
Look What I Found
Under The Bar! Copyright IBM 2011 1

Look What I Found
Under The Bar!

John Monti
IBM Poughkeepsie

jmonti@us.ibm.com
Session 13669

Look What I Found
Under The Bar! Copyright IBM 2011 2

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

•Language Environment®

•z/OS®

Look What I Found
Under The Bar! Copyright IBM 2011 3

Agenda

� Overview of Language Environment storage
areas
� Control blocks, stack, heap

� Which can you control?

� How to control Language Environment
Storage

� Tuning Storage

� More advanced tuning

� Sources of Additional Information

Look What I Found
Under The Bar! Copyright IBM 2011 4

Language Environment
Storage Areas

� Language Environment Control Blocks
� Region level

� Normally 1 region per address space

� Process level
� Normally 1 process per address space

� Enclave level
� Potentially many per address space

� Thread level
� Potentially very many per address space

Look What I Found
Under The Bar! Copyright IBM 2011 5

Language Environment
Storage Areas

region - address space

process - application

enclave - pgm - enclave

main main

sub

sub

sub

sub

Look What I Found
Under The Bar! Copyright IBM 2011 6

Language Environment
Storage Areas

� Language Environment Enclave

� Every “main” program is a new enclave

� Every “link” is a new enclave

� Contains

� CEECAA, CEEEDB, CEEOCB, stacks, heaps,
environment variables, and much more!

� “Extra” enclaves are expensive both to
initialize and in storage usage.

Look What I Found
Under The Bar! Copyright IBM 2011 7

region

process

enclave

thread

main sub

sub

sub

sub

sub

thread

Language Environment
Storage Areas

Look What I Found
Under The Bar! Copyright IBM 2011 8

Language Environment
Storage Areas

� Language Environment Thread

� Only created by pthread_create()

� Contains

� CEECAA, stacks, and a little more

� Threads are not nearly as expensive as
enclaves.

� Used mostly by C/C++

� Enterprise PL/I multitasking uses threads

Look What I Found
Under The Bar! Copyright IBM 2011 9

Language Environment
Storage Areas

� Language Environment Stacks

� Stacks

� Last In, First Out structures

� Allow programs to be reentrant

� Thread level structures

“Main” programs have separate stacks

“Linked” programs have separate stacks

Pthreads have separate stacks

Look What I Found
Under The Bar! Copyright IBM 2011 10

Language Environment
Storage Areas

� Language Environment supports 2
independent stacks

� User stack – (poorly named)

� Used by user programs and Language
Environment

� Library stack

� Used “rarely” by Language Environment

� Always below the 16M line

Look What I Found
Under The Bar! Copyright IBM 2011 11

Language Environment
Storage Areas

� DATA in stacks
� “Chunks” are called stack segments

� Made up of 1 or more DSAs

� DSA – Dynamic Save Area
� Also called a “stack frame”

� DSAs contain
� Register Save Area (RSA)

� NAB – Next Available Byte

� Automatic (local) variables
C – int i;

PL/I – declare i fixed;

NOT COBOL WORKING-STORAGE

COBOL LOCAL-STORAGE in stack

Look What I Found
Under The Bar! Copyright IBM 2011 12

Language Environment
Storage Areas

� Language Environment Heaps
� Heaps

� Completely random access

� Allows storage to be dynamically allocated at
runtime

� Enclave level control structures
� Each 'main' has a separate stack and heap

� Each 'link' causes a separate stack and heap

� pthreads share a single heap for all threads

Look What I Found
Under The Bar! Copyright IBM 2011 13

Language Environment
Storage Areas

� Language Environment Heaps
� Four independently maintained sets of heap

segments all with similar layouts:
� User Heap

COBOL WORKING-STORAGE
C/C++ (malloc or operator new)
PL/I dynamic storage (allocate)

� LE Anywhere Heap
COBOL and LE above the line CBs

� LE Below Heap
COBOL and LE below the line CBs

� Additional Heap
Defined by the user

Look What I Found
Under The Bar! Copyright IBM 2011 14

Controlling Storage

� Run-time options dealing with stacks
� STACK(init,inc,ANY|BELOW,KEEP|FREE,dsInit,dsInc)

