
z/OS XL C/C++ V2R1
Enterprise PL/I 4.4

Visda Vokhshoori

IBM Corporation

Session 13789

Insert

Custom

Session

QR if

Desired.

2

AGENDA

• C/C++ New features

• Performance

• In Depth

• Transaction Execution

• Debugging Optimized Code

• 64-bit performance improvements

• PL/I 4.4 Features

• Decimal-Floating Point to Zoned Facility

2

3

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

4

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine
• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

#include <stdio.h>

int main() {

printf(“ARCH LEVEL %d\n”, __ARCH__);

return 0;

}

xlc arch_check.c > ARCH LEVEL 7

xlc –qtarget=zosv1r13 arch_check.c >ARCH LEVEL 5

5

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99
• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

struct s{

 struct {

 int a;

 };

 }S;

int main() {

 s.a = 55;

 return s.a;

}

xlc –qlanglvl=extc1x anonymous_struct.c

./a.out

echo $?

55

6

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

#include <stdio.h>

double _Complex big_value=CMPLX(1.0/0.0, 1.0/0.0);

int main() {

 float _Complex nan_value=CMPLXF(9.5, 0.0/0.0);

 printf(“big value: %e+%e*i\n”,__real__(big_value),

 __imag__(big_value);

 printf(“nan value: %e+%e*i\n”,__real__(nan_value),

 __imag__(nan_value);

return 0;

}

xlc –qfloat=ieee –qlanglv=extc1x complexvalue.c

./a.out

big value: INF+INF*i

nan value: 9.5+NANQ(1)*i;

7

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics
• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

#define cbrt(x) _Generic ((X), \

long double: cbrtl, \

default: cbrt, \

float: cbrtf \

)(X)

Note: cbrtl, cbrt, and cbrtf should be defined.

8

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword
• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

void _Noreturn end_program(char err_type) {

 if (err_type==‘E’)

 exit(16);

 else

 exit(0);

}

int main(int argc, char* argv[]) {

 if(argc<5) {

 end_program(‘E’);

 //any code here will never get run

 }

 return 0;

}

xlc –qlanglvl=extc1x aborter.c

./a.out

echo $?

16

9

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert
• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

#include <assert.h>

#include <stdlib.h>

static_assert(sizeof(long)==4,”Not in 31bit mode”);

int main() {

 long* buffer=(long*)malloc(10*4);

 for(int i=0; i<10; ++i)

 buffer[i] = i;

return (int)buffer[8]+47;

}

xlc –qlangl=extc1x –q64 longBuffer.c

ERROR CCN3865 ./longBuffer.c: 3 Not in 31bit mode

10

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator
• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

#include <iostream>

template <class T> struct Ptr {

Ptr():rawptr_(0) {}

Ptr(T* Ptr):rawptr_(T) {}

explicit operator bool() const {return rawptr_ != 0; }

T* rawptr_;

};

int main() {

 int var1, var2;

 Ptr<int> ptr1, ptr2(&var2);

 ptr1 = &var1; explicit Ptr(T* Ptr):rawptr_(T); - warning

 if (ptr1) //explicit bool operator provided – good.

 return 66;

cout << “ptr1+ptr2= “ << (ptr1+ptr2) << endl; //warning

return 0;

}

xlC –qlanglvl=explicitconversionoperators a.C

./a.C, line 13.40: CCN5218 (S) The call doesn’t match any

parameter list for operator+.

./a.C, line 13.40: CCN6283 (I) builtin operator+(int, int) is

not a viable candidate.

11

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling
• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

template<typename Element> struct Iterator {

 Iterator() {}

 friend Iterator<Element>& operator+(Iterator<Element> it, long d) {

 it+=d;

 return it;

 }

};

int main()

{

 Iterator<int> iter;

 Iterator<const int> c_iter;

 c_iter = c_iter+10;

 iter = iter+10;

 return 0;

}

xlC –qnamemangling=zosv2r1_ansi –c a.C //compiles OK

xlC –qnamemangling=zosv1r2_ansi –c a.C //fails

./a.C, line 14.26 CCN5704 (S) The definitions of "Iterator<const int>

operator+(Iterator<const int>, long) and "Iterator<int>

operator+(Iterator<int>, long)“ have the same linkage signature.

