



## Universal Storage Consistency of DASD and Virtual Tape

Jim Erdahl U.S.Bank

August, 14, 2013 Session Number 13848







### **AGENDA**

- Context mainframe tape and DLm
- Motivation for DLm8000
- DLm8000 implementation
- GDDR automation for DLm8000





### Connotation of "tape"

- Tape no longer refers to physical tape media
- A different Tier of Storage (non-SMS)
- Characteristics
  - Serial access
  - Sequential stream of data
  - Special catalog and retentions controls (CA-1)
  - Lower cost than DASD
  - Limited number of drives (256 per VTE)
  - "No" space allocation constructs

(5GB x 255 volumes = 1,275GB of compressed data)



## Characterization of mainframe tape data



- Archive / Retrieval
- Operational files
- Backup / Recovery

#### Profile at US Bank

- At least 60% of overall tape data is archive, including HSM ML2, CA View reports, and CMOD statements / images; this data is retrieved extensively
- No more than 25% of tape data is associated with backups, including image copies and archive logs

Tape data is critical!





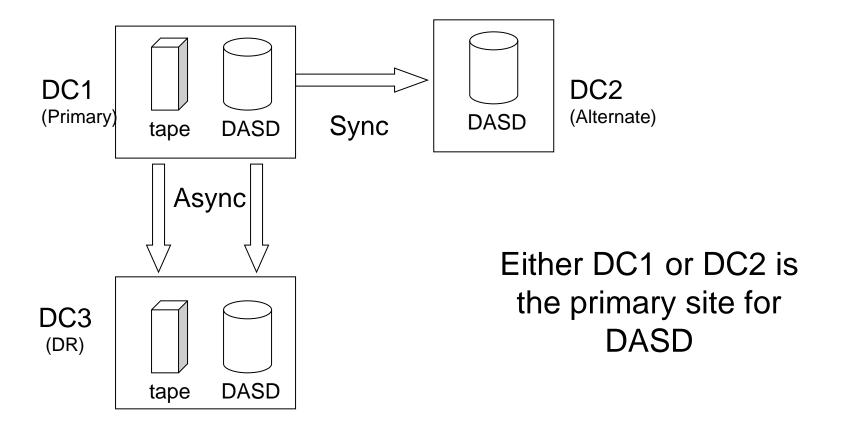
## **DLm Origin / Primer**

| Origin                          | Key Component | Role                                                                    |
|---------------------------------|---------------|-------------------------------------------------------------------------|
| Bus-Tech MDL                    | VTEs          | Tape drive emulation, FICON interface, compression, tape library portal |
| EMC NAS (Celerra<br>/ CLARiiON) | Data Movers   | File System sharing over an IP network / replication                    |
|                                 | SATA disks    | Data storage                                                            |

- Tape files reside in File Systems; the name of the file is the Volser
- Multiple file systems are defined within a tape library to provide for sufficient volsers and capacity headroom
- A single tape library is typically created per Sysplex and is mounted on specified VTE drives



### **DLm Requirements**


DLm implemented in 2008 for a technology refresh in conjunction with a Data Center migration, providing:

- Consistently good performance
- Low maintenance
- High scalability and redundancy



## Original US Bank Storage Configuration / Replication









### **DLm Experience at US Bank**

#### Notable metrics

- Over 50,000 mounts per day
- 99.9% of all tape mounts fulfilled in less than 1 second
- 4.5 to 1 compression
- Over 720 terabytes of usable capacity
- Peak host read / write rate of 1,200 megabytes / second
- Async replication to DC3 (DR Site) within several minutes
- Tape is becoming more critical

If life is so good, what is the motivation for DLm8000?

# Problem #1 - Disaster Recovery Scenario The "missing tape" problem at DC3 (out-of-region DR site)



- Tape replication lags behind DASD replication (RPO measured in minutes versus seconds)
- In an out-of-region disaster declaration, tens and maybe hundreds of tape files closed immediately before the "Disaster" have not completely replicated
- But these files are defined in catalogs replicated on DASD (TMS, ICF catalogs, HSM CDSs, IMS RECON, DB2 BSDS, etc.)
- Hence, there are critical data inconsistencies between tape and DASD at DC3 (DR Site)





### **Problem #1 (continued)**

During a Disaster Recovery at DC3 ....

- 1. What if HSM recalls fail because of missing ML2 tape data?
- What if the DBAs cannot perform database recoveries because archive logs are missing?
- 3. What if business and customer data archived to tape is missing?
- 4. How does this impact overall recovery time (RTO)?
- 5. Are Disaster Recovery capabilities adequate if tapes are missing?



## Problem #2 – Local Resiliency Scenario Local DASD resiliency is not sufficient



- Three site DASD configuration with synchronous replication between DC1 and DC2 and asynchronous replication to DC3.
  Two site tape configuration with asynchronous replication from DC1 to DC3.
- In the event of a DASD catastrophe at the primary site, a local DASD failover is performed non-disruptively with zero data loss, and asynchronous replication is re-instated to DC3.

