier: // User identifier MOBYTE32 AccountingToken; // Accounting token MOCHAR32 ApplIdentityData: // Application data relating to identity MOLONG PutApplType; // Type of application that put the message // Name of application that put the message MOCHAR28 PutApplName; MQCHAR8 PutDate; // Date when message was put MOCHAR8 PutTime: // Time when message was put MQCHAR4 ApplOriginData; // Application data relating to origin // Group identifier MQBYTE24 GroupId; MQLONG MsgSeqNumber; // Sequence number of logical message within group MOLONG Offset; // Offset of data in physical message from start of logical message MOLONG MsgFlags;

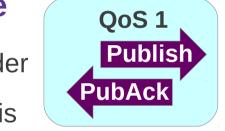
MQLONG MsgFlags; // Message flags MQLONG OriginalLength; // Length of original message }

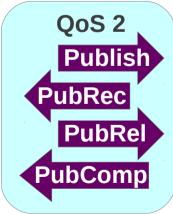
MQTT Header Structure

In Boston

QoS 0: At most once delivery (non-persistent)

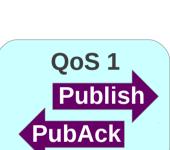
- No retry semantics are defined in the protocol.
- The méssage arrives either once or not at all.


MQTT Qualities of Service


QoS 1: At least once delivery (persistent, duplicate messages possible)

- Client sends message with Message ID in the message header
 Server acknowledges with a PUBACK control message
 Message resent with a DUP bit set If the PUBACK message is
- not seen

QoS 2: Exactly once delivery (persistent)


- Uses additional flows to ensure that message is not duplicated
- Server acknowledges with a PUBREC control message
- Client releases message with a PUBREL control message
- Server acknowledges completion with a PUBCOMP control message

QoS 0

Publis

MQTT Power Usage

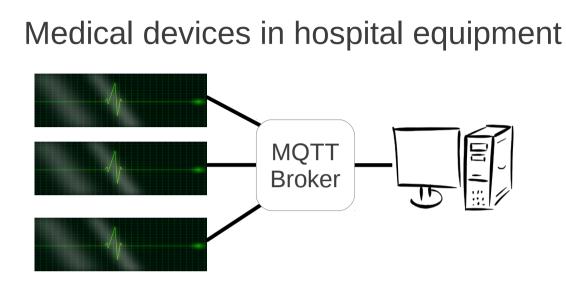
How does MQTT use power?

- Example using a HTC Android mobile phone

	% Battery / Hour		
Keep Alive (Seconds)	3G	Wifi	
60	0.77641278	0.0119021	
120	0.38884457	0.0062861	
240	0.15568461	0.00283991	
480	0.07792208	0.00134018	

Protocol allows tuning to suit devices

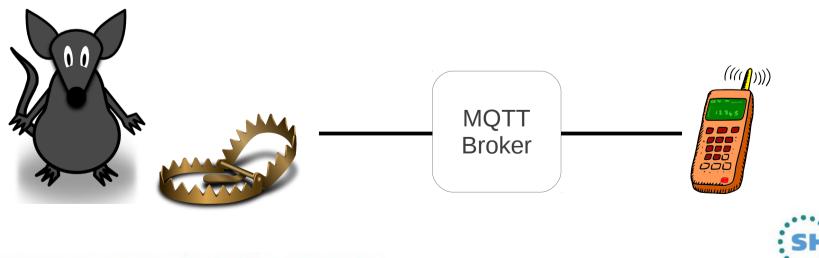
MQTT Data Usage


How does MQTT compare to HTTP for data usage?

Scenario	нттр	MQTT n3
1. Getting a single piece of data from the server	126 bytes	69 bytes
2. Putting a single piece of data to the serve	141 bytes	47 bytes
3. Getting 100 pieces of data from the server	12600 bytes	2445 bytes
4. Putting 100 pieces of data to the server	14100 bytes	2126 bytes

Very favourably – of the order of a 5x saving!

