
Modern environment for z/OS
development

Rosalind Radcliffe
William Alexander

August 14, 2013

Session: 18688

Insert
Custom
Session
QR if
Desired.

Purpose and Presentation flow

2

•  Purpose … to present application development tools
as a user might use them through the software
development life cycle

•  Flow
•  Overview
• Software development
• Tools

•  Walk through the life cycle and tooling that supports
each step

Four key barriers preventing optimal return on
IT investments

3 3

Decades of
application
investments

Islands of skills,
languages
and platforms

Poorly
integrated
teams

Infrastructure
inefficiency

“We need to enable our teams
to collaborate across platforms,
languages, and environments.”

“We need a cost effective way to improve
our infrastructure efficiency and free up
capacity to handle more workload.”

“We don’t understand the effort,
risk and impact of modernizing
our legacy applications.”

“Our skills gap keeps growing.
How do we stay current with all the language
and technology changes?”

Overview of Supported Production Scenario
 Project Manager or Support Team has submitted Project Change Request …

4 4

4: Promote and deploy
enhancement
-  Promote changes from

development to test

-  Create update package with set
of changes from development

-  Deploy update package to the
test environment

3: Implement required
changes, build and

deliver
- Analyze source to identify

modifications

- Implement and test
modifications

- Perform personal build and
deliver new features

2: Review and Approve
Change Request

-  Review analysis for change
request and approve for

scheduling

-  Create development work
item(s) for implementation

-  Add work to project plan

1: Review Change Request
-  Analyze application to be changed

-  Size/scope effort and risk of
change

-  Submit to Project Manager for
review, approval and scheduling Analyst/SME

Lead
Developer/

Release
Engineer

Project
Manager

Application
Developer

5. Track Project Status
with Rational Team
Concert Dashboard

Development Life Cycle

5

•  Define the tasks
•  Create a plan
•  Create a work item
•  Assign the work

item to a developer

•  Load the project/
source artifacts from
SCM

•  Navigate, Analyze,
Edit, Syntax check
source code

•  Compile
•  Quality assurance

•  Debug
•  Code Coverage
•  Code review
•  Unit Testing

•  Check-in/Deliver the
source code

•  Build

CLM

RDz
RTC

RDz
RD&T
RTC

RTC
RDz

5

Source
Dev Build Planning Governance/Unit

test

Collaborative application lifecycle management
Deploy new, common team infrastructure for source control, change
management and build that empowers your team with integrated
collaboration, process automation and reporting

6 6

ü  Decreases development time by 15 to 20 percent

“Building an agile development team requires a multiplatform approach, and Sodifrance
uses Rational Developer for System z and Rational Team Concert for System z to help

application teams synchronize their efforts and improve collaboration.
Rational on System z offers a powerful and valuable combination

for any company that wants to boost its development team’s productivity.”
— Hugh Smith, Project Manager, Sodifrance

Requirements Project/Planning Development Testing

Unify

Rational Team Concert – A single tool, many
capabilities

7

•  Source Control

7

§  Planning §  Work Items

§  Method Enforcement and
Automation

§  Dashboards & Reporting §  Builds – Continuous
Integration

8 8

Query
Storage

Collaboration

Discovery

Administration:
Users, projects,
process

JAZZ SERVICES

Business Partner
Extensions Your Extensions

Rational Team Concert: Built on an open, Web 2.0
platform
Supporting a broad range of desktop clients, IDE’s and languages

Rational Developer for System
z

Rational Software Architect

Rational Systems Developer

Rational Business Developer

Rational Developer for Power

Eclipse Clients Web Clients
Visual Studio

Microsoft .NET Clients Rational Desktop Clients

Rational Team Concert

Web 2.0 Jazz Client Extensions

Eclipse Platform

IBM Rational Extensions

Best Practices
Presentation:
Mashups

9

Rational Developer for System z:
An Integrated Development Environment for System z