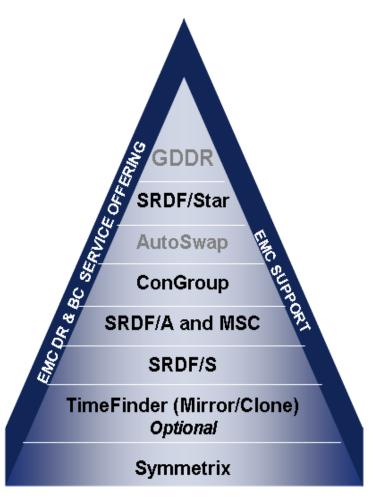
But, what if a catastrophe occurs to tape storage at DC1?

- Mainframe processing will come to a grinding halt.
- A disruptive recovery can be performed at DC3, but this is a last resort.

REMBER: Tape is becoming more essential.






### What are the options?

- To solve problems #1 and #2, why not convert all tape allocations to DASD?
- The cost is prohibitive, but
- Space allocation is the impediment
  - SMS and Data Classes are not adequate
  - Massive JCL conversion is required to stipulate space allocation
- To solve problems #1 and #2, why not synchronize tape and DASD replication / failover?





### EMC has the technologies, but ...



1. Can DLm support a Symmetrix backend?

#### Yes

2. Can SRDF/S and SRDF/A handle enormous tape workloads without impacts?

#### Yes

3. Can we achieve "universal data consistency" between DASD and tape at DC2 and DC3?

#### Yes

4. Can GDDR manage a SRDF/STAR configuration with Autoswap which includes the tape infrastructure?

#### Yes

**EMC Foundation Technologies** 



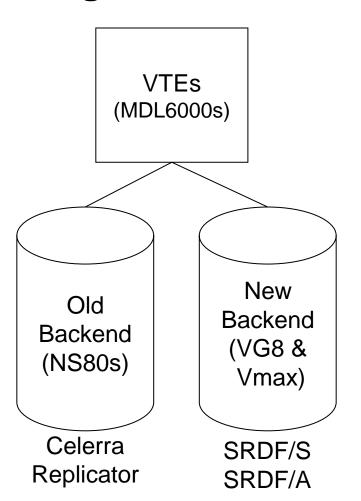


### **Creation of DLm8000**

- US Bank tape resiliency requirements articulated in executive briefings and engineering round tables
- EMC solicited requirements from other customers and created a business case
- EMC performed a proof of concept validating overall functionality including failover processes
- EMC built a full scale configuration, based on US Bank's capacity requirements; performed final validation of replication, performance, and failover capabilities
- GDDR automation designed and developed with significant collaboration across product divisions
- US Bank began implementation in June, 2012






### DLm8000 – what is under the hood?

| Product<br>Line | Key Component             | Role                                                                    | Management<br>Interface |
|-----------------|---------------------------|-------------------------------------------------------------------------|-------------------------|
| MDL 6000        | VTEs                      | Tape drive emulation, FICON interface, compression, tape library portal | ACPs                    |
| VNX VG8         | Data Movers               | File System sharing over an IP network                                  | Control<br>Stations     |
| Vmax            | SATA FBA<br>drives / SRDF | Data storage / replication                                              | Gatekeepers             |





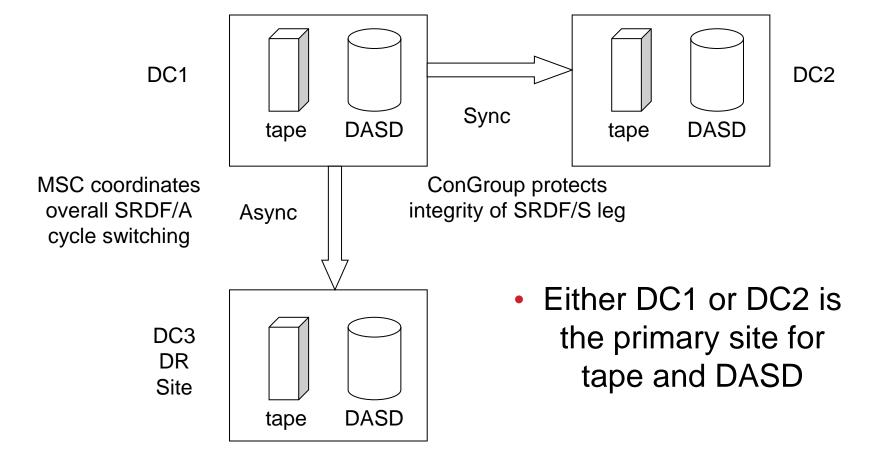
### Migration to the DLm8000



- 1. Configured new backend at all three sites
- 2. Setup SRDF/A and SRDF/S
- 3. Defined File Systems on new backend
- 4. Partitioned "old" and "new" file systems with DLm storage classes
- 5. Updated Scratch synonyms to control scratch allocations by storage class
- Deployed outboard DLm migration utility to copy tape files
- Maintained dual replication from old backend and new backend during the migration
- 8. Incorporated tape into GDDR along with DASD (ConGroup, MSC, STAR, etc.).