"__pl__F8IteratorXTi_l"

12

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums
• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

enum class Color {orange, green, purple};

void foo(Color){}

int main() {

 foo(Color::green);

 Color color = orange; //strongly typed enum should be

 //accompanied with enum name

 return 0;

}

xlC –qlanglv=scopedenum a.C

13

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets
• [C++11] Rvalue reference

• [C++11] Generalized Constant Expression

• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

vector<vector<int>> v;

xlC –qlanglvl=rightanglebracket a.C

14

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference
• [C/C++] Include Master Header

• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

string &string::operator=(string &&parm_str);

string a,b,c;

a = b+c;

15

New features in z/OS XL C/C++ V2R1

• [Default] Compiler default is now arch=7, z9 machine

• [C1X] New language level EXTC1X builds upon EXTC99

• [C1X] Support for general infinity and NaN initialization for complex types

• [C1X] Generic Type Generics

• [C1X] _Noreturn keyword

• [C1X] static_assert

• [C++11] explicit operator

• [C++11] Name mangeling

• [C++11] Scoped enums

• [C++11] Right angle brackets

• [C++11] Rvalue reference

• [C/C++] Include Master Header
• [MetalC] SYSSTATE compiler option

• [MetalC] User nominated main function

• [MetalC] Mixed addressing mode with IPA

• [Builtins] Decimal-Floating-Point Zoned Conversion

• [Builtins] Transactional Memory

• [Builtins] Packed Decimal builtin functions

• [Optimization] __builtin_expect

• [Optimization] OpenMP 3.1 specification

• [Optimization] [NO]THREADED option

• [Optimization] Attribute always_inline

• [Debug] Debugging optimized code

• [Debug] Debugging inlined procedures

xlc t.c –qinclude=stdio.h –qinclude=myhdr.h

16

MetalC – SYSSTATE option

 -NOASCENV-
 >>-SYSSTATE-(----+-+-ASCENV---+-------------+-+--)---><

 | |-- NONE --| |

 '-OSREL--(--+-ZOSVnRm-+--)-‘-

Default is SYSSTATE(NOASCENV,OSREL(NONE))

• OSREL=NONE|ZOSVnRmOSREL provides the value for the OSREL
parameter on the SYSSTATE macro generated by the compiler. The
value provided must be in the form of ZOSVnRm as described in the
"z/OS MVS Programming: Assembler Services Reference". The
default is NONE with which no OSREL parameter will appear on the
SYSSTATE macro.

• ASCENV | NOASCENVASCENV indicates to the compiler to
automatically generate additional SYSSTATE macros with the
ASCENV parameter to reflect the ASC mode of the function. The
default is NOASCENV with which no ASCENV parameter will appear
on the SYSSTATE macro.

17

MetalC – SYSSTATE option

int main()

 {

 int lv=256, addr;

 __asm(" GETMAIN RC,LV=(%1),Key=(%2),LOC=(%3,%4) \n"

 " ST 1,%0\n"

 :"=m"(addr)

 :"r"(lv),"I"(6),"I"(31),"I"(31)

 :"r1","r15");

 __asm(" FREEMAIN RU,LV=256,A=(1) \n");

 return 55;

}

>xlc -qMETAL -S -qSYSSTATE=ASCENV test.c

 SYSSTATE ASCENV=P appears before function entry point marker

if function compiled w/ -qARMODE or has __attribute__((armode))

 SYSSTATE ASCENV=AR appears before function entry point marker

18

MetalC – User Nominated Main

#pragma map(main, "ANEWMAIN")

void dosomething(char *);

int main(int argc, char *argv[]) {

 int i; for (i=1; i<argc; i++) {

 dosomething(argv[i]);

 }

return 0;

}

• When a Metal C program is built with the RENT option, it needs a “main” function to

anchor the Writable Static Area (WSA) creation process. However a Metal C program
may not have a function called “main” as the entry point thus not having the opportunity
to be built with the RENT option.

• The entry point name in the generated code will be ANEWMAIN.

• When you link your program, you'll need to tell the binder that the entry point name is
ANEWMAIN, such as this:

 /bin/ld -o a.out a.o -e ANEWMAIN

19

MetalC – Mixed Addressing Mode with
IPA

xlc -qmetal -q32 -qipa -c 32.c

xlc -qmetal -q64 -qipa -c 64.c

xlc -qmetal -qipa -S 32.o 64.o

Metal C applications with AMODE-switching requirements can
take advantage of inter-procedural analysis optimization

20

Built-ins - Decimal Floating Point-Zoned
Conversion

• When compiled with the DFP and ARCH(10) options the following new hardware built-in
functions are available:

• For Zoned to DFP conversions:

_Decimal128 __cxzt(void* source, unsigned char length, const unsigned char mask);

_Decimal64 __cdzt(void* source, unsigned char length, const unsigned char mask);

• For DFP to Zoned conversions:

int __czxt(_Decimal128 source, void* result, unsigned char length, const unsigned char
mask);

int __czdt(_Decimal64 source, void* result, unsigned char length, const unsigned char
mask);

21

Built-ins - Transactional Memory
• Multi-threaded applications can benefit from processors' “opportunistic locking” of memory blocks. This could result in

fast lock-free execution where there is no conflict.