MQTT Sample Usage Applications


Boston

Facebook Messenger

Low latency (milliseconds) Low battery usage Uses data sparingly Implemented within weeks

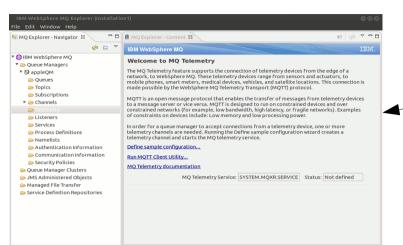
The Andy Stanford-Clark Mouse Trap State Advisor

Agenda

- Communication between Digital Devices
- MQTT
- WebSphere MQ Extended Reach (MQXR)
- MessageSight
- WebSphere MQ HTTP Bridge
- Live Demonstration of MQTT, MQXR and JavaScript

WebSphere MQ Telemetry

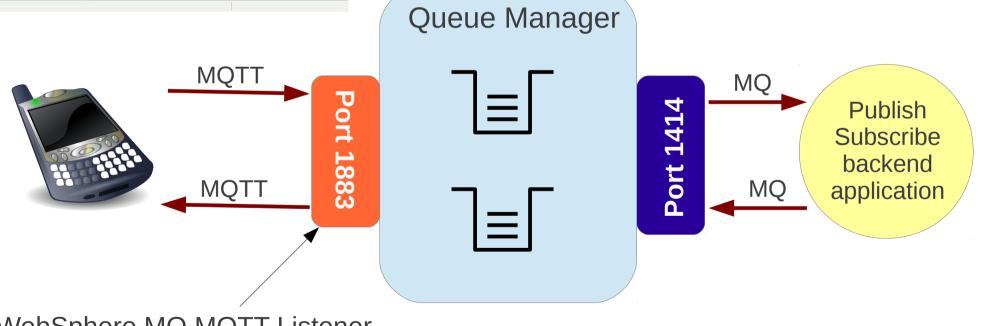
Supplied as a component of WebSphere MQ V7.1 and v7.5 on distributed platforms, under the component name "**WebSphere MQ Extended Reach**" (or MQXR).


MQXR brings MQTT protocol functionality to WebSphere MQ!

WebSphere. software

- Highly scaleable : tested with 200,000+ clients
- Security : SSL channels, JAAS authentication, WMQ OAM
- Ships with reference Java and C clients
 - Small footprint clients
 - other APIs and implementations of MQTT available via 3rd parties

WebSphere MQ Telemetry

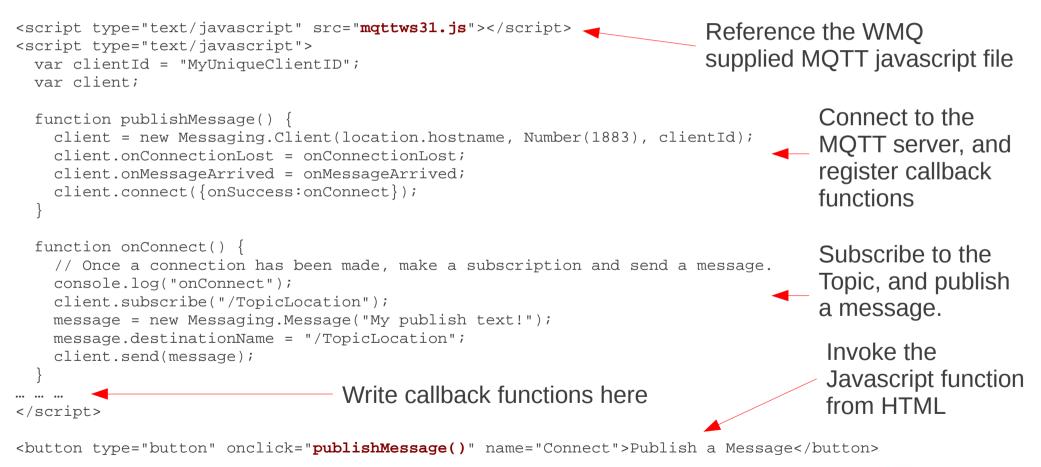


22

Use WebSphere MQ Explorer to administer the WebSphere MQ Telemetry service – define Channels, start and stop the MQTT service.