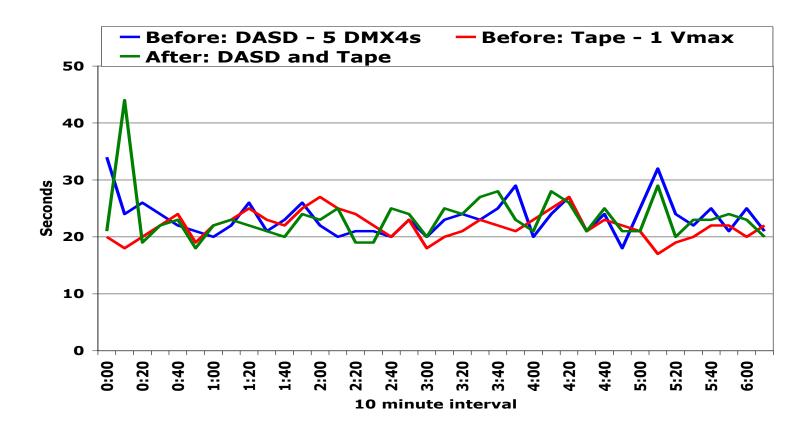
## DLm Migration Utility – Process Overview




- Storage administrator creates a list of Volsers and starts the migration utility script on a VTE, with Volser list and parameter specifications
- For each Volser, the migration utility performs the following actions:
  - creates the target file in the specified storage class
  - locks the source and target files
  - copies the source to the target and performs a checksum
  - renames the source and target files so that the target file is "live"
  - unlocks the files
- An average throughput of 25 megabytes per second was achieved per VTE script without impacts to SRDF replication and no host impacts other than an occasional mount delay while a Volser is locked (max copy time < 80 minutes for 20GB tape)</li>



## Final US Bank Storage Configuration / Replication








## **SRDF/A RPO - Before and After MSC Consolidation**









### How do we monitor / control all of this?

Geographically Dispersed Disaster Restart (GDDR) scripts were updated for DLm8000.

- Recover At DC3
- Test from BCV's at DC3 and DC2
- Restart SRDF/A replication to DC3
- Restart SRDF/S replication between DC1 and DC2
- Planned Autoswap between DC1 and DC2
- Un-Planned Autoswap between DC1 and DC2



## GDDR automation for a planned storage swap between DC1 and DC2 (high level steps)



Once tape workload is quiesced, GDDR script is initiated ...

- 1. Tape drives varied offline
- 2. Tape configuration disabled at "swap from" site
- DASD Autoswap and SRDF swap (R1s not ready, R2s ready and R/W)
- 4. Failover of Data Movers to "swap to" site
- 5. VTEs started at "swap to" site
- 6. Tape drives varied online and tape processing resumes
- 7. Recovery / resumption of SRDF/S, SRDF/A, and STAR



## Unplanned storage swap between DC1 and DC2



- Loss of access to CKD devices triggers DASD Autoswap and SRDF swap
- In-flight tape processing fails no tape "Autoswap" functionality
- Failed in-flight tape jobs need to be re-started after the tape swap
- No data loss for closed tape files (or sync points)
- Note: a tape infrastructure issue does not trigger an unplanned swap
- GDDR recovery script is automatically triggered after an unplanned swap

## GDDR script to recover from unplanned swap (high level steps)



- 1. Tape drives are varied offline
- 2. Failover of Data Movers to "swap to" site
- 3. VTEs started at "swap to" site
- 4. Tape drives varied online and tape processing resumes
- 5. Recovery / resumption of SRDF/A
- Recovery / resumption of SRDF/S and STAR initiated manually





### **GDDR Value at US Bank**

- Provides sophisticated automation for monitoring and management
- Handles coordination of comprehensive EMC software and hardware stack
- Provides recovery for critical events such as unplanned swaps and SRDF/A outages
- Minimizes requirements for internally developed automation and procedures
- Indispensable for a multi-site, high availability configuration



## DLm8000 Value Proposition – High Availability



- Robust storage platform
- Synchronous and asynchronous replication without impacts
- Universal data consistency between tape and DASD at DC2 and DC3, enabled with ConGroup and MSC
- GDDR automation to manage overall storage replication, failover, and recovery





## **Universal Storage Consistency of DASD and Virtual Tape**

Jim Erdahl U.S.Bank

August, 14, 2013 Session Number 13848