9

Rational Developer for System z

A modern IDE for productive development of
cross-platform applications written in COBOL,
PL/I, ASM, Java, EGL or C/C++ in System z
CICS, IMS, DB2, Batch applications

Access to typical System
z sub-system functionality
in z/OS, CICS, IMS, DB2,
WAS

Integration with Debug Tool
for Development and Test

Integration with Fault
Analyzer for Dump Analysis

Integration with File
Manager for file and test
data handling

Integration with Asset
Analyzer for Application
Understanding and Impact
Analysis

Integration with Team
Concert for Lifecycle and
Source Management

Integration with RD&T for
flexible access to System z
environment

10

The Benefits of RDz
Instead of maneuvering to access panels and working sequentially,
in RDz the functionality you need is always in-focus – you work concurrently

10

Access
Datasets
+ Dataset
Management

Access Jobs
(Outlist facility)

Edit a program

Dataset Statistics

Submit a Compile

File Compare

ç File Search

11

Traditional development and Enterprise
web services

11

Enterprise Service Tools
Single service projects
Top down, bottom up, and meet in the middle
web service enablement for CICS, IMS, and
Batch/TSO environments.

Service flow projects
Graphical composition of CICS applications
chained together to form a new business
service.

Enable Enterprise Applications for Mobile and
Web

Supports traditional development/maintenance
•  Cobol, PL/I, Assembler, JCL

Supports modern architecture development

12 12

Rational Development and Test Environment for
System z
The ultimate in modern application development for System z

Note: This Program is licensed only for development and test of applications that run on IBM z/OS. The Program may not be used to run production workloads of any kind, nor more
robust development workloads including without limitation production module builds, pre-production testing, stress testing, or performance testing.

RDz & ISPF user

ISPF user
RDz user

RDz user RDz user

COBOL, PL/I, C++, Java, EGL, Batch,
Assembler, Debug Tool

 x86 PC running Linux

RDz user

IMS

z/OS

WAS

DB2

MQ
CICS

§  Increase availability of z/OS testing environment and resources
§  Liberate developers to rapidly prototype new applications
§  Develop and test System z applications anywhere, anytime!
§  Eliminate costly delays by reducing dependencies on operations staff

§  Improve quality and lower risk via automation, measurement, and collaboration
§  Focus on what is required for the change at hand, then scale

Development Life Cycle

13

•  Define the tasks
•  Create a plan
•  Create a work item
•  Assign the work

item to a developer

•  Load the project/
source artifacts from
SCM

•  Navigate, Analyze,
Edit, Syntax check
source code

•  Compile
•  Quality assurance

•  Debug
•  Code Coverage
•  Code review
•  Unit Testing

•  Check-in/Deliver the
source code

•  Build

CLM

RDz
RTC

RDz
RD&T
RTC

RTC
RDz

13

Source
Dev Build Planning Governance/Unit

test

14

Process
Architect

Variant #1

Variant #2

Variant #3

Project
Manager

Scrum

Waterfall

Iterative

Project C
 Waterfall

Analyst Release
Engineer Developer Quality

Professional

Project B

Analyst Release
Engineer Developer Quality

Professional

Project A

Product Owner Scrum Master Team Member
Agile

Iterative

Fo
rm

al
 P

ro
je

ct
 M

gt
 T

em
pl

at
e

S
cr

um
 T

em
pl

at
e

14

Any process: Executable and repeatable
Use ONE tool to support both agile and non-agile

15

Multiple plan views facilitate continuous planning

Progress Tracking - Everyone can see live
project status

16 16

17 17

In-context Collaboration – Team View

Team Central
§ Shows what is happening on project:

• News & events
• What’s being worked on
• Changes

§ Configurable (RSS feeds) - New kinds of information
easily added

§ Personalized, Persistent - Each team member can
tailor to their needs

17

Development Life Cycle

18

•  Define the tasks
•  Create a plan
•  Create a work item
•  Assign the work

item to a developer

•  Load the project/
source artifacts from
SCM

•  Navigate, Analyze,
Edit, Syntax check
source code

•  Compile
•  Quality assurance

•  Debug
•  Code Coverage
•  Code review
•  Unit Testing

•  Check-in/Deliver the
source code

•  Build

CLM

RDz
RTC

RDz
RD&T
RTC

RTC
RDz

18

Source
Dev Build Planning Governance/Unit

test

19

RDz Source Code Integration

19

RDz

Rational Team Concert

SCLM

Rational ClearCase

Framework for other SCMs

CA Endevor

§  Rational’s Strategic Source Code tooling is
RTC and RDz provides tight integration

§  RDz offers integration into a variety of other
Source Code Management (SCM) tools as
well as a framework for creating SCM
integration on your own (CARMA)

§  Variety of vendors supply plug-ins to RDz to
provide easy access to processes and
source code controlled by their products

Source Control Management

20

21

Load the source artifacts

21 21

22

RDz and RTC together

•  Once the project is loaded, it will
appear in the RDz z/OS projects view

•  RDz augments the development
productivity & experience
•  Appropriate editors (COBOL, maps,

etc.) and functions (content assist, real
time syntax check, etc.)

•  High value functions (Enterprise web
services, SFM, Code review, Unit
testing, program analysis/control flow
etc.)

23

Create a Property Group
§ Generate property groups for your project based on RTC build definition
§ Allows RDz to resolve the dependencies and thus offer all the tooling

23

Navigate datasets and jobs live on zOS

24

•  Connect to multiple hosts concurrently
•  Respects existing security configurations and user IDs
•  Search, filter, browse, edit, compare, migrate, and

allocate new MVS datasets and USS files
•  Copy source code, members, or datasets between

systems with a few mouse clicks.
•  Access JES queues submit jobs, view job state, and

open output spools
•  Submit TSO or USS commands
•  Add datasets and members into projects to group

applications and work items together logically
•  Open an emulator in the IDE to configured hosts

24

25

Edit capabilities in RDz
•  RDz at a high level has different types of

editors
•  LPEX Editor

•  Supports editing of COBOL, PLI,
HLASM, JCL, C/C++, Rexx etc.

•  Provides ISPF like edit experience
including prefix commands, command
line and even look and feel

•  Supports advanced edit functions for
COBOL, PLI and HLASM like real time
syntax checking, content assist

•  COBOL, PLI, and JCL advanced editors
•  Based on the Eclipse editor

infrastructure, provide more advanced
edit capabilities like quick fixes, hyper-
linking, hover, easy navigation between
various edit sessions or within the same
edit session.

•  Supports real time syntax checking,
content assist, key word highlighting etc.

25

26

Edit capabilities in RDz
•  RDz at a high level has different types

of editors
•  WYSIWYG editors

•  Creation, edit of BMS and MFS maps
•  Has the source and design view –

allows drag and drop of fields in the
design view which generates the
appropriate source

•  Data Editors
•  Edit QSAM data

26

27

Editor Productivity features - Develop
code more efficiently

27

 Find all statements
 and
 variables
 (including from COPYBOOKS or
 INCLUDE)

JCL Template Support
Ø  Templates are provided for standard JCL statements, and users can create their
own Templates

Ø  When editing .jcl file using “Ctrl+Space” in the editor will trigger a pop list allowing
the user to select the template to insert into the editor contents

28 28

29

Editor Productivity Features – real time
syntax checking

29

Real-time syntax check without requiring code compile or save

30

Editor Productivity Features – Data Tooling

•  Run SQL – Highlight the EXEC SQL statement, and run it on the server
•  Results in SQL Results View
•  Tune SQL: Opens Query tuning analysis tools

Editor Productivity Features
l  Provide "Open Called Program" action

l  Hyper linking support for Open/ Browse/
View copybooks/include files

31 31

l  Show In > Outline action to COBOL and PL/I
Editor

Editor Productivity Features

l  Mark “Write occurrences” capability
to the supported EXEC statements

l  Occurrences within EXEC
statements known to be “writes” are
highlighted with a BROWN
background