Alternatively, it can be configured through 'runmqsc' commands.

WebSphere MQ MQTT Listener IANA registered ports: 1883, 8883 for MQTT over SSH



MQTT through Javascript

As of WebSphere MQ 7.5.0.1, the WebSphere MQ MQXR component has support for MQTT v3.1 protocol over WebSockets.

This enables the use of MQTT through a WebSocket supporting web browser, meaning that MQTT can be used without preinstalling any software on a browser equipped device.

WebSphere MQ Client Pack for Mobile - MA9B

Released in 1Q 2013, the "Mobile Messaging and M2M Client Pack" provides the following capabilities:

 Java implementation of the MQTT v3 protocol ("Paho" open source project client)

Sample applications for Android

- C client implementation of the MQTT v3 client, compiled for Windows and Linux (x86) systems
- C client implementation of the MQTT v3 client, provided in source code form for iOS

WebSphere MQ Telemetry – Further Reading

MQTT homepage: http://mqtt.org

MQTT Specification http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html

WebSphere MQ and MQ Telemetry http://www-01.ibm.com/software/integration/wmq/

Mobile Messaging & M2M Client Pack http://www.ibm.com/developerworks/mydeveloperworks/blogs/c565c720-fe84-4f63-873f-607

MQTT: the Smarter Planet Protocol http://andypiper.co.uk/2010/08/05/mqtt-the-smarter-planet-protocol/

Lotus Expeditor (micro broker) http://www.ibm.com/software/lotus/products/expeditor/

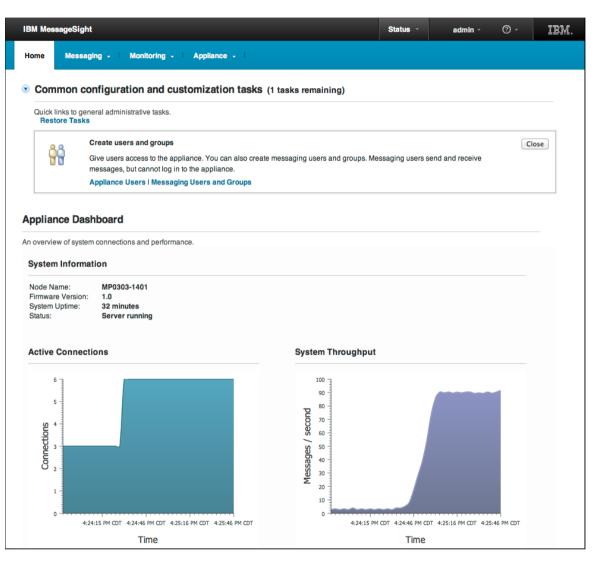
Agenda

26

- Communication between Digital Devices
- MQTT
- WebSphere MQ Extended Reach (MQXR)
- MessageSight
- WebSphere MQ HTTP Bridge
- Live Demonstration of MQTT, MQXR and JavaScript

