
© 2013 IBM Corporation

Introduction to Assembler Programming
SHARE Boston 2013
Sharuff Morsa smorsa@uk.ibm.com

Session 13673 Part 1
Session 13675 Part 2

Richard Cebula – HLASM

2 SHARE Boston 2013 © 2013 IBM Corporation

Introduction

■Who am I?

–Sharuff Morsa, IBM Hursley Labs UK

smorsa@uk.ibm.com

–Material was written by Richard Cebula

Introduction to Assembler Programming

mailto:smorsa@uk.ibm.com

3 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming

■ Why assembler programming?

■ Prerequisites for assembler programming on System z

■ Moving data around

■ Logical instructions

■ Working with HLASM

■ Addressing data

■ Branching

■ Arithmetic

■ Looping

■ Calling conventions

■ How to read POPs

Introduction to Assembler Programming

4 SHARE Boston 2013 © 2013 IBM Corporation

Audience

■ This is an INTRODUCTION to assembler programming

■ The audience should have a basic understanding of computer programming

■ The audience should have a basic understanding of z/OS

■ At the end of this course the attendee should be able to:
– Understand the basics of assembler programming on System z
– Use a variety of simple machine instructions

Introduction to Assembler Programming

5 SHARE Boston 2013 © 2013 IBM Corporation

Why program in assembler?

■ Assembler programming has been around since the very start of computer languages as an
easy way to understand and work directly with machine code

■ Assembler programming can produce the most efficient code possible
– Memory is cheap
– Chips are fast
– So what?

■ Assembler programming TRUSTS the programmer
– Humans are smart (?)
– Compilers are dumb (?)

■ Assembler programming requires some skill
– No more than learning the complex syntax of any high-level language, APIs (that change

every few years), latest programming trends and fashions
– Your favorite language will too become old, bloated and obsolete!

Introduction to Assembler Programming

6 SHARE Boston 2013 © 2013 IBM Corporation

Why program in assembler?

■ Misconceptions of assembler programming
– I need a beard right?
– It's too hard...
– Any modern compiler can produce code that's just as efficient now days...
– I can do that quicker using...
– But assembler isn't portable...

Introduction to Assembler Programming

7 SHARE Boston 2013 © 2013 IBM Corporation

Why program in assembler?

■ Misconceptions of assembler programming
– I need a beard right?

• Assembler programmers tend to be older and more experienced and typically wiser
• Experienced programmers that have used assembler know that they can rely on it for

the most complex of programming tasks
– It's too hard...

• Learning assembler is just like learning any other language
• Each instruction to learn is as easy as the next
• Syntax is consistent
• No difficult APIs to get to grips with

– Any modern compiler can produce code that's just as efficient now days...
• Compilers CAN produce efficient code but that is not to say that they WILL
• Optimization in compilers is a double-edged sword – compilers make mistakes

– I can do that quicker using...
• Good for you, so can I...

– But assembler isn't portable...
• Neither is Java, nor C, nor C++... portability depends on your definition of it

Introduction to Assembler Programming

8 SHARE Boston 2013 © 2013 IBM Corporation

Why program in assembler?

■ The assembler mindset
– You are not writing code – you are programming the machine
– You must be precise
– Your assembler program is no better than your programming

■ Assembler programming provides the programmer with TOTAL freedom
– What you choose to do with that freedom is your choice and your responsibility

■ The code you write is the code that will be run

Introduction to Assembler Programming

9 SHARE Boston 2013 © 2013 IBM Corporation

Prerequisites for assembler programming on System z

■ Basic programming knowledge is assumed

■ Understand binary and hexadecimal notation
– 2's complement, signed arithmetic, logical operations

■ A basic knowledge of computer organisation

■ Basic z/OS knowledge
– ISPF, JCL, SDSF

■ A copy of z/Architecture Principles of Operation – aka POPs
– POPs is the processor manual
– Optionally, a copy of the z/Architecture reference summary

Introduction to Assembler Programming

10 SHARE Boston 2013 © 2013 IBM Corporation

Brief overview of z/Architecture

■ z/Architecture – the processor architecture used for all System z Mainframes

■ Processor specifications vary
– Processor level – the physical (or virtual) chip used
– Architecture level – the instruction specification of a chip

■ System z is a 64-bit, big-endian, rich CISC (over 1000 instructions) architecture with:
– 16 64-bit General Purpose Registers (GPRs)
– 16 32-bit Access Registers (ARs)
– 16 64-bit Floating Point Registers (FPRs)
– 16 64-bit Control Registers (CRs)
– 1 Program Status Word (PSW)
– And other features including Cryptography, I/O dedicated channel processors

■ All registers are numbered 0-15; the instructions used distinguish which 0-15 means which
register

■ A WORD → 32-bits, DOUBLEWORD → 64-bits, HALFWORD → 16-bits

Introduction to Assembler Programming

11 SHARE Boston 2013 © 2013 IBM Corporation

Brief overview of z/Architecture – Understanding Registers

■ GRPs – used for arithmetic, logical operations, passing operands to instructions, calling
subroutines etc

■ ARs – used in “Access Register” mode – provides the ability to access another address
space

■ FPRs – used for floating point instructions, both binary and hexadecimal arithmetic
– DECIMAL arithmetic is performed using GPRs

■ CRs – used for controlling processor operations

■ PSW – provides the status of the processor consisting of 2 parts:
– PSW Flags – these show the state of the processor during instruction execution
– Instruction address – this is the address of the next instruction to be executed

■ GPRs and FPRs can be paired
– GPRs form even-odd pairs, i.e. 0-1, 2-3,...,14-15
– FPRs pair evenly / oddly, i.e. 0-2, 1-3,...,13-15

Introduction to Assembler Programming

12 SHARE Boston 2013 © 2013 IBM Corporation

Understanding Binary Numbers

Introduction to Assembler Programming

13 SHARE Boston 2013 © 2013 IBM Corporation

Binary Numbers

■ Nearly all computers today use binary as the internal
"language"

■ We need to understand this language to fully understand instructions and data

■ Even decimal numbers are represented internally in binary!