•  All “read” statements will continue to
be highlighted with a GREY
background

32 32

Search for Occurrences Action
Ø  Once a variable is selected the user triggers the “Find Occurrences”
action using the Menu under search or keyboard shortcut “Ctrl+Shift+U”

Ø  The occurrences are shown in the “Search results” page

33 33

Copy book and Include file resolution

•  Hover over a COPY book name or a INCLUDE file to see the
contents
•  Pressing F2 when hovering will “pin” the hover as shown
•  The window can then be dragged to expand, the Pencil icon

shown below can be used to edit the copy book

34 34

Enhanced Application Quality & Structure
Analysis
•  Application Analysis
•  Control flow diagrams for COBOL programs,

§  Graphical representation of the program flow with links to the
source

•  Helps identify and highlight potential unreachable code

35

Enhanced Structure Analysis – Data Element
Table

36

Pending Changes

•  If you want finer grained
control on your SCM
operations, then the Pending
Changes view is for you
•  Check in, deliver, accept

changes
•  Suspend, resume, discard

changes
•  Replace, reload out-of-sync
•  Resolve conflicts
•  Open change sets and work

items via the web client

37

Traceability : Check-in History
•  Someone made a costly mistake merging and you want to

understand exactly where the mistake was made
•  Problem : Traditional history commands & UI only show before/

after & merge states for a change set … it does not show
intermediates

•  Solution : Use Check-in history in Eclipse, CLI or .NET clients

38

Development Life Cycle

39

•  Define the tasks
•  Create a plan
•  Create a work item
•  Assign the work

item to a developer

•  Load the project/
source artifacts from
SCM

•  Navigate, Analyze,
Edit, Syntax check
source code

•  Compile
•  Quality assurance

•  Debug
•  Code Coverage
•  Code review
•  Unit Testing

•  Check-in/Deliver the
source code

•  Build

CLM

RDz
RTC

RDz
RD&T
RTC

RTC
RDz

39

Source
Dev Build Planning Governance/Unit

test

40

Debug Multiple Runtimes – using IBM Debug tool
•  Use the cross-platform debugger to

debug end-to-end systems as they
execute in the runtime
•  IMS
•  CICS
•  DB2
•  Batch
•  WAS
•  Java

•  From the workstation:
•  View executing source code
•  Step through host code line-by-line
•  Set breakpoints
•  Alter working storage values
•  Alter register values
•  Etc…

•  Debug zOS and distributed code in the
same interface even stepping between
runtimes and platforms!

40

41

Innovative Debugging using Collaboration
•  Collaborative debug with RDz and

IBM Debug Tool via the Rational
Team Concert Server!
•  Share breakpoints and monitors

with other team members
•  Transfer debug session control to

other users
•  Save debugging sessions for later

retrieval in the team environment
•  Works for WAS (JEE) and System

z applications

41

Enhanced Application Quality – Code
Coverage
•  Line Level Code Coverage - provides tools to measure and report

on test coverage of an application
•  Indicating what source code lines were tested and remain to be
tested

42 42

43

Enhanced Quality & Structure Analysis – Code
review
• Code Review/Governance -
provides predefined rules and
templates for COBOL and PL/I
applications
• Ensure adherence to corporate
standards

43

44

zUnit – Unit testing framework for z/OS
•  Frameworks that assist developers in

writing code to perform repeatable,
self-checking unit tests are
collectively known as xUnit.

•  xUnit defines a set of concepts that
together provide a light-weight
architecture for implementing unit
testing frameworks.
•  JUnit, for example, is a very popular

instance of the xUnit architecture.
•  zUnit is a xUnit instance for System z
•  Goal is to encourage the continuous

integration and continuous testing
methodology for System z Application
development and maintenance

44

TESTCASE1(...)