IBM MessageSight, Big Connectivity in a Box

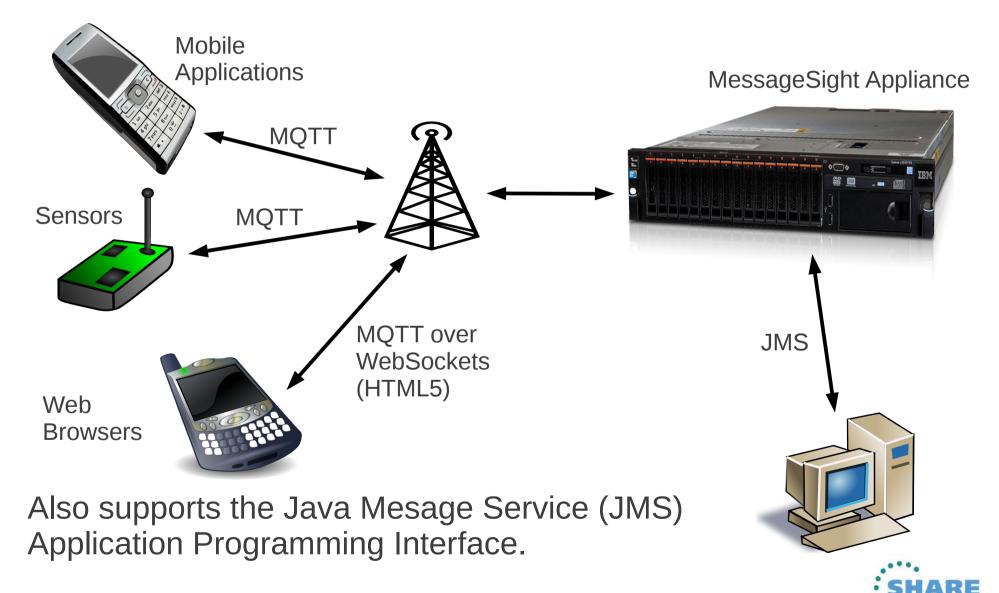
A secure messaging server appliance optimised to meet the demands of massive scale messaging of machine-2-machine and mobile use cases.

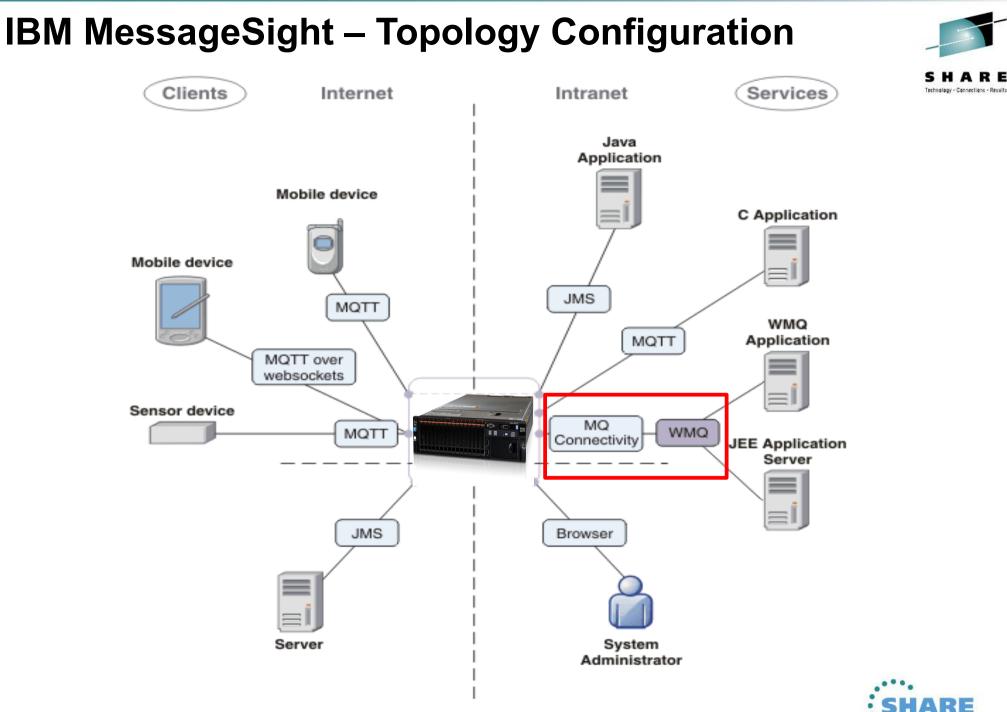

How massive? One applicance can achieve:

- · 1 million concurrent connections
- · 13 million non-persistent msg/sec
- · 400K persistent msg/sec