■ Binary numbers can get very long, so we use hexadecimal
("hex") as a shorthand

■ A hex digit is simply a group of four binary digits (bits)

Introduction to Assembler Programming

14 SHARE Boston 2013 © 2013 IBM Corporation

Binary Numbers

■ Dec Bin Hex
■ 0 0000 0
■ 1 0001 1
■ 2 0010 2
■ 3 0011 3
■ 4 0100 4
■ 5 0101 5
■ 6 0110 6
■ 7 0111 7

Introduction to Assembler Programming

■ Dec Bin Hex
■ 8 1000 8
■ 9 1001 9
■ 10 1010 A
■ 11 1011 B
■ 12 1100 C
■ 13 1101 D
■ 14 1110 E
■ 15 1111 F

15 SHARE Boston 2013 © 2013 IBM Corporation

Binary Numbers

■ Consider how we write numbers in base 10, using the digits 0 - 9:

■ BASE 10
 83210 = 80010 + 3010 + 210

 = 8 x 100 + 3 x 10 + 2 x 1
■ For numbers in base 2 we need only 0 and 1:

11012 = 10002 + 1002 + 002 + 12

■ But because it requires less writing, we usually prefer

base 16 to base 2

Introduction to Assembler Programming

16 SHARE Boston 2013 © 2013 IBM Corporation

Binary Numbers

■ To convert from binary to hexadecimal

■ Starting at the right, separate the digits into groups of
four, adding any needed zeros to the left of the leftmost
digit so that all groups have four digits

■ Convert each group of four binary digits to a
hexadecimal digit

0001 1000 1100 0111
 1 8 C 7

Introduction to Assembler Programming

17 SHARE Boston 2013 © 2013 IBM Corporation

Main Storage Organization

Introduction to Assembler Programming

18 SHARE Boston 2013 © 2013 IBM Corporation

Main Storage Organization

■ A computer's memory is simply a collection of billions of such
systems implemented using electronic switches

■ Memory is organized by grouping eight bits into a byte, then
assigning each byte its own identifying number, or address, starting
with zero

■ Bytes are then aggregated into words (4 bytes), halfwords (2 bytes)
and doublewords (8 bytes)

■ One byte = 8 bits
■ One word = four bytes = 32 bits
■ Double word = eight bytes = 64 bits

Introduction to Assembler Programming

19 SHARE Boston 2013 © 2013 IBM Corporation

Main Storage Organization

■ Typically, each of these aggregates is aligned on an address
boundary which is evenly divisible by its size in bytes

■ So, a word (32 bits) is aligned on a 4-byte boundary (addresses 0,
4, 8, 12, 16, 20, ...)

■ A double word is aligned on a 8-byte boundry (0, 8, 16, 32, ...)

■ Remember, memory addresses refer to bytes, not bits or words

Introduction to Assembler Programming

20 SHARE Boston 2013 © 2013 IBM Corporation

Main Storage Organization

■ One of the characteristics of z/Architecture is that programs and
data share the same memory (this is very important to understand)

■ The effect is that
–Data can be executed as instructions
–Programs can be manipulated like data

■ This is potentially very confusing

–Is 05EF16 the numeric value 151910 or is it an instruction?

Introduction to Assembler Programming

21 SHARE Boston 2013 © 2013 IBM Corporation

Main Storage Organization

■ Instructions are executed one at a time

■ The Program Status Word (PSW) always has the memory address
of the next instruction to be executed

More on the PSW later

Introduction to Assembler Programming

22 SHARE Boston 2013 © 2013 IBM Corporation

Base-Displacement Addressing

Introduction to Assembler Programming

23 SHARE Boston 2013 © 2013 IBM Corporation

Base-Displacement Addressing

■ Every byte of a computer's memory has a unique address, which is
a non-negative integer

■ This means that a memory address can be held in a general
purpose register

■ When it serves this purpose, a register is called a base register

Introduction to Assembler Programming

24 SHARE Boston 2013 © 2013 IBM Corporation

Base-Displacement Addressing

■ The contents of the base register
(the base address of the program) depends on where in
memory the program is loaded

■ But locations relative to one another within a program don't
change, so displacements are fixed when the program is
assembled

■ z/Architecture uses what is called base-displacement addressing
for many instruction operands

Introduction to Assembler Programming

25 SHARE Boston 2013 © 2013 IBM Corporation

Base-Displacement Addressing

■ A relative displacement is calculated at assembly time and is
stored as part of the instruction, as is the base register number

■ The base register's contents are set at execution time, depending
upon where in memory the program is loaded

■ The sum of the base register contents and the displacement gives
the operand's effective address in memory

Introduction to Assembler Programming

26 SHARE Boston 2013 © 2013 IBM Corporation

Base-Displacement Addressing

■ For example:
if the displacement is 4
and
the base register contains 00000000 000A008C

The operand's effective address is

00000000 000A0090
■ When an address is coded in base-displacement form

– it is called an explicit address

We'll see implicit addresses later

Introduction to Assembler Programming

27 SHARE Boston 2013 © 2013 IBM Corporation

Base-Displacement Addressing

■ When coding base and displacement as part of an assembler
instruction, the format is often D(B), depending on the instruction