• Support for this hardware feature is via a set of intrinsics as well as a set of built-ins for error cause detection

• Reduce overhead of obtaining and orchestrating a lock and improve run-time performance of multi-threaded
programs

• long __TM_simple_begin()

• long __TM_begin(void* const TM_buff)

• long __TM_end();

• void __TM_non_transactional_store(void* const addr , long long const value);

• long __TM_nesting_depth(void* const TM_buff);

• Transaction failure diagnostic functions:

• long __TM_is_user_abort(void* const TM_buff);

• long __TM_is_named_user_abort(void* const TM_buff, unsigned char* code);

• long __TM_is_illegal(void* const TM_buff);

• long __TM_is_footprint_exceeded(void* const TM_buff);

• long __TM_is_nested_too_deep(void* const TM_buff);

• long __TM_is_conflict(void* const TM_buff);

• long __TM_is_failure_persistent(long const result);

• long __TM_is_failure_address(void* const TM_buff);

• long __TM_failure_code();

• void __TM_abort_assist(unsigned int num_aborts);

22

Built-ins - Packed Decimal

• C++ is missing support for packed decimal intrinsic type

• Decimal instructions are not normally generated by XL

compilers

• Six buitin functions prototyped in builtins.h:
• Compare Decimal – CP

• Add Decimal – AP

• Subtract Decimal – SP

• Multiply Decimal – MP

• Divide Decimal – DP

• Shift and Round Decimal - SRP

• C++ and Metal C users can directly utilize packed-decimal

instructions

23

Optimization - __builtin_expect

if(__builtin_expect(x, 0)) {

error();

...

}

• Here, we expect that x will be equal 0, and we will not

execute the statement for this branch very frequently

• Providing this additional information to the compiler can be

exploited for optimization

24

Optimization - OpenMP 3.1

• A widely used industry standard to construct task

parallelism

• Support for 3.1 OpenMP specification has been added

• A new option, SMP, to allow OpenMP parallelization

directives to be recognized

• Only supported in 64-bit mode, generated executable must

run in USS, thread safe version of standard library must be

used inside the parallel regions

25

Optimization - [NO]THREADED Option

• A new NOTHREADED option for user to assert their

application is single-threaded. This will allow for more

aggressive optimization and can potentially reduce

compile- and run-time performance

xlc -qnothreaded single-threaded.c

xlc -qthreaded multi-threaded.c

26

Optimization -
__attribute__((always_inline))

• An IBM Extension available at OPT for functions identified

as inline

• These functions will be inlined by the compiler

• By passes the compiler heuristic of inlining, puts the user

in charge of telling the compiler which functions are

important to be inlined

27

Debugging Optimized Code
• It is hard to debug optimized code because:

• The debugger doesn't know where to find the value of a variable, i.e. it can be in a register, not in
memory

• The code generated ordering may not match the source code ordering

• The Debug Optimize Code feature:
• Creates different levels of snapshots of objects at selected source locations

• Makes the program state available to the debugging session at the selected source locations

• When stopping at the snapshot points, the debugger should be able to retrieve the correct value of
variables

• The granularity of the snapshot points is controlled by the DEBUG(LEVEL) sub-option:
• DEBUG(LEVEL(2)): No snapshot points inserted

• DEBUG(LEVEL(5)): Snapshot points inserted before and after (1) if-endif, (2) function, (3) loop, and (4)
the first executable line of a function

• DEBUG(LEVEL(8)): Snapshot points inserted at every executable statement

• The line number table will only contain entries for the snapshot points

• The debugger can only stop at snapshot points when doing source view debugging

• Applies to DWARF format and O2

e.g. xlc -Wc,”DEBUG(FORMAT(DWARF),LEVEL(8))” -O2 a.c

e.g. xlc -Wc,”DEBUG(FORMAT(DWARF))” -O2 -g8 a.c

28

Debugging Inlined Procedures

• In v1r13, we added debug information for inline

procedures
• Set entry breakpoint for all inline instances of a procedure

• No debug information is provided for the parameters and local

variables of the inline instances

• Debugger cannot show the value of these objects

• V2R1 provides debug information for parameters and local

variables of each inline instance of a procedure

• The debugger is able to set show the values of the

parameters and locals of an inline instance

29

Performance - statement

• A suite of CPU intensive C/C++ integer benchmarks compiled with the V2R1
compiler and 31-bit addressing demonstrated more than 6% improved
performance compared to the same benchmarks compiled with the V1R13
compiler.

