
BIG Connectivity and
Mobility with WebSphere MQ

Session 13923
Wednesday 14th August 2013

Chris J Andrews
IBM

2

Agenda

● Communication between Digital Devices

● MQTT

● WebSphere MQ Extended Reach (MQXR)

● MessageSight

● WebSphere MQ HTTP Bridge

● Live Demonstration of MQTT, MQXR and JavaScript

3

Embedded Digital Devices

Digital devices have been embedded into systems since the 1960s.

One of the earliest
recorded uses was in
the “Apollo Guidance
Computer”.

The Inter-Continental Ballistic program
of the 60s was responsible for a
dramatic drop in the cost of Integrated
Circuits.

For example, the 'Minuteman' missile
program alone is claimed to have
reduced the price of nand gate ICs to $3
per unit, down from $1000 at the start of
the program.

4

Universal Connectivity?
Until recently, common connectivity has not been high on the
agenda!

For example, if you bought a sensor from manufacturer 'A', you
plug it into a gauge also bought from manufacturer 'A'. The
fittings and communication protocols were likely to be proprietry.

… And this has generally worked out fine.

5

Embedded and Mobile Devices

However things are rapidly changing. The proliferation of
devices has risen dramatically in recent times:

● Popularisation of custom embedded circuitry

● Appreciation by industry as to the possibilities of
making data available to the user

● Mobile Phones / Tablets

6

The Internet of Things

Billions of smart
devices instrument
our world today

Estimated that by
2020, there will be 24
billion mobile devices

By 2025, this number
is predicted to double
to 50 billion.

7

Connecting Billions of Devices
It is simply not practical to attempt to connect billions of
devices using different proprietry solutions! This type of
connectivity does not scale.

8

Connectivity, the Hardware Story

Thankfully, a small number of hardware standards have been
granted mass popularity. For example:

Universal Serial Bus (USB)

Ethernet (→ TCP/IPv4/v6)

Wireless Communications,
WiFi, Phone/Satellite comms (→ TCP/IPv4/v6)

The communication transport medium is more or less
standarised. But what about the software protocols?

9

Internet Communication

WWW

HTTP serves as the de-facto protocol for
communication between browsers and
the internet

HTTP

What protocol should machines
use to communicate with each
other?

A common Machine to Machine
(M2M) protocol

Internet of Things

?

10

Machine to Machine Communication
How about use an existing industry standard, such
as the Java Message Service (JMS)?

01001001

No! There are several concerns with JMS on resource
limited devices. However the main problem is that JMS
is a Application Programming Interface – it makes no
comment on the wire protocol itself.

Client-Server request-response protocol, which is not
optimised for:
• Intermittent Connectivity
• High power consumption to account for server polling
• Massive scalability, millions of devices

What about HTTP then?

H
T

T
P

11

Agenda

● Communication between Digital Devices

● MQTT

● WebSphere MQ Extended Reach (MQXR)

● MessageSight

● WebSphere MQ HTTP Bridge

● Live Demonstration of MQTT, MQXR and JavaScript

12

MQ Telemetry Transport (MQTT)
To save inventing a new protocol every time a new embedded device came
along, a common protocol was needed.

MQTT is that protocol. It traces its roots back to 1999, where Dr Andy
Stanford-Clark of IBM, and Arlen Nipper of Arcom (now Eurotech) devised the
protocol.

Design goals of MQTT:

● Works over unreliable communication
networks

● Minimal data overhead (low bandwidth)

● Capable of supporting large numbers of
devices

● Simple to interface the data with the traditional
IT world

● Simple to developers to write applications to use

low-bandwidth,

expensive
comms

13

MQ Telemetry Transport (MQTT)

■ Expect and cater for frequent network
disruption – built for low bandwidth, high
latency, unreliable, high cost networks

■ Expect that client applications may have
very limited resources available.

■ Publish/subscribe messaging paradigm
as required by the majority of SCADA and
sensor applications.

■ Provide traditional messaging qualities of
service where the environment allows.

■ Published protocol for ease of adoption
by device vendors and third-party client
software.