ADDTESTS2(...)

TEST0012(...)

TESTnnn2(...)

SETUP2(...)

TEARDOWN 2(...)

. . .

ZXUTCINI(...)

ZXUTCADD(...)

ZXUASTFM(...)

ZXUASTFA(...)

USER.ZUNIT(TESTCASE)

zUnit Test Runner API

Invoking the assertion APIs in the
SETUP, TEARDOWN, or active TEST
entry will fail the current Test.

1Language-specific details:
In COBOL, this is the first program appearing in the Test Case source file and it will
be invoked by the Test Runner for Test Case initialization.
In PL/I, the is the procedure declared with option(fetchable) in the Test Case source
file and it will be invoked by the Test Runner for Test Case initialization.

2Language-specific details:
In COBOL, these are expected to be subprograms (non-nested and therefore
compatible with FUNCTION-POINTER).
In PL/I, these are expected to be internal procedures that are declared at the
package level (non-nested).

Development Life Cycle

45

•  Define the tasks
•  Create a plan
•  Create a work item
•  Assign the work

item to a developer

•  Load the project/
source artifacts from
SCM

•  Navigate, Analyze,
Edit, Syntax check
source code

•  Compile
•  Quality assurance

•  Debug
•  Code Coverage
•  Code review
•  Unit Testing

•  Check-in/Deliver the
source code

•  Build

CLM

RDz
RTC

RDz
RD&T
RTC

RTC
RDz

45

Source
Dev Build Planning Governance/Unit

test

Enterprise Extensions Specific Functions

46

•  Dependency build
•  “Smart build” of z/OS and IBM i

applications, based on what
has changed

•  Promotion
•  Flow of source code changes

and build outputs through
development hierarchy

•  Packaging and deployment
•  Package build outputs and

deploy to another system (e.g.
test environment, QA,
production, etc)

The big picture

47

1.  Dependency build runs on build machine. Source is loaded from Dev Stream and
outputs are built in Dev Library.

2.  Promotion build runs on build machine. Source is promoted from Dev Stream to
Test Stream and build outputs are copied from Dev Library to Test Library.

3.  Package build runs on build machine. Test Library build outputs are archived in a
package.

4.  Deploy build runs on various test machines. Package is loaded to test machine
and build outputs are deployed to runtime libraries. Test Machine 1

Jazz Team Server

Test Stream

Dev Stream

Build Machine

Test Library

Dev Library

Runtime Library

Test Machine 2

Test Machine 3

Package

Runtime Library

Runtime Library
1

2
2

3

4

4

4

Dependency Build Summary

48

1- Scan

2- Preprocessing

Scan new or changed files
Extract their logical
information and
dependencies

For changed files:
impact on build maps

Calculate dependency
sets

Dependency
 sets

Build processing

Server Mainframe (Build machine)

Build
Maps

Snapshots for every build

49

Promotion

50

•  Flow source code changes and build outputs through the
development hierarchy

Source
Outputs

Summary

51

•  Many companies spend more than 70% on keeping lights on, and that amount is
increasing

•  IT organizations have problems modifying applications at speed of business
•  IBM provides a structured approach to incrementally modernize your portfolio

based on business priorities
•  Change without a plan is chaos
•  A Plan without change is stagnation
•  Business goals change
• applications need to change to address them

•  Continual renewal is required
•  tools help to guide, govern, drive, and accomplish this change

• Related sessions 13686,16683 & Exhibit Hall

Getting started
Next steps to modernize your enterprise
applications

52

Ø Try latest System z software for free

Ø Sign up for free web-based training

Ø Join IBM Rational Cafe Communities

Ø Get prescriptive service solutions

www.ibm.com/rational/modernization

Ø Latest news on System z twitter

Ø Latest customer videos

Ø Success stories

Ø Latest skills: System z job board

Enterprise
Modernization Revitalize

UnifyEmpower

Optimize

Enabling Product
and Service Innovation

53 53