■ D is the displacement, expressed as a decimal number in the
range 0 to 4095 (hex 000-FFF)

■ B is the base register number, except that 0 (register zero) means
"no base register," not "base register 0"

Introduction to Assembler Programming

28 SHARE Boston 2013 © 2013 IBM Corporation

Base-Displacement Addressing

■ Some examples of explicit addresses:

 4(1) 20(13) 0(11)

■ In 0(11), the base register gives the desired address without
adding a displacement

■ When the base register is omitted, a zero is supplied by the
assembler - so coding 4 is the same as coding 4(0)

Introduction to Assembler Programming

29 SHARE Boston 2013 © 2013 IBM Corporation

Base-Displacement Addressing

■ Some instructions allow for another register to be used to compute
an effective address.The additional register is called an index
register

■ In this case, the explicit address operand format is D(X,B)
or D(,B) if the index register is omitted

■ D and B are as above. X is the index register number

And then there is Relative addressing -more later

Introduction to Assembler Programming

30 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Moving Data

Introduction to Assembler Programming

31 SHARE Boston 2013 © 2013 IBM Corporation

Moving Data – Loading from Register to Register

■ The LOAD REGISTER (LR) instruction is used to load the value stored in one register to
another

LR 1,2 LOAD REGISTER 2 INTO REGISTER 1 (32-BITS)
■ The instruction copies 32-bits from a register to another

The copy is right to left

■ The instruction has a 64-bit variant LOAD GRANDE REGISTER (LGR)
LGR 1,2 LOAD REGISTER 2 INTO REGISTER 1 (64-BITS)

■ The instruction has a 16-bit variant LOAD HALFWORD REGISTER
LHR 1,2 LOAD REGISTER 2 INTO REGISTER 1 (16-BITS)

Introduction to Assembler Programming

32 SHARE Boston 2013 © 2013 IBM Corporation

Moving Data – Loading from Memory to Register

■ The LOAD (L) instruction is used to load the value stored in memory to a register
L 1,NUMBER LOAD REGISTER 1 WITH THE VALUE NUMBER

■ The instruction copies 32-bits from memory to a register

The copy is right to left

■ The instruction has a 64-bit variant LOAD GRANDE (LG)
LG 1,NUMBER LOAD REGISTER 1 WITH THE VALUE NUMBER

■ The instruction has a 16-bit variant LOAD HALFWORD REGISTER
LH 1,NUMBER LOAD REGISTER 1 WITH THE VALUE NUMBER

Introduction to Assembler Programming

33 SHARE Boston 2013 © 2013 IBM Corporation

Moving Data – Storing from a Register to Memory

■ The STORE (ST) instruction is used to store the value in a register to memory
ST 1,address STORE REGISTER 1 TO address (32-BITS)

■ The instruction copies 32-bits from a register to memory

The copy is left to right

■ The instruction has a 64-bit variant STORE GRANDE (STG)
STG 1,address STORE REGISTER 1 TO address (64-BITS)

■ The instruction has a 16-bit variant STORE HALFWORD
STH 1,address STORE REGISTER 1 TO address (16-BITS)

Introduction to Assembler Programming

34 SHARE Boston 2013 © 2013 IBM Corporation

Moving Data – Moving data without registers

■ The MOVE (MVC) instruction can be used to move data in memory without the need for a
register

MVC OUTPUT,INPUT MOVE INPUT TO OUTPUT

■ The MVC instruction can move up to 256 bytes from one area of memory to another

■ The MVCL instruction can move up to 16 Meg (but uses different parameters)

■ The MVCLE instruction can move up 2G (or up to 16EB in 64-bit addressing)

■ In all cases, the move instruction moves 1 byte at a time (left to right)

Introduction to Assembler Programming

35 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Logical Operations

Introduction to Assembler Programming

36 SHARE Boston 2013 © 2013 IBM Corporation

Logical Instructions – EXCLUSIVE OR (X, XG, XR, XGR, XC)

■ The EXCLUSIVE OR instructions perform the EXCLUSIVE OR bit-wise operation
X 1,NUMBER XOR REGISTER 1 WITH NUMBER (32-BITS)
XG 1,NUMBER XOR REGISTER 1 WITH NUMBER (64-BITS)
XR 1,2 XOR REGISTER 1 WITH REGISTER 2 (32-BITS)
XGR 1,2 XOR REGISTER 1 WITH REGISTER 2 (64-BITS)
XC NUM1,NUM2 XOR NUM1 WITH NUM2 (UP TO 256-BYTES)

■ Notice a pattern with the instruction mnemonics?
– Rules of thumb:

• G → 64bits (DOUBLEWORD)
• H → 16bits (HALFWORD)
• R → register
• C → character (byte / memory)
• L → logical (i.e. unsigned)

Introduction to Assembler Programming

37 SHARE Boston 2013 © 2013 IBM Corporation

Logical Instructions – AND (Nx), OR (Ox)

■ The AND instructions perform the AND bit-wise operation
N 1,NUMBER AND REGISTER 1 WITH NUMBER (32-BITS)
NG 1,NUMBER AND REGISTER 1 WITH NUMBER (64-BITS)
NR 1,2 AND REGISTER 1 WITH REGISTER 2 (32-BITS)
NGR 1,2 AND REGISTER 1 WITH REGISTER 2 (64-BITS)
NC NUM1,NUM2 AND NUM1 WITH NUM2 (UP TO 256-BYTES)

■ The OR instructions perform the OR bit-wise operation
O 1,NUMBER OR REGISTER 1 WITH NUMBER (32-BITS)
OG 1,NUMBER OR REGISTER 1 WITH NUMBER (64-BITS)
OR 1,2 OR REGISTER 1 WITH REGISTER 2 (32-BITS)
OGR 1,2 OR REGISTER 1 WITH REGISTER 2 (64-BITS)
OC NUM1,NUM2 OR NUM1 WITH NUM2 (UP TO 256-BYTES)

Introduction to Assembler Programming

38 SHARE Boston 2013 © 2013 IBM Corporation

A word on instruction choice

■ In 5 basic operations (loading, storing, AND, OR, XOR) we have already seen over 25
instructions!

