

Effective Data Management in a Tiered Storage Solution

Steve Aaker – Principal Product Manger Damon Clark- Sr. Principal Software Engineer Oracle

> August 14, 2013 Session: 13764

Copyright (c) 2013 by SHARE Inc. C (i) (S) (i) Kerept where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc-sa/3.0/

Agenda

- Challenges Storage IT organizations face
- Getting jobs done at the lowest cost
 - Right tool for the job
 - Oracle Solutions
- Summary

IT Challenges- Balance Requirements to Cost

3

SHARE in Boston

Lifecycle Data Protection – Data Usage

Lifecycle Data Protection with VSM6

Integrates storage virtualization, disk, and tape

Source: Horison Information Strategies

Cost Trends

Year

It's Not Only About Cost/TB

alogy - Connections - Results

	Disk	Таре
Total cost of ownership (archive) ¹	15X	1X
Total cost of ownership (backup) ²	2-5X	1X
Max shelf life (bit rot)	10 years	30 years
Best practices for data migration to new technology	3-5 years	8-12 years
Uncorrected Bit Error Rate, (probability average 1 error in x TB)	10 ⁻¹⁴ (~10's of TB)	10 ⁻¹⁹ (~1 million TB)
Power and cooling ¹	>200X	1X
Labor (TB managed per storage admin) ³	100's	1000's

"The cost of energy alone for the average disk-based (archive) solution exceeds

the entire TCO of the average tape-based solution."1

 $^{\rm 1}$ The Clipper Group, "In Search of the Long-term Archiving Solution"

² Enterprise Strategy Group, Inc. "A Comparative TCO Study: VTLs and Physical Tape Solution"

³ Moore, F. Horison Information Strategies, "Tiered Storage Takes Center Stage"

Complete your sessions evaluation online at SHARE.org/BostonEval

Tiered Storage

- Definition
 - Taking advantage of two or more storage technologies to build a better storage solution
 - Get the benefits of each technology
 - Avoid the pain points of each technology
- Storage Technologies
 - Solid State Disk
 - High Cost however higher IOPs, Random Access, Fast
 - High speed Disk (15000 RPM)
 - SAS/SATA Disk (7200 RPM)
 - RAID, Log Structured File Systems
 - Physical Tape
 - Lowest Cost with high capacity lower performance

Complete your sessions evaluation online at SHARE.org/BostonEval

Tier 1 – High Performance

- Provides repository for active data
 - Large primary disk system
 - Fast, immediate access
 - Replication
 - Asynchronous, Synchronous
 - 1-1, 1-many, many-many
 - Non-disruptive maintenance and upgrades
 - High availability

Middle tier – Processing Layer

- Economical disk
 - Fast recall
 - Larger nearline storage
- More efficiently utilize very large tape repository
 - Reduce tape recall
- Offload peripheral activities from Tier 1
 - Frees Tier 1 system to handle service requests
 - Copy/replication to DR site
 - Deduplication
 - Performance precludes use at Tier 1
 - Most applicable at Tier 2 low throughput/recall impact
 - Move de-duped data to remote site

Tape tier – The Massive Repository

- Very large storage capacity
- Cost
- Encryption
- Tape automation removes the manual interaction
- Long term protection
- Infinitely scalable, grows as needed
 - Low impact, inexpensive growth
 - Add media to increase capacity
 - Add drives to increase throughput
 - Long term data retention
- With new technologies can grow up to 1EB and beyond in a single library

Simple Tiered Virtual Tape with Oracle's StorageTek Virtual Storage Manager (VSM)

Large Capacity Data Storage – Batch/Backup

- Disk-only
- Benefits:
 - No removable media

Large Capacity Data Storage – Batch/Backup

Large Capacity Data Storage – Long term backup and/or archive

Disk and tape system

Benefits:

- Fast access for most recent data
- Large capacity repository
- Persistent, long term storage

Optional

Complete your sessions evaluation online at SHARE.org/BostonEval

Best Practice: "Temporary" loss of data access

Failure of storage device, infrastructure, software, people

Response

- Plan for High Availability (HA)
 - No single point of failure
 - Continuous access to data
- - More hardware
 - Higher cost
 - Longer Job times

outage probability

Best Practice: Protection Against Temporary Outages

High Availability with Virtual Tape

Virtualization of Tape makes simple HA possible

•Many copies of tape data can exist in:

multiple locationsmultiple storagetechnologies

HA tape solutions need to

- •Global access to all data
- •No single point of failure
- •Ease of fail-over and fail-back

