

Expert Stored Procedure Monitoring, Analysis and Tuning on System z

Steve Fafard, Product Manager, IBM OMEGAMON XE for DB2 Performance Expert on z/OS

August 16, 2013 13824

Agenda

- What are stored procedures?
 - Benefits of stored procedures
 - Stored procedure analysis Issues and solutions
- Monitoring stored procedures using OMEGAMON DB2 Performance Expert
- Isolating and tuning poorly performing stored procedures

What are stored procedures?

- A stored procedure is a user-written program that can be called by an application with an SQL CALL statement.
- It is a compiled program that is stored at a DB2 server
- It can execute business logic and SQL statements
- Stored procedure types
 - External high level language procedures COBOL, PL/I, C, C++, Assembler, REXX, and Java
 - External SQL procedures
 - Native SQL procedures introduced by DB2 9 for z/OS

DB2 z/OS stored procedure processing (External)

Native SQL procedure processing (Internal)

Programming benefits of stored procedures

- Modularity in application development
 - Data will be processed always in a consistent way according to the rules defined in the stored procedure
- Enforcement of business rules
 - Use stored procedures to define business rules that are common to several applications.
 - Can be an alternative to using constraints and triggers.
- Improved application security
 - Sensitive business logic runs on the DB2 server
 - End users are authorized to execute a stored procedure, and do not need table privileges. (Similar to static authorization model.)
- Application integration solutions
 - Can access non-DB2 resources, e.g. VSAM files, MQ queues, IMS or CICS transactions
 - Stored procedures can have access to commands that run only on the server.

Total cost of ownership benefits of stored procedures

- Reduced network traffic for distributed applications
 - Grouping SQL statements into a stored procedure results in two trips across the network for each group of statement, resulting in better performance for applications
- Cost of ownership reduction
 - If stored procedure is called from distributed client via DRDA, a portion is eligible for zIIP redirect.
 - Including: Call statement processing; Result set processing; Commit processing
 - Stored procedures written in Java can take advantage of zAAP engines
 - Native SQL procedures run as enclave SRB in DBM1 address space and the stored procedure execution itself is zIIP off-loadable with DB2 9 for z/OS.
 - For WLM managed stored procedures:
 - SQL processing runs under a TCB hence not eligible for zIIP redirect
- As of now, there is NO performance benefit for calling a stored procedure from a local application

Stored procedure language / API CPU Cost comparison - Update

- IRWW workload (OLTP workload consisting of 7 transactions)
- Called from distributed JCC type 4 client

Language / API	Base CPU / Tran Cost	Billable CPU / Tran Cost after zIIP and / or zAAP redirect
COBOL stored procedure	1X (BASE)	0.80x (Some zIIP)
C stored procedure	1.02x	0.82x (Some zIIP)
SQLJ stored procedure	2.01x	1.11x (zAAP+ some zIIP)
JDBC stored procedure	2.97x	1.84x (zAAP+ some zIIP)
Native SQL stored procedure	1.09x	0.59x (Significant zIIP)

Performance reporting – External stored procedure

External stored procedure performance summary – plan level

DB2 Accounting class 1 and 2 needed (3 is recommended)

AVERAGE	APPL(CL.1)	DB2 (CL.2)		
ELAPSED TIME	0.003212	0.002575		
NONNESTED	0.000714	0.000694		
STORED PROC	0.002498	0.001881		
UDF	0.000000	0.00000	Class 1 non-nested time (ET & CPU)	
TRIGGER	0.00000	0.00000	Olass I Holl-Hested time (ET & Ol O)	
CP CPU TIME	0.000715	0.000654	Class 2 non-nested time (ET & CPU)	
AGENT	0.000715	0.000654		
NONNESTED	0.000149	0.000129		
STORED PRC	0.000567	0.000525	Class 1 nested time (ET & CPU)	
UDF	0.000000	0.000000	Class 2 nested time (ET & CPU)	
TRIGGER	0.000000	0.000000		
PAR.TASKS	0.000000	0.000000		

Performance reporting – Native SQL stored procedure

Native SQL stored procedure performance summary - plan-level

DB2 Accounting class 1 and 2 needed (3 is recommended)

AVERAGE	APPL(CL.1)	DB2 (CL.2)	
ELAPSED TIME	0.004834	0.002789	
NONNESTED	0.002819	0.000774	
STORED PROC	0.002015	0.002015	CL1 and CL2 will always be equal!
UDF	0.000000	0.000000	
TRIGGER	0.000000	0.000000	
CP CPU TIME	0.000963	0.000909	
AGENT	0.000963	0.000909	
NONNESTED	0.000198	0.000143	
STORED PRC	0.000765	0.000765	CL1 and CL2 will always be equal!
UDF	0.000000	0.000000	on and one may be equal.
TRIGGER	0.000000	0.000000	
PAR.TASKS	0.000000	0.000000	• • • •
			CHADE