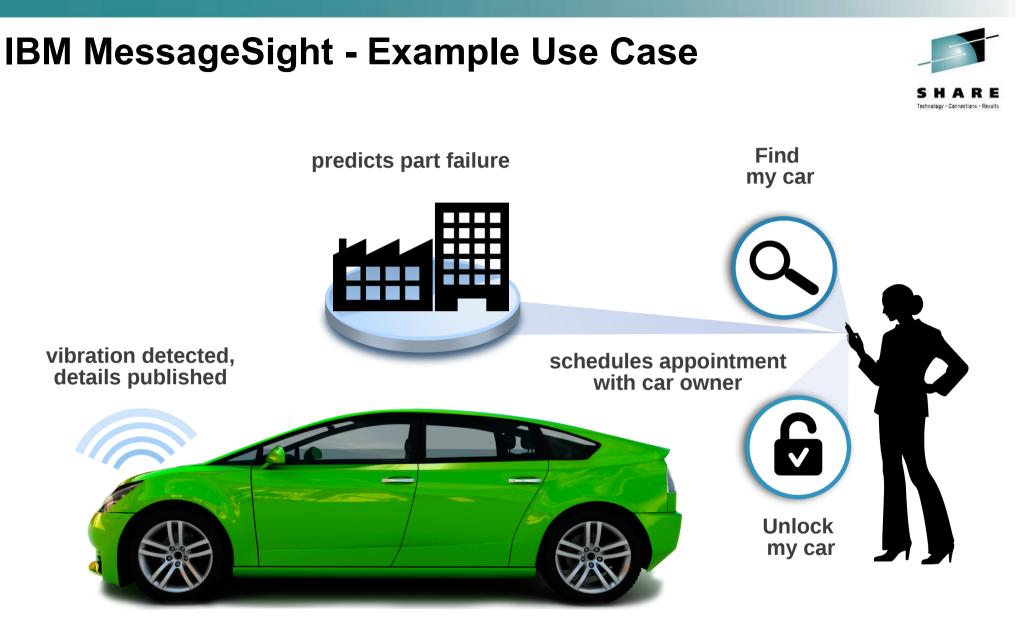
IBM MessageSight – East of Use

- Up and running in 30 minutes
- Task oriented HTTP based UI guides administrator through the first steps
- Simple and scalable management through policies