� Init - Initial size of storage “chunk” allocated and managed
by LE for user stack

� Inc - When init is full, size of next storage “chunk”
(increment)

� ANY|BELOW - Location of storage
ANY Anywhere in 2G virtual storage
Below Always below 16M line

Required when all31(OFF)

� KEEP|FREE - What to do when done with inc
KEEP Do not free the storage “chunks”
FREE Free the storage “chunks”

� DsInit - Initial size of storage “chunk” (XPLINK)
� DsInc - When initial full, size of next “chunk” (XPLINK)

Look What I Found
Under The Bar! Copyright IBM 2011 15

Controlling Storage

� Run-time options dealing with stacks

� LIBSTACK(init,inc,KEEP|FREE)

� Init - Initial size of storage “chunk” allocated and
managed by LE for library stack

� Inc - When init is full, size of next storage “chunk”
(increment)

� KEEP|FREE - What to do when done with inc

KEEP Do not free the storage “chunks”

FREE Free the storage “chunks”

NOTE: No ANY|BELOW, LIBSTACK always below the 16M
line

Look What I Found
Under The Bar! Copyright IBM 2011 16

Controlling Storage

� Run-time options dealing with stacks
� THREADSTACK(ON|OFF,init,inc,ANY|BELOW,KEEP|FREE,

dsInit,dsInc)
� ON|OFF – Whether or not to use THREADSTACK for pthreads
� Init - Initial size of storage “chunk” (like STACK)
� Inc - Increment size of storage “chunk” (like STACK)
� ANY|BELOW - Location of storage

ANY Anywhere in 2G virtual storage
Below Always below 16M line

Required when all31(OFF)

� KEEP|FREE - What to do when done with inc
KEEP Do not free the storage “chunks”
FREE Free the storage “chunks”

� DsInit, Dsinc – XPLINK “chunk” sizes

Look What I Found
Under The Bar! Copyright IBM 2011 17

Controlling Storage

� Runtime options dealing with the heaps
� HEAP(init,inc,ANY|BELOW,KEEP|FREE,int24,inc24)

� User heap - mostly application use
� init - Initial size of the "chunk" of storage obtained to be managed

by LE for user heap
� Inc - When initial "chunk" is full, size of next "chunk" (minimum)
� ANY|BELOW - Location of "chunk“

Not sensitive to ALL31 setting

� KEEP | FREE - What to do when done with the increment when empty
KEEP - Do not free the storage “chunks”
FREE - Free the storage “chunks”

� int24 - Initial size of the "chunk" of storage obtained
(if ANY specified but BELOW requested (minimum))

� inc24 - Size of next "chunk"
(if ANY specified but BELOW requested (minimum))

Look What I Found
Under The Bar! Copyright IBM 2011 18

Controlling Storage

� Runtime options dealing with the heaps...
� ANYHEAP(init,inc,ANY|BELOW,KEEP|FREE)

� Thread stack storage lives in anyheap!!! Tune if multi-threaded
� LE use - normally above the line
� init - Same as HEAP.
� inc - Same as HEAP. (minimum)
� ANY | BELOW - Location of storage
� KEEP | FREE - Same as HEAP

� BELOWHEAP(init,inc,KEEP|FREE)
� LE use - always below the line
� init - Same as HEAP.
� inc - Same as HEAP. (minimum)
� KEEP | FREE - Same as HEAP

Look What I Found
Under The Bar! Copyright IBM 2011 19

Initializing Storage

� STORAGE(getheap, freeheap,dsa alloc)
� Getheap – Initialize heap storage

� NONE – no overhead
� One byte hex value to initialize storage with when heap

element obtained
00 similar to WSCLEAR option
Relatively low overhead

� Freeheap – Initial heap storage
� NONE – no overhead
� One byte hex value to initialize storage with when heap

element freed
Useful for debug purposes or security
Relatively low overhead

Look What I Found
Under The Bar! Copyright IBM 2011 20

Initializing Storage

� STORAGE(getheap, freeheap,dsa alloc)

� DSA alloc – Initialize stack storage

� NONE – No initialization – no overhead

� CLEAR – Entire unused initial stack segment is cleared
just before the main program is given control – low
overhead

� A one byte hex value to initialize storage with when
stack frame (DSA) is obtained

