

Encryption? Yeah, We Do That

Encryption facilities, challenges, and choices on System z

Session 13654

- Tour System z encryption facilities
- Survey available IBM products
- Briefly discuss third-party technologies (not products)
- Examine criteria for making intelligent selections
 - <u>Not</u> judging/comparing products per se!

Some Fundamental Points about Encryption

- Encryption is not *fun*
- Encryption does not make your job easier
- Encryption should not necessarily be noticeable
- Encryption is difficult and complex

So Why Would Anyone Want to Encrypt?

- Regulatory compliance
- Recovery from a breach
- General hygiene (breach prevention)
- *Not* encrypting may risk company's future

Do We Really Need to Care?

- Mainframes are secure we all "know" this
- *Not* something you want to bet your job on!

So You Need To Encrypt Some Data...

- Where will the data live?
 - Network
 - DASD
 - Таре
 - Flash drives
 - DVDs
 - Punched cards
 - Smoke signals

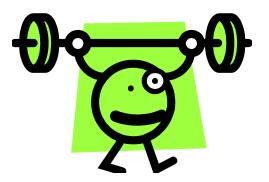
• These are *different*, require different solutions

Narrowing the Problem

- On mainframes, DASD and tape are the concerns
- DASD and tape are "data at rest"

Hardware vs. Software

- Encryption can be performed by hardware or software
- Crypto import/export controlled by many countries


A Word about "Point" Solutions

- Many products include some form of encryption
- Not necessarily secure
- Such point solutions can proliferate

Encryption "Strength"

- Encryption "strength" refers to the likelihood that an attacker can "break" encrypted data
 - See "Understanding Cryptographic Key Strength" on youtube.com/user/VoltageOne for a good discussion/illustration
- The encryption community is collaborative

Proving Encryption Strength

- Cryptographers "cheat" in attacker's favor when analyzing
- "Weaknesses" reported are often largely theoretical —only NSA could really exploit

More About Proving Encryption Strength

- This "cheating" ensures encryption strength is real*
- Makes it easy to spot the charlatans

* Well, as real as the smartest minds in the business can make it!

IBM System Facilities

System z and z/OS encryption capabilities

IBM Common Cryptographic Architecture

Common Cryptographic Architecture CCA

"...provides a comprehensive, integrated family of services that employs the major capabilities of the IBM coprocessors"

Offers robust functionality across all IBM platforms

Integrated Cryptographic Services Facility

- z/OS Integrated Cryptographic Services Facility (ICSF)
- Active area for IBM development
- Powerful, albeit mostly just a toolkit

SSL on System z

- TLS (Transport Layer Security), aka SSL (Secure Sockets Layer), is transport-layer network traffic encryption
- TLS is standard technology, on all platforms nowadays

SSL on System z

- System SSL is IBM's TLS on z/OS, IBM i, AIX
- Consistent across platforms, though not part of CCA
- Robust, well-documented API

IPSec on System z

- IPSec is an IP-layer protocol for securing traffic
- Implemented in z/OS TCP/IP

- Central Processor Assist for Cryptographic Functions
- Introduced with z9 in 2005
- CPACF reduces CPU usage *quite* significantly

CPACF Enablement

• CPACF is free but enabled via Feature Code 3863

PODOOH29: CPC Details - Mozilla Firefox

 "How do I tell whether CPACF is enabled?"

P0000H29 Deta	ils - P0000H29				X
	oduct formation	Accept	able CP/PCHID	STP Information	z8X Information
- Instance Information -					
CP status:	Service Re	quired	Activation profil	le:	SNOY211108
PCHID status:	Exceptions		Last profile use	d:	DEFAULT
zBX Blade status:	Communica not active	ations	Service state:		false
Group:	CPC		Number of CPs	E.	18
IOCDS identifier:	A2		Number of ICFs	5.	2
IOCDS name:	IODFE7		Number of zAA	Ps:	2
System Mode:	Logically Partitioned		Number of IFLs	6	2
Alternate SE Status:	Not Operati	ing	Number of zliPs	E	2
Lockout disruptive ta	isks: 🗆 Yes 💿	No	Dual AC power	maintenance:	Fully Redundant
		-	CP Assist for C	rypto functions.	installed

Crypto Express2 and Crypto Express3

- Crypto Express: IBM Cryptographic Security Module
- Crypto Express4S is current with zEC12/zBC12

CEX, CEX, and More CEX!