• A suite of CPU intensive C/C++ integer benchmarks compiled with the V2R1
compiler and 64-bit addressing demonstrated more than 11% improved
performance compared to the same benchmarks compiled with the V1R13
compiler.

• The performance improvements are based on internal IBM lab measurements.
All benchmarks were built using the XPLINK, HGPR, O3, HOT, and
IPA(LEVEL(2) with PDF compiler options. The benchmarks compiled with the
V1R13 compiler were built using the ARCH(9) TUNE(9) options; the
benchmarks compiled with the V2R1 compiler used ARCH(10) TUNE(10).
Performance results for specific applications will vary, depending on the
source code, the compiler options specified, and other facto

30

Performance – applied

• By just setting ARCH and TUNE [C/C++ only] to 10 get the
best performance running on zEC12

• Utilize the features that enables the following zEC12
facilities

• Transaction Execution Facility
• Up to 4X speed up over coarse locking of shared memory via

pthread_mutex[1]

• Decimal-Floating-Point Zoned-Conversion Facility
• Up to 4X speed up FLOAT DEC to PICTURE conversion [2]

• Improved Performance of LP64 applications

• Making the type of data the center logic of instruction
selection

31

Transaction Execution Facility

• Facilitates parallel programming, have multiple paths of execution to

work together to complete the task the program has to perform

• The instructions between TBEGIN and TEND will execute in isolation,

and atomically

• If the transaction aborts, due to conflict, illegal instruction, footprint

exceeded, hardware interrupt or other abort conditions, the memory

state and register content is rolled back to before transaction

• If the transaction succeeds all the results are committed to memory at

the end of the transaction

32

Transaction Execution Facility-Sample

 LHI R0,0 *initialize retry count=0

loop TBEGIN *begin transaction
 JNZ abort *go to abort code if CC!=0

 LT R1,lock *load&test the fallback lock

 JNZ lckbzy *branch if lock busy

...perform operation...

 TEND *end transaction

...

lckbzy TABORT *abort if lock busy; this resumes after

abort JO fallback *no retry if CC=3
 AHI R0,1 *increment retry count

 CIJNL R0,6,fallback *give up after 6 attempts

 PPA R0,TX *random delay based on retry count

 ... potentially wait for lock to become free

 J loop *jump back to retr

fallback
OBTAIN lock *using Compare&Swap

...perform operation...

RELEASE lock

...
[3]

33

Transaction Execution Facility-Sample

TM_BEGIN(myId);  Maps to a function that manages the transaction start

 long numTotalParent = (long)TM_SHARED_READ(learnerPtr->numTotalParent);

 TM_SHARED_WRITE(learnerPtr->numTotalParent, (numTotalParent + 1));

TM_END(myId);  Maps to a functions that manages the transaction end

 #define TM_BEGIN(myID) tm_begin(myID)

void tm_begin(long threadId) {

 while(!is_lock_free(threadId))

 {

 idle(threadId);

 }

 if (global_barrierPtr[threadId].tmState==TRANSITION_TO_LOCK_STATE)

 {

 acquire_a_lock(threadId);

 return;

 }

 call_tm_begin(threadId);

 if (global_barrierPtr[threadId].tmState==TRANSITION_TO_LOCK_STATE)

 acquire_a_lock(threadId);

 return; }

Compare and swap to get a

global lock

34

Transaction Execution Facility-Sample

call_tm_begin(threadId) {

 long cc;

 long retry = 0;

 while(retry<RETRY_FACTOR) {

 cc = __TM_simple_begin();

 if (cc == 0)

 break;

 else if (cc == 3)

 break;

 ++retry;

 }

 GET_TM_CC(cc);

 if (cc != 0) {

 global_barrierPtr[threadId].tmState = TRANSITION_TO_LOCK_STATE;

 SET_TM_ROLLBACK;

 } else {

 global_barrierPtr[threadId].tmState = TRANSITION_TO_TRANSACTIONAL_STATE;

 }

 return;

}

35

Transaction Execution Facility-Sample

void tm_end(long threadId) {

 /*Issue TM_END if transactional*/

 if (global_barrierPtr[threadId].tmState == TRANSITION_TO_LOCK_STATE ||

 global_lock.tmLock == BUSY)

 release_a_lock(threadId);

 else if (global_barrierPtr[threadId].tmState == TRANSITION_TO_TRANSACTIONAL_STATE)

 __TM_end();

 reset(threadId);

 return;