EXTREMELY HIGH OVERHEAD

EXTREMELY HIGH OVERHEAD

EXTREMELY HIGH OVERHEAD

Look What I Found
Under The Bar! Copyright IBM 2011 21

Initializing Storage

� Simple program that makes lots of calls
� STORAGE(,,none)
- ===

- REGION --- ST

- STEPNAME PROCSTEP PGMNAME CC USED CPU TIME

- GO STORRTO 00 60K 0:00:00.56

� STORAGE(,,00)
- ===

- REGION --- ST

- STEPNAME PROCSTEP PGMNAME CC USED CPU TIME

- GO STORRTO 00 60K 0:00:02.15

� STORAGE(,,CLEAR)
- ===

- REGION --- ST

- STEPNAME PROCSTEP PGMNAME CC USED CPU TIME

- GO STORRTO 00 60K 0:00:00.57

Look What I Found
Under The Bar! Copyright IBM 2011 22

Initializing Storage

� Best ways to ensure the proper initial
value for your variables

� Use compiler initialization

� Set them prior to use in your program

Look What I Found
Under The Bar! Copyright IBM 2011 23

Tuning storage

� Objectives
� Use as little storage as possible
� Have program run as efficiently as possible

� The above objectives are often at odds with
each other. (But not always)

� One way to make a program run faster is to
“throw” more storage at it.
� Care must be taken to use storage wisely
� Much of what will talk about can be done without

recompiling or reworking the program.

Look What I Found
Under The Bar! Copyright IBM 2011 24

Tuning storage

� Simple example

� In a test environment (not production) use
the RPTSTG run-time option.

� A report will be generated describing the
storage used by the program.

� This information can be used to assist with
better settings of Language Environment
run-time options

Look What I Found
Under The Bar! Copyright IBM 2011 25

Tuning storage

� Simple example
Storage Report for Enclave main 02/07/11 5:12:26 PM

Language Environment V01 R12.00

STACK statistics:

Initial size: 131072

Increment size: 131072

Maximum used by all concurrent threads: 4792

Largest used by any thread: 4792

Number of segments allocated: 1

Number of segments freed: 0

THREADSTACK statistics:

Initial size: 0

Increment size: 0

Maximum used by all concurrent threads: 0

Largest used by any thread: 0

Number of segments allocated: 0

Number of segments freed: 0

Look What I Found
Under The Bar! Copyright IBM 2011 26

Tuning storage

� Simple example…
LIBSTACK statistics:

Initial size: 4096

Increment size: 4096

Maximum used by all concurrent threads: 0

Largest used by any thread: 0

Number of segments allocated: 0

Number of segments freed: 0

THREADHEAP statistics:

Initial size: 4096

Increment size: 4096

Maximum used by all concurrent threads: 0

Largest used by any thread: 0

Successful Get Heap requests: 0

Successful Free Heap requests: 0

Number of segments allocated: 0

Number of segments freed: 0

Look What I Found
Under The Bar! Copyright IBM 2011 27

Tuning storage

� Simple example…
HEAP statistics:

Initial size: 32768

Increment size: 32768

Total heap storage used (sugg. initial size): 3328

Successful Get Heap requests: 4

Successful Free Heap requests: 2

Number of segments allocated: 1

Number of segments freed: 0

HEAP24 statistics:

Initial size: 8192

Increment size: 4096

Total heap storage used (sugg. initial size): 0

Successful Get Heap requests: 0

Successful Free Heap requests: 0

Number of segments allocated: 0

Number of segments freed: 0

Look What I Found
Under The Bar! Copyright IBM 2011 28

Tuning storage

� Simple example…
ANYHEAP statistics:

Initial size: 16384

Increment size: 8192

Total heap storage used (sugg. initial size): 616

Successful Get Heap requests: 6

Successful Free Heap requests: 2

Number of segments allocated: 1

Number of segments freed: 0

BELOWHEAP statistics:

Initial size: 8192

Increment size: 4096

Total heap storage used (sugg. initial size): 0

Successful Get Heap requests: 0

Successful Free Heap requests: 0

Number of segments allocated: 0

Number of segments freed: 0

Look What I Found
Under The Bar! Copyright IBM 2011 29

Tuning storage

� Now using stack(8k,4k) heap(4k,4k)
STACK statistics:

Initial size: 8192

Increment size: 4096

Maximum used by all concurrent threads: 4792

Largest used by any thread: 4792

Number of segments allocated: 1

Number of segments freed: 0

...snip...