■ How do I decide which instruction to use?
– The instruction should be chosen for:

• Its purpose, e.g. don't use a STORE instruction to LOAD a register – it won't work!
• Its data, e.g. 32-bits, 16-bits, 64-bits, bytes?

■ Many instructions can perform similar operations, e.g.
XR 15,15 XOR REGISTER 15 WITH REGISTER 15
L 15,=F'0' LOAD REGISTER 15 WITH 0

■ Different instructions NEVER do the same thing even if you think they do
– The result does not justify the means

Introduction to Assembler Programming

39 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Working with HLASM

Introduction to Assembler Programming

40 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM

■ HLASM – IBM's High Level Assembler

■ Available on z/OS, z/VM, z/VSE, z/Linux and z/TPF

■ High Level Assembler??? - YES!
– Provides a wide range of assembler directives

• An assembler directive is not a machine instruction
• It is an instruction to the assembler during assembly of your program

– An incredible macro programming facility
– Structured programming

Introduction to Assembler Programming

41 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – Producing a program

■ Assembling is the process of changing assembler source code into OBJECT DECKS
– To assemble, use an assembler

■ The assembler produces 2 outputs
– OBJECT DECKS – this is the object code that is used as input to binding
– Listing – this provides shows any errors, all diagnostics and human readable output from

the assemble phase

■ Binding is the process of combining object code into a LOAD MODULE
– To bind, us a Binder

■ The Binder produces 2 outputs
– LOAD MODULE – this is the bound object decks forming an executable program
– A LOAD MAP – this is the Binder equivalent of an assembler listing

■ A LOAD MODULE can be loaded into memory by the operating system and run

Introduction to Assembler Programming

42 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – Assembling and Binding a program
Introduction to Assembler Programming

HLASM

Binder

COPYBOOKS

System
Libraries PROGRAM

SOURCE

OBJECTS

LISTING

LINK MAP

43 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – Assembling and Binding a program
Introduction to Assembler Programming

HLASM

Binder

COPYBOOKS

System
Libraries PROGRAM

SOURCE

OBJECTS

LISTING

LINK MAP

44 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – A look at syntax
Introduction to Assembler Programming

45 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – A look at syntax
Introduction to Assembler Programming

Comments start with a * in column 1 or appear after free-form instruction
operands until column 72

46 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – A look at syntax
Introduction to Assembler Programming

Labels start in column 1

47 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – A look at syntax
Introduction to Assembler Programming

Instructions start after column 1 or a label

48 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – A look at syntax
Introduction to Assembler Programming

Operands start after a space after instructions and are delimited by
commas and brackets

49 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – CSECTs and DSECTs

■ CSECT → CONTROL SECTION (HLASM directive)
– A CSECT contains machine instructions to be run on the machine

■ DSECT → DUMMY SECTION (HLASM directive)
– Used to define the structure of data

■ Both CSECT and DSECT are terminated with the end statement
MYPROG CSECT START OF CODE
 ...awesome assembler program goes here...
MYSTRUCT DSECT START OF DATA STRUCTURE
 ...awesome data structure goes here...
 END END OF PROGRAM

Introduction to Assembler Programming

50 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – Defining Data

■ Data is defined via the DC and DS HLASM directives

■ DC – Define Constant
– Defines data and initialises it to a given value

■ DS – Define Storage
– Defines storage for data but does not give it a value

■ e.g.
NUMBER1 DC F'12' DEFINE A FULLWORD WITH VALUE 12
NUMBER2 DC H'3' DEFINE A HALFWORD WITH VALUE 3
TOTAL DS H DEFINE A HALFWORD
MYSTR DC C'HELLO WORLD' DEFINE A SERIES OF CHARACTERS
MYHEX DC X'FFFF' DEFINE A SERIES OF HEX CHARACTERS

Introduction to Assembler Programming

51 SHARE Boston 2013 © 2013 IBM Corporation

Working with HLASM – Literals

■ A literal is an inline definition of data used in an instruction but the space taken for the literal
is in the nearest literal pool

■ A literal pool collects all previous literals and reserves the space for them

■ By default, HLASM produces an implicitly declared literal pool at the end of your CSECT

■ To cause HLASM to produce a literal pool, use the LTORG directive
 L 1,=F'1' LOAD REGISTER 1 WITH FULLWORD OF 1
 X 1,=H'2' XOR REGISTER 1 WITH HALFWORD OF 2
 ...more awesome assembler code here...
 LTORG , THE LITERAL POOL IS CREATED

Introduction to Assembler Programming

52 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Exercise 1

Introduction to Assembler Programming

53 SHARE Boston 2013 © 2013 IBM Corporation

Exercise 1 – A Solution
Introduction to Assembler Programming

Move comment to column 1

Use MVC to copy the data

Set register 15 to 0

54 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Addressing Data

Introduction to Assembler Programming

55 SHARE Boston 2013 © 2013 IBM Corporation

Addressing Data

■ There are 2 ways to access data for manipulation
– Base-Displacement (and index) addressing
– Relative addressing