14

MQTT Header

bit 7 6 5 4 3 2 1 0

Byte 1 Message Type DUP flag QoS Level RETAIN

Byte 2 Remaining Length (at least one byte)

MQTT Header could be as little as 2 bytes! Structure is:

Contrast with WebSphere MQ MQMD header structure:
 struct tag MQMD { MQCHAR4 StrucId; // Structure identifier
 MQLONG Version; // Structure version number
 MQLONG Report; // Options for report messages
 MQLONG MsgType; // Message type
 MQLONG Expiry; // Message lifetime
 MQLONG Feedback; // Feedback or reason code
 MQLONG Encoding; // Numeric encoding of message data
 MQLONG CodedCharSetId; // Character set identifier of message data
 MQCHAR8 Format; // Format name of message data
 MQLONG Priority; // Message priority
 MQLONG Persistence; // Message persistence
 MQBYTE24 MsgId; // Message identifier
 MQBYTE24 CorrelId; // Correlation identifier
 MQLONG BackoutCount; // Backout counter
 MQCHAR48 ReplyToQ; // Name of reply queue
 MQCHAR48 ReplyToQMgr; // Name of reply queue manager
 MQCHAR12 UserIdentifier; // User identifier
 MQBYTE32 AccountingToken; // Accounting token
 MQCHAR32 ApplIdentityData; // Application data relating to identity
 MQLONG PutApplType; // Type of application that put the message
 MQCHAR28 PutApplName; // Name of application that put the message
 MQCHAR8 PutDate; // Date when message was put
 MQCHAR8 PutTime; // Time when message was put
 MQCHAR4 ApplOriginData; // Application data relating to origin
 MQBYTE24 GroupId; // Group identifier
 MQLONG MsgSeqNumber; // Sequence number of logical message within group
 MQLONG Offset; // Offset of data in physical message from start of logical message
 MQLONG MsgFlags; // Message flags
 MQLONG OriginalLength; // Length of original message }

15

MQTT Header Structure

bit 7 6 5 4 3 2 1 0

Byte 1 Message Type DUP flag QoS Level RETAIN

Byte 2 Remaining Length (at least one byte) (msg up to 127 bytes)

Byte 3 Remaining Length (msg up to 16KB)

Byte 4 Remaining Length (msg up to 2MB)

Byte 5 Remaining Length (msg up to 256MB)

Message Types:
CONNECT CONNACK
PUBLISH PUBACK
PUBREC PUBREL
PUBCOMP SUBSCRIBE
SUBACK UNSUBSCRIBE
UNSUBACK PINGREQ
PINGRESP DISCONNECT

DUP flag:
Used to indicate a redelivery
message for one of the
message types:
PUBLISH, PUBREL,
SUBSCRIBE, UNSUBSCRIBE

Quality of Service of a
PUBLISH message

Indicates if a
message should
be retained, to
be sent to new
subscribers.

Variable length message (127 bytes
maximum for the single byte length
field), up to a maximum of 256MB for
4 length byte fields.

16

MQTT Qualities of Service

QoS 0: At most once delivery (non-persistent)
– No retry semantics are defined in the protocol.
– The message arrives either once or not at all. Publish

QoS 0

Publish

QoS 1

PubAck

QoS 1: At least once delivery (persistent, duplicate
 messages possible)

– Client sends message with Message ID in the message header
– Server acknowledges with a PUBACK control message
– Message resent with a DUP bit set If the PUBACK message is

not seen

QoS 2: Exactly once delivery (persistent)
– Uses additional flows to ensure that message is not duplicated
– Server acknowledges with a PUBREC control message
– Client releases message with a PUBREL control message
– Server acknowledges completion with a PUBCOMP control

message

Publish

QoS 2

PubRec

PubRel

PubComp

17

How does MQTT use power?

– Example using a HTC Android mobile phone

Protocol allows tuning to suit devices

MQTT Power Usage

18

MQTT Data Usage

How does MQTT compare to HTTP for data usage?

Very favourably – of the order of a 5x saving!

19

MQTT Sample Usage Applications

Medical devices in hospital equipment

MQTT
Broker

Facebook Messenger

Low latency (milliseconds)
Low battery usage
Uses data sparingly
Implemented within weeks

MQTT
Broker

The Andy Stanford-Clark Mouse Trap State Advisor

20

Agenda

● Communication between Digital Devices

● MQTT

● WebSphere MQ Extended Reach (MQXR)

● MessageSight

● WebSphere MQ HTTP Bridge

● Live Demonstration of MQTT, MQXR and JavaScript

21

WebSphere MQ Telemetry

Supplied as a component of WebSphere MQ V7.1 and v7.5 on
distributed platforms, under the component name “WebSphere
MQ Extended Reach” (or MQXR).

MQXR brings MQTT protocol functionality to WebSphere MQ!

● Highly scaleable : tested with 200,000+ clients
● Security : SSL channels, JAAS authentication, WMQ OAM
● Ships with reference Java and C clients

– Small footprint clients
– other APIs and implementations of MQTT available via 3rd

parties

22

WebSphere MQ Telemetry

Publish
Subscribe
backend

application

Queue Manager

P
o

rt
 1

4
14

WebSphere MQ MQTT Listener
IANA registered ports:
1883, 8883 for MQTT over SSH

P
o

rt 18
8

3

MQTT

MQTT

MQ

MQ

Use WebSphere MQ Explorer to
administer the WebSphere MQ
Telemetry service – define Channels,
start and stop the MQTT service.

