
Make Your C/C++ and PL/I Code FLY With the
Right Compiler Options

Visda Vokhshoori/Peter Elderon

IBM Corporation

Session 13790

Insert

Custom

Session

QR if

Desired.

WHAT does good application performance

mean to you

• Fast execution time

• Short compile time

• Small load module size

2

HOW do you achieve good application

performance

• Use best compiler option

• Write good code

• Install newer hardware

3

Options to consider for optimization

• ARCHitechture

• OPTIMIZE

• INLINE

• UNROLL

• FLOAT(AFP)

• HGPR

• [PL/I] REDUCE

• [PL/I] RESEXP

• [PL/I] RULES(NOLAXCTL)

• [PL/I] DEFAULT(REORDER NOOVERLAP CONNECTED)

• [C/C++] XPLINK

• [C/C++] COMPACT

• [C/C++] STRICT_INDUCTION

• [C/C++] Profile Directed Feedback

• [C/C++] Inter-Procedural Analysis

ARCHitecture

• The ARCH option specifies the level of the hardware on which the generated
code must run

• PL/I default – is ARCH(6)
• produces code that will run on old z990 machines

• C/C++ default – is ARCH(7)*
• produces code that will run on z9 machines

• If you specify ARCH(n) and run the generated code on an ARCH(n-1)
machine, you will most likely get an operation exception

• So you must set ARCH to the lowest level machine where your generated
code will run

*ARCH(7) is the new default in z/OS XL C/C++ V2R1. Default architecture is ARCH(5) for all version before this. ARCH(5) produces code that runs on z900 and

older

ARCHitecture -timeline

0

1

2

ARCHitecture

3

4

5

6

7

8
9

10

Support for string

operation h/w

instruction – G1

Support for

branch relative –

G2, G3, G4

ALL

ARCHs

12-Additional

Floating Point

registers

Support for

IEEE Floating

Point – G5, G6

Support for

32-bit Add /

Subtract

with carry –

z800

1st LP64

architecture-

z900

Long displacement

facility –

instructions that

address up to +/-

500K relative to

base reg – z990,

z890

Extended Immediate, Extended

translation, Decimal Floating point, z9

ARCH(8): Compare and

Branch, More DFP for

example to convert DFP

to HEX and Binary, z10

ARCH(9): 1st OOO

architecture, Load/store

on condition, popcount,

z196

ARCH(10): Transaction

Execution, Convert

DFP<>Zoned facility,

zEC12

OPTIMIZE

• Without optimization your code, compiler generate code
literally the way you wrote it

• Advantages of NOOPT: very little :–)

• compile time saving

• easier to match the code generated with source code written,
for the purpose of debugging problems

• Advantages of OPT(2) or higher: a lot 

• Faster code (inlining, constant propagation, more register
operation, common sub-expression elimination, dead code
elimination, dead store elimination, …)

OPTIMIZE – option

• The PL/I and C++ compilers use the same optimizing backend, but there are
differences in what OPT suboptions they support and what they mean:

• PL/I’s OPT(2) is a crippled version of C’s OPT(2)

• It helps compile-time be reasonable for large programs

• But it does produce less than optimal code

• PL/I’s OPT(3) is the same as C’s OPT(2)

• It can use a lot of CPU and REGION

• But it will produce very good and safe code

• C/C++ OPT(2)

• Inlining, loop unrolling, common sub-expression elimination

• C/C++ has an OPT(3) that is even more aggressive

OPTIMIZE – OPT(3) [C/C++]

• Aggressive code motion, scheduling on computations that

have the potential to raise an exception, hardware idiom

recognition, instruction level parallelism

• Conformance to IEEE rules are relaxed Floating-point

expressions may be rewritten, example fused multiply and

add

• Use –qSTRICT option + O3 to stay conformed to IEEE rules

INLINE - option

• The inline option instructs the compiler to place the code

for selected function at the point of call; this is called

inlining. It eliminates the linkage overhead and exposes

the entire inlined function for further optimization.

• [C/C++] INLINE

• [PL/I] DFT(INLINE)

INLINE – C example

int a, b;

void foo() {

 a = 1;

 b = 2;

 a = bar(a);

 b++; // no code

} // motion

int bar() { return a*a; }

int a, b;

void foo() {

 a = 1;

 b = 2;

 a = a*a;

 b++;

}

int a, b;

void foo() {

 a = 1;

 a = a*a;

 b = 2;

 b++;

}

INLINE - facts

• This is most beneficial when the inlined function is not large.

• Too much inlining can increase the size of the program.

• [C/C++] You can control

• how much to inline

 INLINE(AUTO, REPORT, threshold, limit)

• when to inline
• #pragma inline

• The __attribute__((always_inline))*

*__attribute__((always_inline)) new feature in z/OS XL C/C++ V2R1

INLINE – C/C++ facts

• INLINE(AUTO, REPORT, threshold, limit)

The maximum size of a function to

inline. This is to prevent large functions

to be inlined. This is a relative number.

The default is 100.