}

36

Transaction Execution Facility-Sample

define TM_START(tid, ro) {

unsigned long retry = 0; unsigned long err; \

 char TM_buff[256] __attribute__((aligned(8)));\

 unsigned long line = 0;\

 restart:\

 err = __TM_begin(TM_buff);\

 if (__builtin_expect(err != 0, 0)) { \

 void *ptr;\

 int ii; retry++;\

 d->nb_aborts[err-1]++;\

 /*ptr = __TM_failure_address(TM_buff);*/ \

 ptr = (void *)line;\

 for (ii=0;ii<16;ii++) { if(d->failure_addr[ii] == NULL) d->failure_addr[ii] = ptr; if(d-
>failure_addr[ii] == ptr) { d->failure_ctr[ii]++; break; } }\

 if (__TM_is_conflict(TM_buff)){\

 d->nb_aborts_conflict++;\

 }\

 if (__TM_is_illegal(TM_buff))\

 d->nb_aborts_illegal++;\

 if (__TM_is_footprint_exceeded(TM_buff))\

 d->nb_aborts_fe++;\

 udelay_simple((retry+d->id)%16);\

 goto restart; }

37

Transaction Execution Facility facts

• Compiler built-ins require additional user code to handle
aborts

• Use the expensive begin built-in, __TM_begin(void const*)
and the debug helper built-ins, e.g. __TM_is_xxx to find
good candidates for transaction memory execution

• Best to get a lock if, CC=3 due to any of the following:

• long __TM_is_illegal(void* const TM_buff);

• long __TM_is_footprint_exceeded(void* const TM_buff);

• long __TM_is_nested_too_deep(void* const TM_buff);

• Worth to TX if, CC=0, 2

• __TM_abort_assist will insert a delay based on the
number of times the TX aborted; this improves-

38

Transaction Execution Facility facts

• ..this improves chances of success next time TBEGIN is

issued

• Do the writes ahead of reads to the same variable in the

transaction

• Avoid putting a large chunk of code in the TX

39

Transaction Execution Facility in action

• Shows the vacation benchmark from
STAMP suite with low run set [4]

• vacation is an OLTP reservation system

• It has low/medium contention, and
medium TX length

• Two measurements:

• Relative- TX vs TX single thread and
Coarse vs Coarse single thread

• Absolute- TX/Coarse vs best single
thread sequential run

• Lock is performing better than TX for up
to 2-threads (due to different memory
management for sequential version)

• TX performs up to 2X better for four
threads on a 4-way system

• The locking mechanism shows degraded
throughput

39

40

Debugging Optimized Code

• Programmers view of source different than the compiler

view of source

• Optimized code, in order to be fast, move code around,

inline functions, as well as do a lot of in register operation

• With optimization it is hard to map between source and

generated code

41

Debugging Optimized Code - example
#include <stdio.h>

int foo(int input)

 {

 int a;

 {

 a = input * 2;

 }

 printf("a = %d\n", a);

 return a;

 }

int bar(int i)

 {

 i++;

 printf("i = %d\n", i);

 return i+foo(i);

 }

int main()

 {

 int i = foo(7); foo gets inlined in main -

 int j = foo(7);

 int k = bar(7);

 return i+j+k+3;

 }

42

Debugging Optimized Code – session then
w/ zOS V1R13 XL C/C++

xlc –qdebug=symbol:nohook –O2 a.c

dbx a.out

(dbx64) st in main

[1] stop in 'int main()‘

(dbx64) r

FDBX6432: Processing load module "a.out"

FDBX9997: The loaded module does not contain module map which may lead to bad
performance. Suggest to use dbgld to create module map to the executable before
debugging.

FDBX6421: Loaded debug data from "/home/visdav/FixRTC/51878/a.dbg"

[1] stopped in main at line 7 in file "a.c" ($t2)

 7 a = input * 2;

(dbx64) print input

FDBX0082: "input" is not active

43

Debugging Optimized Code – session now
w/ zOS V2R1 XL C/C++

xlc –qdebug=symbol:nohook:level=8 –O2 a.c

dbx a.out

(dbx64) st in main

[1] stop in 'int main()' File TOROLABA:/home/visdav/FixRTC/51878/a.c, Line 3.

(dbx64) r

FDBX6432: Processing load module "./a.out"

FDBX9997: The loaded module does not contain module map which may lead to bad
performance. Suggest to use dbgld to create module map to the executable before
debugging.