• A CEC can have up to sixteen crypto features installed

- Eight two-engine cards or sixteen single-engine cards
- Often limited by available slots
- Each interface can be configured two ways:
 - 1. As cryptographic coprocessor (CEX2C, CEX3C)
 - 2. As SSL accelerator, for RSA operations (CEX2A, CEX3A)
- CEX also support "User-Defined Extensions"

SSL Handshake Performance

- As a CEX2C/3C/CEX4SC, CEX still helps with SSL
 - IBM results using z196 Model 754 (4 full-speed engines)

Method	ETR	CPU%	Crypto%
Software	1204	100	n/a
8 CEX3C	14457	95.24	92.3
4 CEX3A	14429	99.72	80.7

- With (plenty of) CEX, more than 10x improvement
- CEX3A is about double CEX3C!
- CPU utilization 100% without CEX, lower with

CKDS and **PKDS**

- ICSF can manage/use two special data sets
 - **CKDS**: Cryptographic Key Data Set
 - **PKDS**: Public Key Data Set
- Keys can be stored in CKDS/PKDS in encrypted form

ICSF Key Operation Modes

- Clear Key
- Secure Key
- Protected Key

CKDS, PKDS, and Secure Key Operation

• When an encrypted key from CKDS/PKDS is used:

- 1. Application fetches key from *x*KDS
- 2. Calls ICSF with data and encrypted key
- 3. ICSF calls CEX
- 4. CEX decrypts key with Master Key
- 5. CEX performs operation on data
- 6. Crypto result returned to ICSF, thence to application
- This is known as Secure Key operation

Protected Key Operations

- ICSF added Protected Key in 2009
- Stored keys in z/OS are still encrypted
 - CEX call decrypts key, re-encrypts with "wrapping key"
 - Copies wrapping key to protected HSA memory
 - Wrapped key returned and used on CPACF calls

Review: Key Operation Modes

• Clear Key

- Fastest but least secure

• Secure Key

- Slowest but most secure

• Protected Key

- "Most of the performance with most of the security"

CPACF and Crypto Express Support

- System z operating systems support CPACF and CEX
 - z/OS ICSF uses CPACF or CEX as appropriate/available
 - z/VM guests can use CPACF, be given CEX access
 - z/VSE supports CPACF and CEX (no RSA Secure Key)
 - z/TPF supports CPACF, CEX as RSA/SSL accelerator
 - Linux for System z distros fully support both

ICSF and SAF (RACF, ACF2, Top Secret)

• SAF can control ICSF

- CSFSERV resource class
- If not activated, no controls over ICSF

• CKDS/PKDS are special to SAF (RACF, ACF2, TSS)

- Each record (each key) is secured separately
- Controlled by CSFKEYS resource class

Misconception: "CEX is Always Good"

- Easy assumption to make: "Using CEX is always faster"
 - Not true: CEX mainly for <u>security</u> not <u>performance</u>
 - Certain operations (SSL/RSA) are faster
 - *Most* operations are slower: ICSF must do I/O to CEX
- For everyday cryptography (besides SSL handshakes):
 - Best performance: CPACF
 - Best **securi ty**: Crypto Express
- CEX *might* be cheaper CPU-wise with large data blocks

Approaches and Criteria

"They all claim they'll solve all our problems!?!"

Hardware or Software?

- Hardware
- Software

Separation of Duties

- Separation of Duties (SoD) is important for real security
- Fully transparent solutions fail to provide SoD

Separation of Duties: The Reality

• Implementing true SoD requires application changes

"You can have peace. Or you can have freedom. Don't ever count on having both at once." — Robert A. Heinlein

Key Management

• Key management equally critical

- What if you need data off a tape ten years from now?
- Can you access keys in DR scenarios?
- Robust, flexible key management is a must
 - Key management involves three primary functions:
 - 1. Give encryption keys to applications that must protect data
 - 2. Give decryption keys to users/applications that correctly authenticate according to some policy
 - 3. Allow administrators to specify that policy: who can get what keys, and how they authenticate

Key Management

- Key servers generate keys for each new request
- What about distributing keys?
- Too many solutions focus on the encryption algorithm

IBM Encryption Products

System z and z/OS Hardware and Software from IBM

Encrypting Hardware

- IBM encrypting tape drives: TS1130, TS1140
 - Whole-tape encryption
 - Tivoli Key Lifecycle Manager ("TKLM", aka IBM Secur Lifecycle Manager for z/OS) manages keys
- Encrypting disk array: DS8000
 - Whole-DASD encryption
- Performance impact of this encryption is minimal