■ Relative addressing is a new form of addressing which calculates the data's relative position
from the current PSW (in half-word increments)

 LRL 1,NUMBER LOAD RELATIVE REGISTER 1 WITH NUMBER
 ...more awesome assembler code here...
NUMBER DC F'23'

Introduction to Assembler Programming

56 SHARE Boston 2013 © 2013 IBM Corporation

Addressing Data - Base-Displacement-Index

■ Base-Displacement(-index) addressing involves using a register as a pointer to memory –
this is called the BASE register

■ A displacement is usually between 0 and 4095 bytes allowing a single base register to
address 4K of memory

■ An index register is an additional register whose value is added to the base and
displacement to address more memory

■ Incrementing an index register allows the assembler programmer to cycle through an array
whilst maintaining the same base-displacement

■ Note that register 0 cannot be used as a base or index register
– Register 0 used in this way means that the value 0 will be used as a base / index and

NOT the contents of register 0

■ Base, displacement and indexes are optionally specified on an instruction
– Implicit default value for each is 0

Introduction to Assembler Programming

57 SHARE Boston 2013 © 2013 IBM Corporation

Addressing Data - Base-Displacement-Index
Introduction to Assembler Programming

■ Address = BASE+INDEX+DISPLACEMENT

H
E
L
L
O

+0
+1
+2
+3
+4

F0
FE
12
AC
07

Register 12

Register 4 → 4

+5MYDATA

58 SHARE Boston 2013 © 2013 IBM Corporation

Addressing Data - Base-Displacement-Index
Introduction to Assembler Programming

■ Address of MYDATA = 5(0,12) → displacement 5 + index 0 + base 12

H
E
L
L
O

+0
+1
+2
+3
+4

F0
FE
12
AC
07

Register 12

Register 4 → 4

+5MYDATA

59 SHARE Boston 2013 © 2013 IBM Corporation

Addressing Data - Base-Displacement-Index
Introduction to Assembler Programming

■ Address of 'O' in 'HELLO' = 5(4,12) → displacement 5 + index 4 + base 12

H
E
L
L
O

+0
+1
+2
+3
+4

F0
FE
12
AC
07

Register 12

Register 4 → 4

+5MYDATA

60 SHARE Boston 2013 © 2013 IBM Corporation

Addressing Data – Loading addresses

■ To load an address into a register, use the LOAD ADDRESS (LA) instruction
 LA 1,DATA LOAD ADDRESS OF DATA INTO REGISTER 1

■ The LA instruction can be used to set a register to between 0 and 4095 by specifying a base
and index register of 0 – these are automatically implicitly specified, e.g.

 LA 1,12 base=0, index=0, displacement=12
■ To store a 'O' in 'HELLO' in the previous example:

 ...some setup for REGISTER 12...
 LA 4,4 LOAD ADDRESS 4 INTO REGISTER 4
 L 3,=C'O' LOAD CHARACTER 'O' INTO REGISTER 3
 ST 3,MYDATA(4) base=12, index=4, displacement=5

Introduction to Assembler Programming

61 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Exercise 2

Introduction to Assembler Programming

62 SHARE Boston 2013 © 2013 IBM Corporation

Exercise 2 – A Solution
Introduction to Assembler Programming

63 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Branching

Introduction to Assembler Programming

64 SHARE Boston 2013 © 2013 IBM Corporation

Branching

■ Branching allows control flow in the program to move unsequentially

■ Branches are performed via the BRANCH instructions

■ Most branch instructions are conditional – i.e. they will pass control to the branch target if a
condition is met otherwise control will continue sequentially

■ The condition on which the branch will take place is called the CONDITION CODE (CC)
– The CC is 2-bits stored in the PSW; thus the value is 0-3
– Each instruction may (or may not) set the CC

■ A branch instruction provides a branch mask
– The branch mask instructs the processor that the branch will be taken if any of the bits in

the CC match those in the branch mask

■ Fortunately most code uses HLASM's branch mnemonics to provide a branch mask

Introduction to Assembler Programming

65 SHARE Boston 2013 © 2013 IBM Corporation

Branching – Using HLASM's branch mnemonics

■ B – Branch (unconditionally)

■ BE – Branch on condition Equal

■ BL – Branch on condition Less than

■ BH – Branch on condition Higher than

■ BNL – Branch Not Less

■ BNH – Branch Not High

■ BZ – Branch on Zero

■ BNZ – Branch Not Zero

■ There are also other branch mnemonics which HLASM provides

Introduction to Assembler Programming

66 SHARE Boston 2013 © 2013 IBM Corporation

Branching – How does a branch mask work

■ B – Branch (unconditionally)
– This is translated to the BRANCH ON CONDITION (BC) instruction with a mask of 15

■ So, 15 → b'1111' → 8+4+2+1

■ Thus the branch is taken if CC 0, 1, 2 or 3 is met, i.e. ALWAYS

Introduction to Assembler Programming

Condition
Code

0 1 2 3

Mask value 8 4 2 1

67 SHARE Boston 2013 © 2013 IBM Corporation

Branching – How does a branch mask work

■ BE – Branch on Equal
– This is translated to the BRANCH ON CONDITION (BC) instruction with a mask of 8