FDBX6421: Loaded debug data from "/home/visdav/FixRTC/51878/a.dbg"

[1] stopped in inline int foo(int input).$b8 at line 3 in file "a.c" ($t2)

 3 int foo(int input)

(dbx64) print input

7

44

64-bit performance

• Instruction selection based on the operand type, no need

to use the Grande version just because –q64, ALG vs AL

• Sign extend only if the operation requires the 64-bit value,

e.g. type is long, long long in 64-bit and long long in 32-bit

• Reduced the path length, improved the run-time

• 12.1% was observed on a set of CPU intensive integer based

programs when compared to the same programs with the

V1R13 compiler*

*
For 64-bit: LP64, XPLINK, HGPR, OPT(3), HOT, IPA(LEVEL(2)),PDF, ARCH(10), TUNE(10)

45

Then Now

46

64-bit performance - differences

• Less instructions in the “now” than the “then” version of the

code

• No redundant sign extension

• Better usage of limited resource, register, by keeping one

operand in memory, AL vs ALGR

47

Enterprise PL/I 4.4 Highlights

• Improved performance of PL/I applications

• Improved exploitation of zEC12 and zBC12 hardware

• New optimization features (e.g. improve code for UTF-16; improve code
generation for Decimal-Floating-Point Zoned-Conversion Facility…)

• 4X improvement in listing generation time

• Improved Middleware support

• Better error messages when compiling SQL programs

• New features to support IMS

• Sparse arrays, XML cleaning and normalization; base 64
encoding/decoding

• Significantly reduced size of IMS convertor, allowing more convertors to
run in same addressing space

• Support for the latest IBM Middleware: CICS, DB2 and IMS

• UTF 16 PICTURE support

• New program diagnostics features

• Increase programmer productivity and application modernization

48

Decimal-Floating Point Zoned-
Conversion Facility

• This facility adds a new set of instructions for converting

between decimal floating-point (DFP) and zoned decimal

• Few customers are currently using DFP

• So the usefulness of these new instructions might seem

limited

• But the compiler can exploit these for you – even in

programs that use no floating-point data!

49

Terminology Review

• Zoned decimal data consists of bytes where the leftmost 4 bits are
called the zone bits and the rightmost 4 bits are the decimal or numeric
bits.

• Most commonly, these are the byte values representing the numbers
0-9

• Zoned decimal data is suitable for input, editing, and output of numeric
data in human-readable form

• There are no arithmetic instructions that operate directly on zoned
decimal

• Zoned decimal is represented in PL/I by the PICTURE data type

50

zEC12 Zoned-to/from-DFP Facility

• This new facility in the zEnterprise EC12 hardware adds

instructions to convert from zoned decimal to DFP (and back)

• And there are already arithmetic instructions that operate on DFP

as well as instructions to convert between DFP and binary integer

• Also: DFP data can be held in registers, and that helps

optimization

• These new instructions will clearly help in programs that use

PICTURE and DFP data

51

Example

• So, for example, when given this code to convert

PICTURE to DFP

*process float(dfp);

 pic2dfp: proc(ein, aus) options(nodescriptor);

 dcl ein(0:100_000) pic'(9)9' connected;

 dcl aus(0:hbound(ein)) float dec(16) connected;

 dcl jx fixed bin(31);

 do jx = lbound(ein) to hbound(ein);

 aus(jx) = ein(jx);

 end;

 end;

52

Example

• Under ARCH(9), the heart of the loop consists of these
17 instructions

0060 F248 D0F0 F000 PACK #pd580_1(5,r13,240),_shadow4(9,r15,0)

0066 C050 0000 0035 LARL r5,F'53'

006C D204 D0F8 D0F0 MVC #pd581_1(5,r13,248),#pd580_1(r13,240)

0072 41F0 F009 LA r15,#AMNESIA(,r15,9)

0076 D100 D0FC 500C MVN #pd581_1(1,r13,252),+CONSTANT_AREA(r5,12)

007C D204 D0E0 D0F8 MVC _temp2(5,r13,224),#pd581_1(r13,248)

0082 F874 D100 2000 ZAP #pd586_1(8,r13,256),_shadow3(5,r2,0)

0088 D207 D0E8 D100 MVC _temp1(8,r13,232),#pd586_1(r13,256)

008E 5800 4000 L r0,_shadow2(,r4,0)

0092 5850 4004 L r5,_shadow2(,r4,4)

0096 EB00 0020 000D SLLG r0,r0,32

009C 1605 OR r0,r5

009E B3F3 0000 CDSTR f0,r0

00A2 EB00 0020 000C SRLG r0,r0,32

00A8 B914 0011 LGFR r1,r1

00AC B3F6 0001 IEDTR f0,f0,r1

00B0 6000 E000 STD f0,_shadow1(,r14,0)

53

Example

• While under ARCH(10), it consists of just these 8

instructions – and the loop runs more than 4 times

faster
0060 EB2F 0003 00DF SLLK r2,r15,3

0066 B9FA 202F ALRK r2,r15,r2

006A A7FA 0001 AHI r15,H'1'

006E B9FA 2023 ALRK r2,r3,r2

0072 ED08 2000 00AA CDZT f0,#AddressShadow(9,r2,0),b'0000'

0078 B914 0000 LGFR r0,r0

007C B3F6 0000 IEDTR f0,f0,r0

0080 6001 E000 STD f0,_shadow1(r1,r14,0)

54

zEC12 Zoned-to/from-DFP Facility

• But, more importantly, the Enterprise PL/I 4.3 compiler

exploits this new facility in the zEnterprise EC12

hardware to help programs that don’t even use DFP !