The maximum size of a

function can grow before

auto inlining stops. This is to

prevent a function to

become too large after

inlining.

Int foo()

{

 …

 //x=bar(2);

 x = a*a;

 …

}

int bar(int a)

{

 return a*a;

}

foo grows

after inlining

#pragma inline(bar)

UNROLL - options

• [PL/I] UNROLL(AUTO|NO)

• [Default] AUTO
• Compiler permitted to unroll

• NO
• Compiler is not permitted to unroll

• [C/C++] UNROLL(AUTO|NO|YES)

• [Default] Auto
• Compiler via heuristics and/or honors loops identified via #pragma

unroll(nounroll|unroll[(number)])

• NO
• Means that the compiler is not permitted to unroll loops in the compilation unit,

unless unroll or unroll(n) pragmas are specified for particular loops.

• YES
• Allows the compiler to unroll loops that are annotated (for example, using a

pragma), unless it is overridden by #pragma nounroll.

UNROLL – C example

 for (i=0; i<10; ++i)

 sum += i;

Unroll by a factor of 2

 i=0;

 lab2:

 if (i>=5) goto lab1;

 sum += i;

 ++i;

 sum += i;

 ++i;

 goto lab2;

 lab1:

xlc -qunroll(2) a.c all loops in a.c

will be unrolled by a factor of 2

#pragma unroll(2)

For (i=0; i<10; ++i)

 sum += i;

>xlc a.c only this loop will be

unrolled by a factor of 2

FLOAT(AFP)

• Additional floating point, fp8-fp15, registers were added to

G5 machine

• These registers are non-volatile, have to be preserved

across a call

• More registers provide opportunity to do more operations

fast/in register

HGPR - option

• [NO]HGPR(NOPRESERVE|PRESERVE)

• [PL/I] NOHGPR should be used for all CICS application

• Gives 16 more working registers to the application

• PRESERVE will instruct the compiler to store and re-store

the high half across the call

• Defualt is NOHGPR(NOPRESERVE)

• MetalC is an exception

• Default is HGPR(PRESERVE)

REDUCE – PL/I option

• The REDUCE option specifies that the compiler is

permitted to reduce an assignment of a null string to a

structure into simpler operations - even if that means

padding bytes might be overwritten.

dcl 1 sample ext,

5 field10 bin fixed(31),

5 field11 bin fixed(15),

5 field12 bit(8),

5 field13 bin fixed(31);

sample = ‘’;

w/ REDUCE only one operation to initialize sample to null

w/ NOREDUCE 4 operations to initialize and padding is unchanged

Other PL/I options

• LAXCTL | NOLAXCTL

• Specifying LAXCTL allows a CONTROLLED variable to be
declared with a constant extent and yet to be allocated with a
differing extent. NOLAXCTL requires that if a CONTROLLED
variable is to be allocated with a varying extent, then that extent
must be specified as an asterisk or as a non-constant expression.
The following code is illegal under NOLAXCTL:

• RESEXP|NORESEXP

• Under the NORESEXP compiler option, the compiler will still
evaluate all restricted expression occurring in declarations,
including those in INITIAL value clauses.

• For example, under the NORESEXP option, the compiler would not
flag the following statement (and the ZERODIVIDE exception would
be raised at run time)

Other PL/I options

• LAXCTL | NOLAXCTL

• Specifying LAXCTL allows a CONTROLLED variable to be
declared with a constant extent and yet to be allocated with a
differing extent. NOLAXCTL requires that if a CONTROLLED
variable is to be allocated with a varying extent, then that extent
must be specified as an asterisk or as a non-constant expression.
The following code is illegal under NOLAXCTL:

• RESEXP|NORESEXP

• Under the NORESEXP compiler option, the compiler will still
evaluate all restricted expression occurring in declarations,
including those in INITIAL value clauses.

• For example, under the NORESEXP option, the compiler would not
flag the following statement (and the ZERODIVIDE exception would
be raised at run time)

PL/I - options

• DEFAULT(REORDER NOOVERLAP CONNECTED)

• Specifying REORDER allows more optimization of your code.
Default is REORDER.

• NOOVERLAP will produce code that performs better;
however, if you use NOOVERLAP, you must insure that the
source and target never overlap. NOOVERLAP is the default

• Set the default for whether parameters are connected or
nonconnected. CONNECTED allows the parameter to be
used as a target or source in record-oriented I/O or as a base
in string overlay defining. NONCONNECTED is the default.

XPLINK

• A modern linkage convention that is 2.5 times more

efficient than the conventional linkage convention

• We have seen some programs improve by 30%

• You cannot statically link non-XPLINK with XPLINK

• You can call non-XPLINK DLLs from XPLINK DLLs and

vice-versa but you must tell the compiler about this so that

it can insure the (expensive) switching code gets executed

• If your application contains few switches (as is true of the

PL/I compiler where the frontend is not XPLINK and the

backend is), then mixing will be beneficial; otherwise it

may be very costly

COMPACT

• You want smaller executable? With COMPACT you

choose optimization that doesn’t impact the size of the

final executable or tone down those that they do

STRICT_INDUCTION

• Loop induction variable optimizations can change the

result of a program if truncation or sign extension of a loop

induction variable occurs as a result of variable overflow or

wrap-around.