Stored procedure detail reporting - package level reporting

- Accounting class 7 and/or 8 needed
- SYSSTAT package contains time for CALL statement, result set processing, SET special registers, and VALUES statements for LOB handling

SYSSTAT	VALUE	SYSSTAT	TIMES
TYPE	PACKAGE	ELAP-CL7 TIME-AVG	0.000387
LOCATION	DSND91B	CP CPU TIME AGENT	0.000072 0.000072
COLLECTION ID	NULLID	PAR.TASKS	0.000000
PROGRAM NAME	SYSSTAT	SE CPU TIME	0.000000
NSQLNEW	VALUE	NSQLNEW	TIMES
TYPE	PACKAGE	ELAP-CL7 TIME-AVG	0.004751
		CP CPU TIME	0.001667
LOCATION	DSND91B	AGENT	0.001667
COLLECTION ID	USRT001	PAR.TASKS	0.000000
PROGRAM NAME	NSQLNEW	SE CPU TIME	0.00000

Issues with plan and package ;evel stored procedure analysis

- Multiple stored procedures called in a transaction are summed at the plan level. By definition this affects the analysis of nested SPs.
- Package level analysis can be difficult if a stored procedure executes different paths and SQL based on parameters. How do you differentiate between the invocations?
- Package level analysis does not apply to stored procedures that do not execute SQL

- PM53243 (DB2 10) New IFCIDs 380 and 381 are created for stored procedure and User-Defined Function detail respectively. These records:
 - Identify the stored procedure or UDF beginning or end
 - Include the current CP, specialty engine, and elapsed time details for nested activity
- These record can be used to determine the CP, specialty engine, and elapsed time for a given stored procedure or UDF invocation

- Additionally PM53243 (DB2 10) added IFCID 497, 498, 499 for SQL drill down analysis.
 - These records contain the dynamic or static statement IDs for non-nested, UDF, and SP work respectively.
- The statement IDs can be correlated to IFCID 316 dynamic statement or IFCID 401 static statement cache data.

Monitoring stored procedures with OMEGAMON XE for DB2 Performance Expert

- These DB2 instrumentation records for stored procedures are evaluated by OMEGAMON, aggregated on a system level and returned to the repository server engine.
- OMEGAMON processing includes the sequencing logic and the calculation of elapsed times for the different accounting class times written in the IFI records as timestamps, considering nesting as well.
- In parallel the IFCID 316/401 data for the Statement Caches is collected and a correlation to the executed stored procedure statements via IFCID 499 is made.

Workload:

SQL Dashboard – aggregation by ROUTINEID

∑ of

 \sum of

Family

Grandchild

Workload at SQL dashboard

("All statements" view)
executed in the selected time
period (time slider), valid for
all subsequent views

Showing stored procedure details

Showing the calling paths of SPs (1/2)

Showing the calling paths of SPs (2/2)

Select Calling Path for Grandchild

Show SQL executed by a SP (1/2)

Action: Show SQL for <u>This</u> Calling Path

Show SQL for <u>This</u> Calling Path for Family(0)

SQL cache correlation

 For a nested statement correlation to the cache is shown in "SQL Statements Details" area:

 The History Navigator shows the drill down history for stored procedures and can be used similar to a Browser History

Isolating and tuning stored procedures

- The poorly performing stored procedure has been identified and its performance analyzed using OMEGAMON XE for DB2 Performance Expert
- The next step is to isolate the stored procedure so that other workloads will not be adversely affected
- With the stored procedure isolated, then it can be tuned

Launch Optim Configuration Manager for z/OS

Navigate to the "Rule Set Manager" tab

Add Rule Set To Isolate Application

Define A Condition

Define An Action

Activate The Rule Set

Tuning stored procedures at the SQL workload level

SQL Workload is loaded into Optim Query Workload Tuner

Invoke advisors to generate expert tuning recommendations

Review advisor recommendations summary

Review specific advisor recommendations (Stats)

Further analysis such as plan comparison

Conclusion

- Stored procedures are a good application architecture and programming technique
- Certain types of stored procedures can save MIPs
- Can have many-to-many relationships between applications
- Have the potential to be reused millions of times daily
- A key monitoring and tuning opportunity

Thank you!

More information

- Websites
 - DB2 for z/OS home page
 - DB2 Tools for z/OS home page
 - Tivoli OMEGAMON XE for DB2 PE on z/OS home page
 - Optim Query Workload Tuner for z/OS home page
 - Optim Configuration Manager for z/OS home page
 - DB2 for z/OS: Information Roadmap
- Other resources
 - Online demo: stored procedure monitoring and analysis
 - eBook: Optimizing database performance through an integrated solution for DB2

Backup slides

Navigating to OMPE Extended Insight and the SQL Dashboard

Once launched, tabs are available to navigate between them.

Finally: Link to 'Extended Insight' functionality