• For programs that convert PICTURE to FIXED BIN (or

the reverse) the compiler has traditionally used

packed decimal as an intermediary.

• Now it can use DFP instead, and in many cases this is

faster

55

Example: Picture to FIXED Bin (31)

• So, for example, when given this code to convert

PICTURE to FIXED BIN

pic2int: proc(ein, aus) options(nodescriptor);

 dcl ein(0:100_000) pic'(9)9' connected;

 dcl aus(0:hbound(ein)) fixed bin(31) connected;

 dcl jx fixed bin(31);

 do jx = lbound(ein) to hbound(ein);

 aus(jx) = ein(jx);

 end;

end;

56

Example: Picture to FIXED Bin (31)

• Under ARCH(9), the heart of the loop consists of these

8 instructions

0058 F248 D098 1000 PACK #pd580_1(5,r13,152),_shadow2(9,r1,0)

005E C020 0000 0021 LARL r2,F'33'

0064 D204 D0A0 D098 MVC #pd581_1(5,r13,160),#pd580_1(r13,152)

006A 4110 1009 LA r1,#AMNESIA(,r1,9)

006E D100 D0A4 200C MVN #pd581_1(1,r13,164),+CONSTANT_AREA(r2,12)

0074 F874 D0A8 D0A0 ZAP #pd582_1(8,r13,168),#pd581_1(5,r13,160)

007A 4F20 D0A8 CVB r2,#pd582_1(,r13,168)

007E 502E F000 ST r2,_shadow1(r14,r15,0)

57

Example: Picture to FIXED Bin (31)

• While under ARCH(10), it consists of 9 instructions

and uses DFP in several of them – but since only the

ST and the new CDZT refer to storage, the loop runs

more than 66% faster

0060 EB2F 0003 00DF SLLK r2,r15,3

0066 B9FA 202F ALRK r2,r15,r2

006A A7FA 0001 AHI r15,H'1'

006E B9FA 2023 ALRK r2,r3,r2

0072 ED08 2000 00AA CDZT f0,#AddressShadow(9,r2,0),b'0000'

0078 B914 0000 LGFR r0,r0

007C B3F6 0000 IEDTR f0,f0,r0

0080 B941 9020 CFDTR r2,b'1001',f0

0084 5021 E000 ST r2,_shadow1(r1,r14,0)

58

zEC12 Zoned-to/from-DFP Facility

• In converting PICTURE to FIXED BIN, the compiler uses the new

CDZT instruction that converts zoned-decimal to DFP

• In converting from FIXED BIN(31) to PICTURE, the compiler could

use the new instruction CZDT that does the reverse

• However, our tests showed that this set of instructions performed

slightly worse than the old set

• This is another example of the strength of the compiler: it will

exploit new instructions exactly when they help you - and as

another example of this, consider conversions of UNSIGNED

FIXED BIN(32) to PICTURE

59

Example: Unsigned Fixed Bin(32) to Picture

• So, when given this code to convert UNSIGNED FIXED

BIN to PICTURE

uint2pic: proc(ein, aus) options(nodescriptor);

 dcl ein(0:100_000) unsigned fixed bin(32) connected;

 dcl aus(0:hbound(ein)) pic’(10)9’ connected;

 dcl jx fixed bin(31);

 do jx = lbound(ein) to hbound(ein);

 aus(jx) = ein(jx);

 end;

end;

60

Example: Unsigned Fixed Bin(32) to
Picture

• Under ARCH(9), the heart of the loop consists of these

10 instructions

005C 586E F000 L r6,_shadow2(r14,r15,0)

0060 4140 1000 LA r4,#AMNESIA(,r1,0)

0064 C050 0000 0026 LARL r5,F'38'

006A 41E0 E004 LA r14,#AMNESIA(,r14,4)

006E C067 8000 0000 XILF r6,F'-2147483648'

0074 4E60 D0A0 CVD r6,#pd579_1(,r13,160)

0078 D207 D0A8 D0A0 MVC #pd581_1(8,r13,168),#pd579_1(r13,160)

007E FA75 D0A8 5000 AP #pd581_1(8,r13,168),+CONSTANT_AREA(6,r5,0)