Examples: Simple Tiered Virtual Tape with Oracle's StorageTek Virtual Storage Manager (VSM)

Policy Management can be used to secure multiple back-end copies in multiple locations and storage tiers

Examples: Simple Tiered Virtual Tape HA with VSM

Multiple Copies of Data in Multiple Locations

- Policy Management can be used to secure multiple back-end copies in multiple locations
- VSM is a "global" solution
- All VSM systems can access all back-end storage data
- No single point of failure
 - All z/OS hosts can access al VSM systems
 - All VSM systems can access all back-end data
- Fail-over & fail-back is trivial
- Solution can scale massively

Examples: Virtual Tiered Tape HA with VSM

Multiple Copies of Data at Two Sites

 Within a metro area 2 sites can provide further HA capabilities

- As before all hosts can access all data
 - Second host is optional
 - Single host must access both VSMs

Examples: Virtual Tiered Tape HA with VSM

Data at Both Sites Can be Synchronized With Clustering

- Within a metro area 2 sites can provide further HA capabilities
- As before all hosts can access all data
- Now the virtual tape solution at both sites can be kept synchronised
 - Data created on one site is synchronously replicated to the other site
- Fail-over & fail-back are trivial events
- Active Active
- Hosts can preference local VSM

Examples: Virtual Tiered Tape HA with VSM

Data at Both Sites Can be Synchronized With Clustering

- Within a metro area 2 sites can provide further HA capabilities
- As before all hosts can access all data
- Now the virtual tape solution at both sites can be kept synchronised
 - Data created on one site is synchronously replicated to the other site
- Fail-over & fail-back are trivial events
- Active Active
- Hosts can preference local VSM
- VSMs can preference local Real tape drives or Virtual tape drives

Challenge: "Catastrophic" Event

Long term or permanent disruption to entire facility

Protection Against Catastrophic Events

Disaster Recovery and Business Continuance with Virtual Tape

Multiple copies of tape data can be distributed in multiple sites

Key strategic questions

- 1. What are the demands of the business on the data?
 - Recovery Point & Recovery Time Objectives (RPO, RTO)
- 2. What is the plan to re-establish data access?
 - How to get data back to a known and consistent point?
 - How to simplify the recovery plan?
 - Assume it is not an existing IT employee performing the recovery
 - How to verify the recovery plans?

Examples: Using Tiered Virtual Tape for Disaster Recovery

Let Virtual Tape Manage the Data Movement

Examples: Using Tiered Virtual Tape for Disaster Recovery

Let Virtual Tape Manage the Data Movement

Examples: Using Tiered Virtual Tape for Disaster Recovery

Driving Physical Tape Offsite is Another Alternative

Vaulting is Acceptable for Long RTO Data

Supported in Virtual Tape as an EXPORT/IMPORT Type Function

Pros

- Beautifully simple and easy to understand
- Generates consistent data
 - All data and metadata represents a well known point in time
 - Cost effective bulk data transportation.
- Compliance

Cons

- Security risk unless data is encrypted
- Difficult to test without additional cost

Why Tiered Storage?

- •Not a new concept. The fundamental concept has been around since the '70's
- What has changed?
 - Virtual Tape
 - High capacity/economical disk
 - Very high capacity tape
 - Economics of storage technology
 - Storage software has evolved
 - Business Application software now comes with embedded tiered-storage capabilities
 - Optimized Solutions Offerings

Summary

- Match data type and usage patterns closely to the type of storage
 - Design with maximum flexibility in mind
- Plan for more growth
- Include technology migration in your plans
 - Disruptive/non-disruptive
- Consider "peripheral" factors
 - Expected "shelf life" of data on medium
 - Expected lifetime of solution
 - Cooling and power consumption

Back-up

VSM Cross TapePlex Replication

Active vs. Inactive CPU at Disaster Recovery Site

VSM Remote Migration

Remote Real Tape Drives vs. Remote VLE for Disaster Recovery

Remote Real Tape Drives

- Need extended FICON for remote RTDs
- Synchronous copy (PPRC) production CDS
- Optionally send output of DRMON to DR site
- After DR event, power on VSM and CPU, use copy of production CDS
- Use DRMON output or VTV Report to determine what data was not migrated

Remote VLE

- Uses IP for control and data path
- Synchronous copy (PPRC) production CDS or send output of DRMON to DR site
- After DR event, power on VSM and CPU, use copy of production CDS or run VLE Audit to create new CDS
- Use DRMON output or VTV Report to determine what data was not migrated
- All DR Data must fit in VLEs