HEAP statistics:

Initial size: 4096

Increment size: 4096

Total heap storage used (sugg. initial size): 3328

Successful Get Heap requests: 4

Successful Free Heap requests: 2

Number of segments allocated: 1

Number of segments freed: 0

Look What I Found
Under The Bar! Copyright IBM 2011 30

Tuning storage

� A bit more meaty!

� Testcase requests 50000 random pieces of
storage of sizes from 1 to 32K in size

� Then the storage is freed.

� We’ll run the program without tuning

� We’ll then re-run the program (same
random values) after tuning

� Have we saved storage? Performance?

Look What I Found
Under The Bar! Copyright IBM 2011 31

Tuning storage

� Untuned example
STACK statistics:

Initial size: 131072

Increment size: 131072

Maximum used by all concurrent threads: 204184

Largest used by any thread: 204184

Number of segments allocated: 3

Number of segments freed: 0

...Snip...

HEAP statistics:

Initial size: 32768

Increment size: 32768

Total heap storage used (sugg. initial size): 819229056

Successful Get Heap requests: 50002

Successful Free Heap requests: 50000

Number of segments allocated: 27949

Number of segments freed: 0

� Note: 27949 segments of 32k each – 915,832,832 bytes

Look What I Found
Under The Bar! Copyright IBM 2011 32

Tuning storage

� Tuned HEAP(100M,100M) STACK(256K,256K)
STACK statistics:

Initial size: 262144

Increment size: 262144

Maximum used by all concurrent threads: 200944

Largest used by any thread: 200944

Number of segments allocated: 1

Number of segments freed: 0

...Snip...

HEAP statistics:

Initial size: 104857600

Increment size: 104857600

Total heap storage used (sugg. initial size): 818334944

Successful Get Heap requests: 50002

Successful Free Heap requests: 50000

Number of segments allocated: 8

Number of segments freed: 0

� Note: 8 segments of 100M each – 838,860,800 bytes!!!

Look What I Found
Under The Bar! Copyright IBM 2011 33

Tuning storage

� Look what else happened!
� Untuned

- ===

- REGION --- STEP TIMINGS ---

- STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP

- CLPG COMPILE CBCDRVR 00 72K 0:00:00.06 0:00:02.84 1590

- CLPG PLKED EDCPRLK 04 60K 0:00:00.01 0:00:00.99 534

- CLPG LKED HEWL 00 92K 0:00:00.01 0:00:00.63 174

- CLPG GO PGM=*.DD 00 60K 0:00:15.44 0:00:18.02 505

� Tuned
- ===

- REGION --- STEP TIMINGS ---

- STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP

- CLPG COMPILE CBCDRVR 00 72K 0:00:00.06 0:00:03.67 1555

- CLPG PLKED EDCPRLK 04 60K 0:00:00.01 0:00:01.25 535

- CLPG LKED HEWL 00 92K 0:00:00.01 0:00:00.50 170

- CLPG GO PGM=*.DD 00 60K 0:00:00.12 0:00:01.45 501

Look What I Found
Under The Bar! Copyright IBM 2011 34

Tuning storage

� What about KEEP vs FREE

� Testcase requests 50000 random pieces of
storage of sizes from 1 to 32K in size

� Free 20000 pieces, then get 20000 more

� Free everything

� We’ll run the program without tuning and FREE

� We’ll run the program without tuning and KEEP

� What have we done to storage and performance?

Look What I Found
Under The Bar! Copyright IBM 2011 35

Tuning storage

� Untuned
HEAP statistics: (Using FREE)

Initial size: 32768

Increment size: 32768

Total heap storage used (sugg. initial size): 819982896

Successful Get Heap requests: 70002

Successful Free Heap requests: 69999

Number of segments allocated: 39122

Number of segments freed: 39120

HEAP statistics: (Using KEEP)

Initial size: 32768

Increment size: 32768

Total heap storage used (sugg. initial size): 819983152

Successful Get Heap requests: 70002

Successful Free Heap requests: 70000

Number of segments allocated: 27952

Number of segments freed: 0

� Note: You can’t determine storage used to back segments now

Look What I Found
Under The Bar! Copyright IBM 2011 36

Tuning storage

� Performance – not a huge difference but KEEP is faster!