■ So, 8 → b'1000' → 8

■ Thus the branch is taken if CC 0 is met

Introduction to Assembler Programming

Condition Code 0 1 2 3

Mask value 8 4 2 1

68 SHARE Boston 2013 © 2013 IBM Corporation

Branching – Using a branch to form an if statement

 L 1,NUMBER LOAD NUMBER INTO REGISTER 1
 LTR 1,1 LOAD REGISTER 1 INTO REGISTER 1 AND SET CC
 BNZ NONZERO BRANCH TO 'NONZERO' IF REGISTER 1 IS NOT ZERO
 ...code where register 1 is zero goes here...
 B COMMONCODE REJOIN COMMON CODE
NONZERO DS 0H
 ...code where register 1 is non-zero goes here...
COMMONCODE DS 0H

Introduction to Assembler Programming

69 SHARE Boston 2013 © 2013 IBM Corporation

Branching – Using a branch to form an if statement

if(register_1==0){
//Code for register_1 being 0 goes here

}
else{

//Code for register_1 being non-zero goes here
}

//Common code goes here

Introduction to Assembler Programming

70 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Arithmetic

Introduction to Assembler Programming

71 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic

■ Arithmetic is performed in a wide variety ways on z/Architecture
– Fixed point arithmetic (including logical) ← performed in GPRs
– Packed Decimal arithmetic ← performed in memory
– Binary and Hexadecimal Floating point arithmetic ← performed in FPRs

■ Fixed point arithmetic
– Normal arithmetic, e.g. adding the contents of 2 numbers together
– Fixed point arithmetic is signed with numbers being stored in 2's complement form
– Logical fixed point arithmetic is unsigned, i.e. both numbers are positive

■ Pack Decimal arithmetic
– Performed in memory
– Numbers are in packed decimal format

Introduction to Assembler Programming

72 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic – Fixed point arithmetic operations

■ ADD instructions
AR 1,2 ADD REGISTER 2 TO REGISTER 1 (32-BIT SIGNED)
ALR 1,2 ADD REGISTER 2 TO REGISTER 1 (32-BIT LOGICAL)
A 1,NUMBER ADD NUMBER TO REGISTER 1 (32-BIT SIGNED)
AL 1,NUMBER ADD NUMBER TO REGISTER 1 (32-BIT LOGICAL)
AFI 1,37 ADD 37 TO REGISTER 1 (IMMEDIATE)

■ Note that for immediate instructions, the operand is included in the instruction rather than
needing to be obtained from memory

■ At the end of the addition, the CC is updated (as specified in POPs)
– CC → 0 → Result is 0; no overflow
– CC → 1 → Result less than 0; no overflow
– CC → 2 → Result greater than 0; no overflow
– CC → 3 → Overflow occurred

Introduction to Assembler Programming

73 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic – Fixed point arithmetic operations

■ SUBTRACT instructions
SR 1,2 SUBTRACT REGISTER 2 TO REGISTER 1 (SIGNED)
SLR 1,2 SUBTRACT REGISTER 2 TO REGISTER 1 (LOGICAL)
S 1,NUMBER SUBTRACT NUMBER TO REGISTER 1 (SIGNED)
SL 1,NUMBER SUBTRACT NUMBER TO REGISTER 1 (LOGICAL)
AFI 1,-37 ADD -37 TO REGISTER 1 (IMMEDIATE)

■ At the end of the subtraction, the CC is updated (as specified in POPs)
– CC → 0 → Result is 0; no overflow
– CC → 1 → Result less than 0; no overflow
– CC → 2 → Result greater than 0; no overflow
– CC → 3 → Overflow occurred

Introduction to Assembler Programming

74 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic – Fixed point arithmetic operations

■ MULTIPLY instructions
MR 2,7 MULTIPLY REGISTER 2 BY REGISTER 7
M 2,NUMBER MULTIPLY REGISTER 2 BY NUMBER

■ The first operand is an even-odd pair – the result of the MULTIPLY is stored in:
– The even register (of the pair) – top 32-bits of result
– The odd register (of the pair) – bottom 32-bits of the result

■ At the end of the multiplication, the CC is UNCHANGED

Introduction to Assembler Programming

75 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic – Fixed point arithmetic operations

■ DIVIDE instructions
DR 2,7 DIVIDE REGISTER 2 BY REGISTER 7
D 2,NUMBER DIVIDE REGISTER 2 BY NUMBER

■ The first operand is an even-odd pair
– The even register (of the pair) – top 32-bits of dividend
– The odd register (of the pair) – bottom 32-bits of the dividend

■ The result is stored in the first operand:
– The quotient is stored in the odd register of the pair
– The remainder in the even register of the pair

■ At the end of the division, the CC is UNCHANGED

Introduction to Assembler Programming

76 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic – Zoned and Packed Decimal

■ The computations we have looked at so far have been with binary data
■ This is not always satisfactory, especially when financial calculations are

required
■ For example, decimal percentages are inaccurate in binary (try long

division on 1/1010 = 1/10102 = .000110011...)

■ Lets look at decimal data types and instructions
■ There are two decimal data formats

–Zoned Decimal – good for printing and displaying
–Packed Decimal – good for decimal arithmetic

Introduction to Assembler Programming

77 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic – Zoned and Packed Decimal

■ In the zoned format, the rightmost four bits of a byte are called the
numeric bits (N) and normally of a code representing a decimal
digit. The leftmost four bits of a byte are called the zone bits (Z),
except for the rightmost byte of a decimal operand, where these
bits may be treated either as a zone or as a sign (S).

Introduction to Assembler Programming

111
1

0001 1111 1100 1111 0000 1111 0111

F 1 F 9 F 0 F 71 9 0 7

78 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic – Zoned and Packed Decimal

■ In the signed-packed-decimal format, each byte contains two
decimal digits (D), except for the rightmost byte, which contains a
sign (S) to the right of a decimal digit.