0084 D207 D098 D0A8 MVC _temp1(8,r13,152),#pd581_1(r13,168)

008A F397 4000 2000 UNPK _shadow1(10,r4,0),_temp1(8,r2,0)

61

Example: Unsigned Fixed Bin(32) to
Picture

• While under ARCH(10), it consists of only 8

instructions (but uses DFP in several of them), and

combined with the facts that only the L and the new

CZDT refer to storage and that packed decimal is

avoided, the loop runs more than 2 times faster

005C 5851 E000 L r5,_shadow1(r1,r14,0)

0060 EB30 0003 00DF SLLK r3,r0,3

0066 EB40 0001 00DF SLLK r4,r0,1

006C 1E34 ALR r3,r4

006E 4110 1004 LA r1,#AMNESIA(,r1,4)

0072 B953 0005 CDLFTR f0,r5

0076 B9FA 303F ALRK r3,r15,r3

007A ED09 3000 00A8 CZDT f0,#AddressShadow(10,r3,0),b'0000'

62

zEC12 Zoned-to/from-DFP Facility

• To summarize some of the lessons from these
examples:

• A longer set of instructions may be faster than a shorter
set

• Reducing storage references helps performance

• Eliminating packed decimal instructions can help
performance

• Using decimal-floating-point may improve your code’s
performance even in program’s that have no floating-
point data

• The 4.4 PL/I compiler knows when these new ARCH(10)
instructions will help and will exploit them appropriately
for you

63

• This is just one of many Enterprise PL/I 4.4 compiler for

more details about this or other 4.4 new feature you can

contact

• Peter Elderon, elderon@us.ibm.com

• Attend the next What’s New … session at SHARE

64

Cafes

C/C++
http://ibm.com/rational/community/cpp

COBOL
http://ibm.com/rational/community/cobol

Fortran
http://ibm.com/rational/community/fortran

PL/I
http://ibm.com/rational/community/pli

Feature Requests

 C/C++

http://ibm.com/developerworks/rfe/?PROD_ID=700

COBOL
http://ibm.com/developerworks/rfe/?PROD_ID=698

Fortran
http://ibm.com/developerworks/rfe/?PROD_ID=701

PL/I
http://ibm.com/developerworks/rfe/?PROD_ID=699

Connect With Us

Like IBM Compilers on Facebook Follow IBM Compilers on Twitter

http://ibm.com/rational/community/cpp
http://ibm.com/rational/community/cobol
http://ibm.com/rational/community/fortran
http://ibm.com/rational/community/pli
http://ibm.com/developerworks/rfe/?PROD_ID=700
http://ibm.com/developerworks/rfe/?PROD_ID=698
http://ibm.com/developerworks/rfe/?PROD_ID=701
http://ibm.com/developerworks/rfe/?PROD_ID=699
https://www.facebook.com/IBMcompilers
https://twitter.com/IBM_compilers

65

References:

• [1] V. Vokhshoori, M. Mitran, Evalutating the zEC12 Transactional

Execution Facility, IBM System Magazine, Oct. 2012

• [2] Peter Elderon, What’s New in Enterprise PL/I V4R3 and C/C++

V1.13, SHARE San Francisco, Feb. 2013

• [3] C. Jacobi, T. Slegel, D. Greiner, Transactional Memory Architecture

and Implementation for IBM System z, ACM, 2012

• [4] STAMP: Stanford Transactional Applications for Multi-Processing

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun

In IISWC '08: Proceedings of The IEEE International Symposium on

Workload Characterization, Sept. 2008.

http://www.ibmsystemsmag.com/mainframe/trends/IBM-Announcements/compiler_stamp/?page=1
http://www.ibmsystemsmag.com/mainframe/trends/IBM-Announcements/compiler_stamp/?page=1
https://share.confex.com/share/120/webprogram/Session12335.html
https://share.confex.com/share/120/webprogram/Session12335.html

66

67

Two-Column Slide (Type Size=28)

67

• Topic A (Type Size=24)

• Subtopic 1 (Type Size=22)

• Subtopic 2 (Type Size=22)

• Subtopic 3 (Type Size=22)

• Subtopic 4 (Type Size=22)

• Topic B (Type Size=24)

• Topic C (Type Size=24)

• Subtopic 1 (Type Size=22)

• Subtopic 2 (Type Size=22)

• Subtopic 3 (Type Size=22)

• Sub-subtopic 1 (Type

Size=20)

• Sub-subtopic 2(Type

Size=20)

• Topic D (Type Size=24)

68

Slide with Table

68

69

Slide with Text & Graphic

69