Alternatively, it can be configured
through 'runmqsc' commands.

23

MQTT through Javascript
As of WebSphere MQ 7.5.0.1, the WebSphere MQ MQXR component has support
for MQTT v3.1 protocol over WebSockets.

This enables the use of MQTT through a WebSocket supporting web browser,
meaning that MQTT can be used without preinstalling any software on a browser
equipped device.

<script type="text/javascript" src="mqttws31.js"></script>
<script type="text/javascript">
 var clientId = "MyUniqueClientID";
 var client;

 function publishMessage() {
 client = new Messaging.Client(location.hostname, Number(1883), clientId);
 client.onConnectionLost = onConnectionLost;
 client.onMessageArrived = onMessageArrived;
 client.connect({onSuccess:onConnect});
 }

 function onConnect() {
 // Once a connection has been made, make a subscription and send a message.
 console.log("onConnect");
 client.subscribe("/TopicLocation");
 message = new Messaging.Message("My publish text!");
 message.destinationName = "/TopicLocation";
 client.send(message);
 }
… … …
</script>

<button type="button" onclick="publishMessage()" name="Connect">Publish a Message</button>

Reference the WMQ
supplied MQTT javascript file

Connect to the
MQTT server, and
register callback
functions

Subscribe to the
Topic, and publish
a message.

Invoke the
Javascript function
from HTMLWrite callback functions here

24

WebSphere MQ Client Pack for Mobile - MA9B

Released in 1Q 2013, the “Mobile Messaging and M2M Client
Pack” provides the following capabilities:

• Java implementation of the MQTT v3 protocol (“Paho” open
source project client)

Sample applications for Android

• C client implementation of the MQTT v3 client, compiled for
Windows and Linux (x86) systems

• C client implementation of the MQTT v3 client, provided in
source code form for iOS

25

WebSphere MQ Telemetry – Further Reading

MQTT homepage:
 http://mqtt.org

MQTT Specification
 http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html

WebSphere MQ and MQ Telemetry
 http://www-01.ibm.com/software/integration/wmq/

Mobile Messaging & M2M Client Pack
 http://www.ibm.com/developerworks/mydeveloperworks/blogs/c565c720-fe84-4f63-873f-607d87787327/entry/download

MQTT: the Smarter Planet Protocol
 http://andypiper.co.uk/2010/08/05/mqtt-the-smarter-planet-protocol/

Lotus Expeditor (micro broker)
 http://www.ibm.com/software/lotus/products/expeditor/

http://mqtt.org/
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html
http://www-01.ibm.com/software/integration/wmq/
http://www.ibm.com/developerworks/mydeveloperworks/blogs/c565c720-fe84-4f63-873f-607d87787327/entry/download
http://andypiper.co.uk/2010/08/05/mqtt-the-smarter-planet-protocol/
http://www.ibm.com/software/lotus/products/expeditor/

26

Agenda

● Communication between Digital Devices

● MQTT

● WebSphere MQ Extended Reach (MQXR)

● MessageSight

● WebSphere MQ HTTP Bridge

● Live Demonstration of MQTT, MQXR and JavaScript

27

IBM MessageSight, Big Connectivity in a Box

A secure messaging server appliance optimised to meet the
demands of massive scale messaging of machine-2-machine
and mobile use cases.

How massive? One applicance can achieve:

• 1 million concurrent connections
• 13 million non-persistent msg/sec
• 400K persistent msg/sec

28

IBM MessageSight – East of Use

● Up and running in 30
minutes

● Task oriented HTTP
based UI guides
administrator through
the first steps

● Simple and scalable
management through
policies

29

IBM MessageSight – Client Access

Utilises the MQTT messaging protocol

MQTT

MQTT

MQTT over
WebSockets
(HTML5)

Also supports the Java Mesage Service (JMS)
Application Programming Interface.

JMS

Sensors

Mobile
Applications

Web
Browsers

MessageSight Appliance

30

IBM MessageSight – Topology Configuration

31

IBM MessageSight - Example Use Case

Car connected to MessageSight via mobile network

vibration detected,
details published

Unlock
my car

schedules appointment
with car owner

Find
my car

predicts part failure

32

IBM MessageSight – Example Use Case

33

Agenda

● Communication between Digital Devices

● MQTT

● WebSphere MQ Extended Reach (MQXR)

● MessageSight

● WebSphere MQ HTTP Bridge

● Live Demonstration of MQTT, MQXR and JavaScript

34

WebSphere MQ HTTP Bridge

WebSphere MQ

JEE
Application

Server
HTTP Bridge

Enterprise Messaging Backbone

Queues and topics

Web
Browsers

REST
over HTTP

HTTP
clients

Javascript
/ AJAX

The WebSphere HTTP Bridge
grants HTTP client applications the
ability to access WebSphere MQ
messages on queues and topics.