Introduction to Assembler Programming

000
0

0000 0000 0001 1001 0000 1111 1111

0 0 0 1 9 0 7 F

79 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic – Zoned and Packed Decimal

■ The sign for both Zoned Decimal and Packed Decimal is

– C, A, F, or E are all +ve. C is preferred
– D or B are -ve. D is preferred

One hundred and and eleven +ve is F1F1C1 – C being +ve sign

One hundred and and eleven -ve is F1F1D1 – D being -ve sign

Beaware... They would pring as 11A and 11J !

C1 is the character A and D1 is J

Introduction to Assembler Programming

80 SHARE Boston 2013 © 2013 IBM Corporation

Arithmetic – Packed Decimal arithmetic operations

Decimal instructions
AP a,b ADD b to a
CP a,b COMPARE a to b
DP a,b DIVIDE a by b
MP a,b MULTIPLY a by b
SP a,b SUBTRACT b from a
ZAP a,b ZEROISE a and then add b

■ At the end of the subtraction, the CC is updated (as specified in POPs)
– CC → 0 → Result is 0; no overflow
– CC → 1 → Result less than 0; no overflow
– CC → 2 → Result greater than 0; no overflow
– CC → 3 → Overflow occurred

Introduction to Assembler Programming

81 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Equates

Introduction to Assembler Programming

82 SHARE Boston 2013 © 2013 IBM Corporation

Equates

■ You can define symbols as equates
■ Use the EQU instruction to

–Assign single absolute values to symbols
–Assign the values of previously defined symbols or expressions

to new symbols
–Compute expressions whose values are unknown at coding time

or difficult to calculate.

Introduction to Assembler Programming

83 SHARE Boston 2013 © 2013 IBM Corporation

Equates

■ Register equates examples
R00 EQU 0,,,,GR32

R00 is the symbol
0 is the absolute value asigned
GR32 is the assembler type value

GR00 EQU 0,,,,GR64
GR00 is the symbol
0 is the absolute value assigned
GR64 is the assembler type

Introduction to Assembler Programming

84 SHARE Boston 2013 © 2013 IBM Corporation

Equates

Why use Assembler types ?
■ Assembler option TYPECHECK(...,REGISTER)

– Specifies that the assembler performs type checking of register
fields of machine instruction operands

Introduction to Assembler Programming

85 SHARE Boston 2013 © 2013 IBM Corporation

Equates
Introduction to Assembler Programming

86 SHARE Boston 2013 © 2013 IBM Corporation

Equates
Introduction to Assembler Programming

87 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Looping

Introduction to Assembler Programming

88 SHARE Boston 2013 © 2013 IBM Corporation

Looping

■ A simple loop is formed by using a counter, a comparison and a branch, e.g.
 LA 2,0 INITIALISE COUNTER REGISTER TO 0
MYLOOP AHI 2,1 INCREMENT COUNTER
 WTO 'HELLO' SAY HELLO
 CHI 2,10 IS THE COUNTER 10?
 BL MYLOOP IF IT'S LESS THAN 10, GO TO MYLOOP

■ That's simple – but there's a better way – use BRANCH ON COUNT (BCT)
 LA 2,10 INITIALISE COUNTER REGISTER TO 10
MYLOOP WTO 'HELLO'
 BCT 2,MYLOOP SUBTRACTS, COMPARES & BRANCHES

■ There are other variants of the BCT instruction, e.g. BCTR, BXH etc...

Introduction to Assembler Programming

89 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Exercise 3

Introduction to Assembler Programming

90 SHARE Boston 2013 © 2013 IBM Corporation

Exercise 3 – A Solution
Introduction to Assembler Programming

91 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Calling conventions

Introduction to Assembler Programming

92 SHARE Boston 2013 © 2013 IBM Corporation

Calling Conventions

■ A calling convention is a convention used between programs and subroutines to call each
other

■ The calling convention is not enforced, but if it is disregarded undesirable and unpredictable
results may occur

■ In general, when programming in assembler, the caller will provide a save area and the
called program or routine will save all GPRs into that save area.

■ The subroutine will then execute its code

■ To return control to the caller, the subroutine will typically:
– Set a return code in a register
– Prepare the register on which it should branch back on
– Restore all other registers
– Branch back

Introduction to Assembler Programming

93 SHARE Boston 2013 © 2013 IBM Corporation

Calling Conventions – Typical register usage on z/OS

■ Although free to do as they please, most assembler programs on z/OS use the following
register convention during initialisation

– Register 1 → parameter list pointer
– Register 13 → pointer to register save area provided by caller
– Register 14 → return address
– Register 15 → address of subroutine

■ Once the registers are saved, the called subroutine will:
– Update register 13 to point to a new save area (so that it can call other programs /

routines)
– Establish register 12 as a base register for the program

■ Upon termination, the called subroutine will:
– Set a return code in register 15
– Restore registers 14,0,1,...,12 from the save area pointed to by register 13
– Restore register 13 to the value it was previously
– Branch back on register 14

Introduction to Assembler Programming

94 SHARE Boston 2013 © 2013 IBM Corporation

Calling a subroutine in code
Introduction to Assembler Programming

MAINLINE CSECT

..code

..call internal subroutine CALC

..more code

..RETURN

CALC DC 0H'0' Internal routine
..subroutine code
..
..return

END

95 SHARE Boston 2013 © 2013 IBM Corporation

Calling a subroutine in code – Going in...