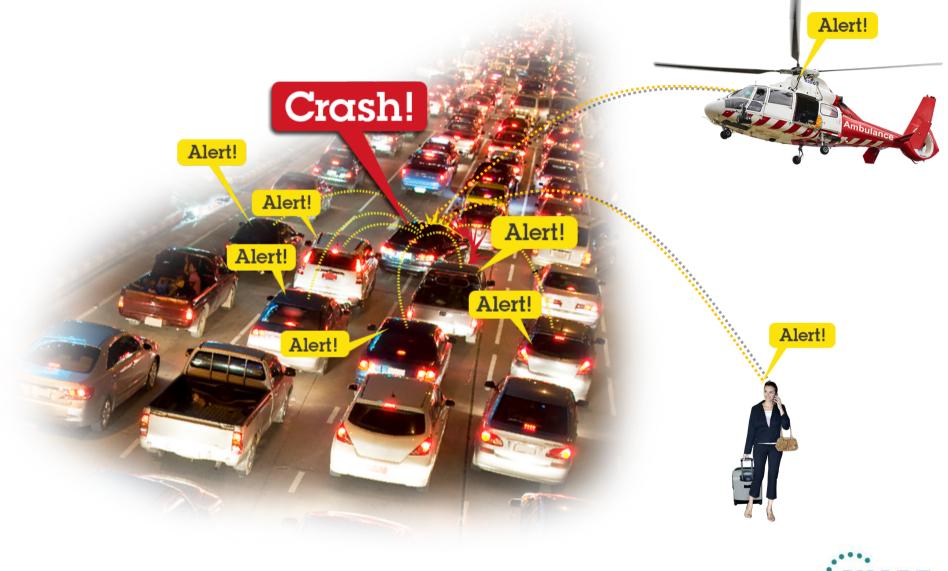

IBM MessageSight – Client Access

Utilises the MQTT messaging protocol



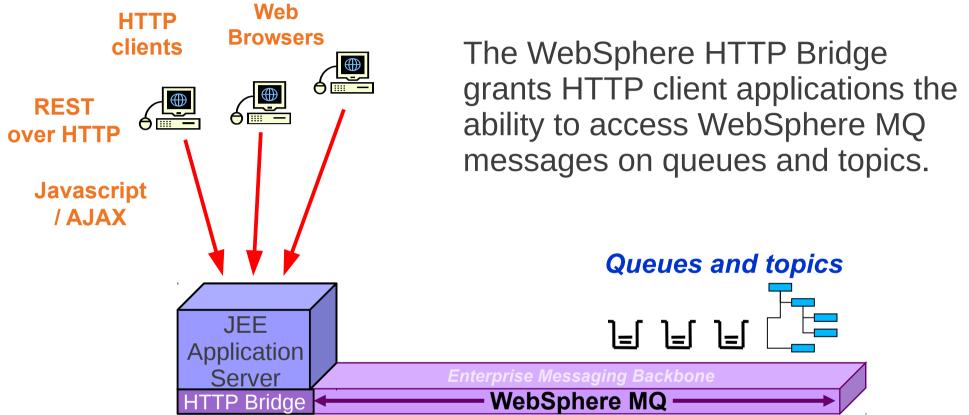
in Boston

• • • in Boston


Car connected to MessageSight via mobile network

31

IBM MessageSight – Example Use Case


Agenda

- Communication between Digital Devices
- MQTT
- WebSphere MQ Extended Reach (MQXR)
- MessageSight
- WebSphere MQ HTTP Bridge
- Live Demonstration of MQTT, MQXR and JavaScript

The HTTP Bridge comprises of a JEE Web application (servlet), which is to be installed into a JEE Application server in order to be used.

The WebSphere MQ HTTP Bridge provides two key benefits:

1) Zero Client Footprint.

No WebSphere MQ MQI client libraries are required on the application host. In addition, *any* platform which supports HTTP can access WebSphere MQ data.

Image: Constrained state Image: Constrained

2) Simplifies access to WebSphere MQ messages from browser based internet applications.

No WebSphere MQ programming knowledge is required to program the client applications

How does data access work from HTTP?

HTTP Request	Result
POST	Puts a message to a queue or topic (MQPUT)
GET	Browses the first message on the queue (MQGET with browse)
DELETE	Receives a message from the queue (destructive MQGET), or creates a non-durable subscription from a topic
PUT	Not used

The HTTP request defines the location and name of the the queue or topic access point:

POST /msg/queue/myQueue/ HTTP/1.1
Host: myhost.mydomain

Example 1: **MQPUT**

Put a messsage to a queue, with message body containing a string message:

```
POST /msg/queue/myQueue/ HTTP/1.1
Host: myhost.mydomain
Content-Type: text/plain
x-msg-correlID: 1234567890
Content-Length: 60
Here is my message body that is posted on the queue.
```

This HTTP POST response is of the form:

HTTP/1.1 200 OK Date: Wed, 2 Jan 2007 22:38:34 GMT Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1 Content-Length: 0