• The STRICT_INDUCTION option only affects loops which

have an induction (loop counter) variable declared as a

different size than a register. Unless you intend such

variables to overflow or wrap-around, use

NOSTRICT_INDUCTION.

Profile Directed Feedback - PDF

• The idea is to use results from sample executions to improve

optimization near conditional branches and surrounding infrequently

executed code sections. Critical paths are identified and the

information is used to guide the optimization.

• This is done in three steps:

• Build the program with the PDF1 option to instrument the code to

collect profiling information.

• If you are using an MVS™ data set for your PDF file, pre-allocate

the PDF data set using RECFM = U and LRECL = 0.

• Run the program on typical inputs. This is called the training run.

• Build the program again using the PDF2 option.

PDF - details

a++; a++;

if (a > 100) { // error if (a <= 100) goto lab1;

 // code to handle the error __count_1++;

 // could be a large piece of code //handle error

 …

} lab1:

sum = sum + a; sum = sum + a;

PDF - details

1. PDF1

XL C compiler

option PDF1

Program with

freq. counter

PDF file

XL C compiler

option PDF1

Optimizied

Program

PDF file

2. PDF2

Train data

PDF - facts

• Use the same: source, options, compiler release for both step one
and two

• If you modify the source files, compiler options, or both that are used in
step 1, you might see a list of warnings and the benefits from PDF
might not apply for the changes from step 1.

• During the PDF2 phase, the compiler issues an information message
with a number in the range of 0 - 100. If you have not changed your
program between the PDF1 and PDF2 phases, the number is 100,
which means that all the profile data can be used to optimize the
program. Otherwise, the number is less than 100. If the number is 0, it
means that the profile data is completely outdated, and the compiler
cannot take advantage of any information. Then you must recompile
your program with the PDF1 option and regenerate the profile data.

Inter Procedural Analysis - IPA

• Looks at all the files of a program and optimize globally.

The main benefit is that it can do inlining across source

files. Further optimization is then possible

file1.c

file2.c

file3.c

xlc

xlc

xlc

file1.o

file2.o

file3.o

xlc

binder

prog
IPA

IPA(LINK)

IPA - facts

• Note that the time and space needed in the IPA(LINK) step

grow rather quickly with the size of the whole program.

• You can control the level of optimization by the LEVEL

suboption, 0, 1 or 2. Try LEVEL(0) first.

Write Good Code

• Attempts to be clever and produce “optimal” code have

produced:

• Code that is unreadable

• Code that cannot be maintained

• Code that performs worse than less clever solutions

• Code that fails!

• Readability trumps speed

Install Newer Hardware

• Requires no

• Recompilation

• Relinking

• Migration to a new release

• But can make your code run much faster

• Often the performance boost from moving to new

hardware is greater than that from recompiling with the

corresponding new ARCH level – However as the Moore’s

Law no longer holds, we should see less boost with just

running on a new hardware

Feedback

• We are collecting feedback for future sessions - which

topics are you interested in?

• Looking forward to hearing from you!!

• Please email Peter or Visda

Cafes

C/C++
http://ibm.com/rational/community/cpp

COBOL
http://ibm.com/rational/community/cobol

Fortran
http://ibm.com/rational/community/fortran

PL/I
http://ibm.com/rational/community/pli

Feature Requests

 C/C++

http://ibm.com/developerworks/rfe/?PROD_ID=700

COBOL
http://ibm.com/developerworks/rfe/?PROD_ID=698

Fortran
http://ibm.com/developerworks/rfe/?PROD_ID=701

PL/I
http://ibm.com/developerworks/rfe/?PROD_ID=699

Connect With Us

Like IBM Compilers on Facebook Follow IBM Compilers on Twitter

http://ibm.com/rational/community/cpp
http://ibm.com/rational/community/cobol
http://ibm.com/rational/community/fortran
http://ibm.com/rational/community/pli
http://ibm.com/developerworks/rfe/?PROD_ID=700
http://ibm.com/developerworks/rfe/?PROD_ID=698
http://ibm.com/developerworks/rfe/?PROD_ID=701
http://ibm.com/developerworks/rfe/?PROD_ID=699
https://www.facebook.com/IBMcompilers
https://twitter.com/IBM_compilers

Two-Column Slide (Type Size=28)

37

• Topic A (Type Size=24)

• Subtopic 1 (Type Size=22)

• Subtopic 2 (Type Size=22)

• Subtopic 3 (Type Size=22)

• Subtopic 4 (Type Size=22)

• Topic B (Type Size=24)

• Topic C (Type Size=24)

• Subtopic 1 (Type Size=22)

• Subtopic 2 (Type Size=22)

• Subtopic 3 (Type Size=22)

• Sub-subtopic 1 (Type

Size=20)

• Sub-subtopic 2(Type

Size=20)

• Topic D (Type Size=24)

Slide with Table

38

Slide with Text & Graphic

39