The HTTP Bridge comprises of a JEE Web application (servlet),
which is to be installed into a JEE Application server in order to be
used.

35

WebSphere MQ HTTP Bridge

The WebSphere MQ HTTP Bridge provides two key benefits:

1) Zero Client Footprint.
 No WebSphere MQ MQI client libraries are required on the application host.
 In addition, any platform which supports HTTP can access WebSphere MQ data.

2) Simplifies access to WebSphere MQ messages from browser based internet
 applications.
 No WebSphere MQ programming knowledge is required to program the client
 applications

Queue

36

WebSphere MQ HTTP Bridge

 HTTP Request Result

 POST Puts a message to a queue or topic (MQPUT)

 GET Browses the first message on the queue (MQGET with browse)

 DELETE Receives a message from the queue (destructive MQGET), or
 creates a non-durable subscription from a topic

 PUT Not used

How does data access work from HTTP?

The HTTP request defines the location and name of the the queue or
topic access point:

POST /msg/queue/myQueue/ HTTP/1.1
Host: myhost.mydomain

37

WebSphere MQ HTTP Bridge

Example 1: MQPUT
Put a messsage to a queue, with message body containing a string message:

POST /msg/queue/myQueue/ HTTP/1.1
Host: myhost.mydomain
Content­Type: text/plain
x­msg­correlID: 1234567890
Content­Length: 60

Here is my message body that is posted on the queue.

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache­Coyote/1.1 WMQ­HTTP/1.1 JEE­Bridge/1.1
Content­Length: 0

This HTTP POST response is of the form:

38

WebSphere MQ HTTP Bridge
Example 2: MQGET
Destructively receive a message from a queue, waiting a maximum of 10 seconds:

DELETE /msg/queue/myQueue/ HTTP/1.1
Host: myhost.mydomain
x­msg­wait: 10
x­msg­require­headers: correlID

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache­Coyote/1.1 WMQ­HTTP/1.1 JEE­Bridge/1.1
Content­Length: 60
Content­Type: text/plain; charset=utf­8
x­msg­correlId: 1234567890

Here is my message body from the queue.

This HTTP DELETE response is of the form:

39

Agenda

● Communication between Digital Devices

● MQTT

● WebSphere MQ Extended Reach (MQXR)

● MessageSight

● WebSphere MQ HTTP Bridge

● Live Demonstration of MQTT, MQXR and JavaScript

40

Mobile MQ Live Demonstration!

QMGR

P
o

rt
 1

41
4

Web Browser

Raspberry PiUSB Camera

P
o

rt 1
8

83

Web Server

JMS
App.

HTTP

MQTT MQTT

MQTT

JMS

JMS

MQTT

41

This was session 13923 - The rest of the week ……

Monday Tuesday Wednesday Thursday Friday

08:00 Extending IBM WebSphere
MQ and WebSphere
Message Broker to the Cloud

CICS and WMQ - The
Resurrection of Useful

09:30 Introduction to MQ Can I Consolidate My Queue
Managers and Brokers?

11:00 MQ on z/OS - Vivisection Hands-on Lab for MQ - take
your pick!

MOBILE connectivity with
Broker

Migration and Maintenance,
the Necessary Evil. Into the
Dark for MQ and Message
Broker

12:15

1:30 MQ Parallel Sysplex
Exploitation, Getting the Best
Availability From MQ on
z/OS by Using Shared
Queues

What’s New in the MQ
Family

MQ Clustering - The basics,
advances and what's new

Using IBM WebSphere
Application Server and IBM
WebSphere MQ Together

3:00 First Steps With Message
Broker: Application
Integration for the Messy

What's New in Message
Broker

BIG Connectivity with
mobile MQ

WebSphere MQ CHINIT
Internals

4:30 What's available in MQ and
Broker for high availability
and disaster recovery?

The Dark Side of Monitoring
MQ - SMF 115 and 116
Record Reading and
Interpretation

MQ & DB2 – MQ Verbs in
DB2 & Q-Replication
performance

Big Data Sharing with the
Cloud - WebSphere eXtreme
Scale and IBM Integration
Bus Integration

6:00 WebSphere MQ Channel
Authentication Records

42

43

© IBM Corporation 2013. All Rights Reserved.

IBM, the IBM logo, ibm.com are trademarks or registered trademarks of International

Business Machines Corp., registered in many jurisdictions worldwide. Other product

and service names might be trademarks of IBM or other companies. A current list of

IBM trademarks is available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

Copyright and Trademarks