■ The caller calls the subroutine
 LA 1,PARAMS POINT TO PARAMETERS
 LA 15,SUB1 LOAD ADDRESS OF SUBROUTINE
 BALR 14,15 BRANCH TO REGISTER 15 AND SAVE RETURN
* IN REGISTER 14
 LTR 15,15 CHECKS RETURN CODE 0?
 ...caller code continues here...

Introduction to Assembler Programming

96 SHARE Boston 2013 © 2013 IBM Corporation

Calling a subroutine in code – Going in...

■ The subroutine saves the caller's registers and establishes a base register
 STM 14,12,12(13) STORE REGISTERS
 LR 12,15 GET ENTRY ADDRESS
 ...subroutine code continues here...

Introduction to Assembler Programming

97 SHARE Boston 2013 © 2013 IBM Corporation

Calling a subroutine in code – Getting out...

■ The subroutine restores the caller's registers, sets the return code and branches back
 LM 14,12,12(13) RESTORE REGISTERS
 XR 15,15 SET RETURN CODE 0
 BR 14 BRANCH BACK TO CALLER

■ Due to this calling convention, during epilog and prologue of a program or subroutine or
when calling or having control returned from a program or subroutine, avoid using registers
0, 1, 12, 13, 14, 15

■ z/OS services, typically will use registers 0, 1, 14, 15

■ Not sure which registers are used by a service?
– The manuals explain in detail

Introduction to Assembler Programming

98 SHARE Boston 2013 © 2013 IBM Corporation

Calling a subroutine in code – Going in...

■ The caller calls the subroutine
 LA 1,PARAMS POINT TO PARAMETERS
 LA 15,SUB1 LOAD ADDRESS OF SUBROUTINE
 BALR 14,15 BRANCH TO REGISTER 15 AND SAVE RETURN
* IN REGISTER 14
 LTR 15,15 CHECKS RETURN CODE 0?
 ...caller code continues here...

■ ...but do I have to write this code ?

– NO – use the supplied z/OS macros...
• CALL macro

– Documented in

Introduction to Assembler Programming

99 SHARE Boston 2013 © 2013 IBM Corporation

Calling a subroutine in code – Going in...

■ The caller calls the subroutine
 LA 1,PARAMS POINT TO PARAMETERS
 LA 15,SUB1 LOAD ADDRESS OF SUBROUTINE
 BALR 14,15 BRANCH TO REGISTER 15 AND SAVE RETURN
* IN REGISTER 14
 LTR 15,15 CHECKS RETURN CODE 0?
 ...caller code continues here...

■ The subroutine saves the caller's registers and establishes a base register
 STM 14,12,12(13) STORE REGISTERS
 LR 12,15 GET ENTRY ADDRESS
 ...subroutine code continues here...

Introduction to Assembler Programming

100 SHARE Boston 2013 © 2013 IBM Corporation

Calling a subroutine in code – Getting out...

■ The subroutine restores the caller's registers, sets the return code and branches back
 LM 14,12,12(13) RESTORE REGISTERS
 XR 15,15 SET RETURN CODE 0
 BR 14 BRANCH BACK TO CALLER

■ Due to this calling convention, during epilog and prologue of a program or subroutine or
when calling or having control returned from a program or subroutine, avoid using registers
0, 1, 12, 13, 14, 15

■ z/OS services, typically will use registers 0, 1, 14, 15

■ Not sure which registers are used by a service?
– The manuals explain in detail

Introduction to Assembler Programming

101 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
How to read Principles of Operation

Introduction to Assembler Programming

102 SHARE Boston 2013 © 2013 IBM Corporation

Reading POPs

■ Principles of Operation (better known as POPs) is the z/Architecture manual

■ It explains everything from system organisation and memory, to instructions and number
formats

■ It provides a useful set of appendices some of which provide good detailed examples of
instruction use, including programming techniques

■ The vast majority of POPs is instruction descriptions

Introduction to Assembler Programming

103 SHARE Boston 2013 © 2013 IBM Corporation

Reading POPs – Understanding Instruction Descriptions

■ Each instruction is described in exact detail including:
– The instruction's syntax
– Machine code
– Operation
– Condition code settings
– Programming Exceptions

■ There are 2 forms of syntax provided for each instruction
– The syntax for the assembler, i.e. what is written in your assembler program
– The machine code for the instruction, i.e. the binary code run on the processor

■ The instruction's machine code is grouped together with other instructions which share a
similar machine code layout called an instruction format

Introduction to Assembler Programming

104 SHARE Boston 2013 © 2013 IBM Corporation

Reading POPs – Instruction Formats

■ The instruction format used, is generally related to
– The assembler syntax used to code the instruction
– The operation that the instruction performs

■ Instructions that we've used have had the following formats:
– RR – Register-Register – this form usually manipulates registers, e.g. LR, MR, DR
– RX – Register, Index, base displacement – usually moving data between memory and

registers, e.g. L, LA, ST, A, X, S, D, M
– SS – Storage-Storage – acts on data in memory, e.g. MVC

Introduction to Assembler Programming

105 SHARE Boston 2013 © 2013 IBM Corporation

Reading POPs – Instruction Formats – RR – LR instruction
Introduction to Assembler Programming

106 SHARE Boston 2013 © 2013 IBM Corporation

Reading POPs – Instruction Formats – RX – L instruction
Introduction to Assembler Programming

107 SHARE Boston 2013 © 2013 IBM Corporation

Introduction to Assembler Programming
Exercise 4

Introduction to Assembler Programming

108 SHARE Boston 2013 © 2013 IBM Corporation

Exercise 4 – A solution
Introduction to Assembler Programming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108