Example 2: MQGET

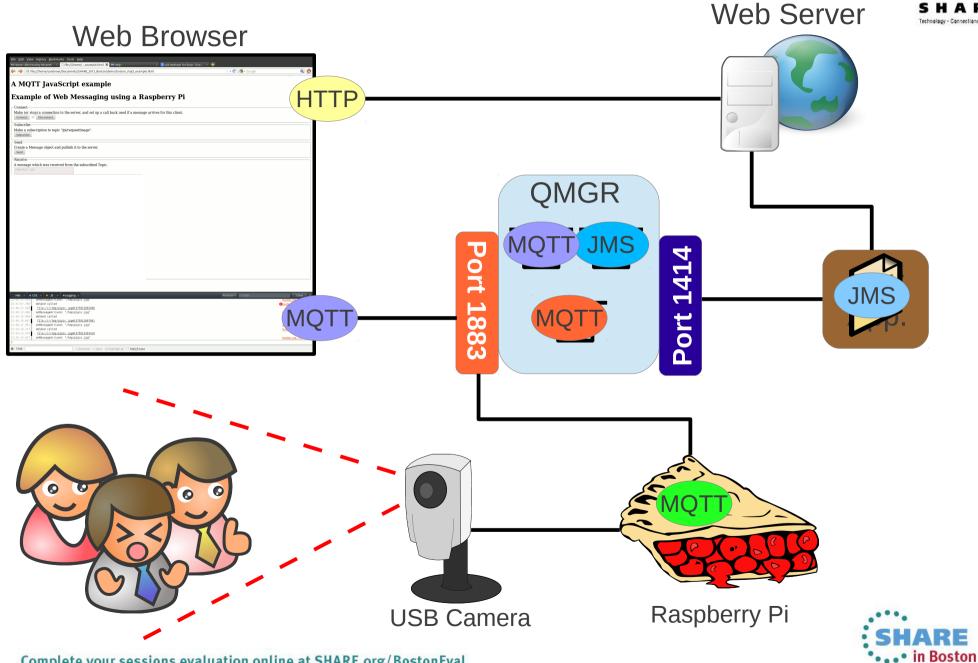
Destructively receive a message from a queue, waiting a maximum of 10 seconds:

DELETE /msg/queue/myQueue/ HTTP/1.1
Host: myhost.mydomain
x-msg-wait: 10
x-msg-require-headers: correlID

This HTTP DELETE response is of the form:

```
HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1
Content-Length: 60
Content-Type: text/plain; charset=utf-8
x-msg-correlId: 1234567890
Here is my message body from the queue.
```


Agenda



- Communication between Digital Devices
- MQTT
- WebSphere MQ Extended Reach (MQXR)
- MessageSight
- WebSphere MQ HTTP Bridge
- Live Demonstration of MQTT, MQXR and JavaScript

Mobile MQ Live Demonstration!

This was session 13923 - The rest of the week

· Connections · Results

	Monday	Tuesday	Wednesday	Thursday	Friday	S H Technology · C
08:00				Extending IBM WebSphere MQ and WebSphere Message Broker to the Cloud	CICS and WMQ - The Resurrection of Useful	
09:30	Introduction to MQ				Can I Consolidate My Qu Managers and Brokers?	ieue
11:00		MQ on z/OS - Vivisection	Hands-on Lab for MQ - take your pick!	MOBILE connectivity with Broker	Migration and Maintenan the Necessary Evil. Into t Dark for MQ and Messag Broker	the
12:15						
1:30	MQ Parallel Sysplex Exploitation, Getting the Best Availability From MQ on z/OS by Using Shared Queues	What's New in the MQ Family	MQ Clustering - The basics, advances and what's new	Using IBM WebSphere Application Server and IBM WebSphere MQ Together		
3:00	First Steps With Message Broker: Application Integration for the Messy	What's New in Message Broker	BIG Connectivity with mobile MQ	WebSphere MQ CHINIT Internals		
4:30	What's available in MQ and Broker for high availability and disaster recovery?	The Dark Side of Monitoring MQ - SMF 115 and 116 Record Reading and Interpretation	MQ & DB2 – MQ Verbs in DB2 & Q-Replication performance	Big Data Sharing with the Cloud - WebSphere eXtreme Scale and IBM Integration Bus Integration		
6:00				WebSphere MQ Channel Authentication Records		

Copyright and Trademarks

© IBM Corporation 2013. All Rights Reserved.

IBM, the IBM logo, ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