InfoSphere Guardium Data Encryption

- Whole database encryption for DB2 and IMS databases
 - Formerly IBM Data Encryption for IMS and DB2 Databases
- Significant performance impact, so real SoD
- Limited value

Encryption Facility for z/OS

- File-level encryption; mainly targeted at backups
- Useful tool for specific purposes targeted
- Same product available for z/VSE

IBM® Sterling Connect:Direct®

• Automated, secure file transfer between systems

- Formerly Sterling Commerce Connect: Direct
 - Formerly Sterling Network Data Mover
 - Formerly Systems Center NDM
- Still commonly called "NDM"
- Mature, powerful product
 - Think "FTP or scp, only more programmable and secure"

Enterprise Key Management Foundation

- IBM Distributed Key Management System (DKMS) plus implementation services
- Longer-term, intended as IBM's answer to All Things KM

ISV Encryption

Approaches and Options

Hardware or Software?

- Same criteria as with IBM products
- Separation of Duties is important
- Key management equally critical

Hardware Solutions

- Various hardware options
- Need to understand the problem being solved

Software Solutions

• z/OS encryption products fall into three categories

- 1. Very narrow, "point" solutions (e.g., file encryption)
- 2. SaaS/SOA/SOAP (web services) remote server-based
- 3. Native (with or without hardware exploitation)
- Do you want to manage dozens of point solutions?
 - Also see Enterprise Encryption 101 at www.share.org/Portals/0/Webcasts/2012%20Webcasts/Getting %20Started.wmv or http://bit.ly/wtMriL

Point (Narrow) Software Solutions

- Plenty of "encrypt a file" products available
- Many candidates
 - Rocket Software
 - CA Technologies
 - Code Magus

- OpenTech
- PKWARE
- Innovation Data Processing

SOA (Web-based) Software Solutions

• Server (real or virtual) installed on your network

• Weaknesses:

- Performance: SSL connections involve overhead, delay
- System z folks often uncomfortable with operations "out there"
- Effective as z/OS point solution, if performance acceptable
- Several candidates
 - Protegrity
 - Safenet

 Liaison Techologies (formerly nuBridges)

Native Software Solutions

- APIs to add to existing applications
- Again, varied candidates :
 - **RSA** (EMC): C/C++ and Java APIs
 - CFXWorks, Entrust: Java-only APIs
 - Redvers Consulting: COBOL-only API
 - Prime Factors, Advanced Software Products Group: general-purpose APIs

Making Intelligent Choices

First Step: Understand the Problem

- "We need some encryption" isn't sufficient
 - To protect what?
 - From whom?
 - What else will this of necessity affect?
- Requires executive sponsorship
- Expect a successful implementation to spread

Security-Related Questions

- Is algorithm strong, peer-reviewed?
- Does it support hardware assists?
- Is key management part of the solution?

Operational/Deployment Questions

- Is implementation cost reasonable?
- Is implementation under your control?
- Is it multi-platform?

Voltage SecureData

Voltage SecureData

- Voltage SecureData offers broad platform support:
 - z/OS, Windows, Linux, Solaris, AIX, HP Nonstop, Stratus VOS, HP/UX, Java/J2EE, .Net, TeraData, Hadoop, AWS, Azure...
- Implements several Voltage technologies
 - FPE (Format-Preserving Encryption)
 - SST (Secure Stateless Tokenization) Native on z/OS!
 - SKM (Stateless Key Management)
- The simplest encryption API available anywhere

Voltage SecureData for z/OS Benefits and Value

Benefit and Value	Details
Ease of use Saves time and money	Dead simple API—minimal learning curve Atomic calls simplify integration, error handling Callable from any z/OS environment Can be linked dynamically for easier upgrades
Native z/OS exploitation <i>Integrates with operations</i>	Operations performed on System z—no network latency Exploits hardware crypto (if available) Integrates with native security (RACF/ACF2/Top Secret) User exits allow further control
Centralized administration Supports business goals	Verify that applications are using the correct operations Granular control over whether users can protect/access Perform auditing, chargeback SMF data for performance analysis and capacity planning

Conclusion

Summary

- System z is a full player in the encryption world
- Many encryption approaches exist
- IBM, vendors offer varied products
- Voltage SecureData eases data protection effort!

Questions?

703.476.4511 (direct) phil@voltage.com www.voltage.com