� FREE
- ===

- REGION --- STEP TIMINGS ---

- STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP

- CLPG COMPILE CBCDRVR 00 72K 0:00:00.06 0:00:04.95 1496

- CLPG PLKED EDCPRLK 04 60K 0:00:00.01 0:00:02.46 504

- CLPG LKED HEWL 00 92K 0:00:00.01 0:00:01.13 171

- CLPG GO PGM=*.DD 00 60K 0:00:25.79 0:01:02.34 474

� KEEP
- ===

- REGION --- STEP TIMINGS ---

- STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP

- CLPG COMPILE CBCDRVR 00 72K 0:00:00.06 0:00:03.15 1493

- CLPG PLKED EDCPRLK 04 60K 0:00:00.01 0:00:00.87 505

- CLPG LKED HEWL 00 92K 0:00:00.01 0:00:00.46 171

- CLPG GO PGM=*.DD 00 60K 0:00:22.34 0:00:24.85 469

Look What I Found
Under The Bar! Copyright IBM 2011 37

Tuning storage

� Look what happens when we tune.
HEAP statistics:

Initial size: 104857600

Increment size: 104857600

Total heap storage used (sugg. initial size): 819088944

Successful Get Heap requests: 70002

Successful Free Heap requests: 69999

Number of segments allocated: 8

Number of segments freed: 0

- ===

- REGION --- STEP TIMINGS ---

- STEPNAME PROCSTEP PGMNAME CC USED CPU TIME ELAPSED TIME EXCP

- CLPG COMPILE CBCDRVR 00 72K 0:00:00.06 0:00:02.67 1499

- CLPG PLKED EDCPRLK 04 60K 0:00:00.01 0:00:00.81 547

- CLPG LKED HEWL 00 92K 0:00:00.01 0:00:00.32 171

- CLPG GO PGM=*.DD 00 60K 0:00:00.15 0:00:01.04 496

Look What I Found
Under The Bar! Copyright IBM 2011 38

More advanced tuning

� What about those pesky Language
Environment control blocks?
� No externals to help

� Effort can be made to reduce the number
of enclaves

� Use dynamic calls rather than linking to
next program

� Hard to see the results without using
system tools… but let’s try

Look What I Found
Under The Bar! Copyright IBM 2011 39

More advanced tuning

� Simple program does a LINK to another
program

� A new enclave is created

� This 2nd program continues to get storage
until it runs out

� It is able to obtain 21568K of storage

Look What I Found
Under The Bar! Copyright IBM 2011 40

More advanced tuning

� Add to program to call down through 5
nested enclaves
� Last enclave is able to obtain 20576K of storage

� Add to program to call down through 10
nested enclaves
� Last enclave is able to obtain 19808K of storage

� Storage being consumed is to:
� Load programs
� Create enclave control blocks

� This includes stacks and heaps

� 1760K of storage usage (21568K-19808K)

Look What I Found
Under The Bar! Copyright IBM 2011 41

More advanced tuning

� Change programs to use dynamic call rather
than LINK

� One call case – 21728K of storage available

� Five call case – 21664K of storage available

� Ten call case – 21600K of storage available

� Note how much less storage is consumed.

� Basically just the amount to load the programs

� 128K for 10 calls deep (21728K-21600K)

Look What I Found
Under The Bar! Copyright IBM 2011 42

Summary

� Storage run-time option has high
overhead for initializing the stack

� Use RPTSTG to tune your stack, heap
and other storage sizes

� KEEP is faster than FREE

� Use dynamic call versus LINK

� Requires program update or recompile

Look What I Found
Under The Bar! Copyright IBM 2011 43

Sources of Additional Info

� All Language Environment documentation
available on the Language Environment Web
site

� Language Environment Debugging Guide

� Language Environment Programming Reference

� Language Environment Programming Guide

� Language Environment Web site
� http://www.ibm.com/systems/z/os/zos/features/lang_environ

ment

