Driving towards continuously available applications on System z

Dave Clitherow IBM dave.clitherow@uk.ibm.com

Wednesday 14 ${ }^{\text {th }}$ August 2013
Session 13635

Disclaimer

- IBM's statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM's sole discretion.
- Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision.
- The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.
- Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here

Suite of GDPS service products to meet various business requirements for availability and disaster recovery

HARE

Continuous Availability of Data within a Data Center

Single Data Center

Application remain active
Continuous access to data in the event of a storage subsystem outage

GDPSIPPRC HM

RPO $0 \mathrm{sec} \&$ RTO 0 sec

Continuous Availability I Disaster Recovery within a Metropolitan Region

Two Data Centers

Systems remain active
Multi-site workloads can withstand site and/or storage failures

GDPS/PPRC activelactive, activelstandby configs RPO $0 \mathbf{~ s e c} \&$ RTO $\mathbf{1 - 2} \mathbf{~ m i n ~} /<1 \mathbf{h r}$

Disaster Recovery at Extended Distance

Two Data Centers
Rapid Systems Disaster Recovery with "seconds" of Data Loss
Disaster recovery for out of region interruptions

GDPS/GM \& GDPS/XRC

RPO few sec \& RTO 1hr

Continuous Availability
Regionally and Disaster Recovery Extended Distance

Three Data Centers
High availability for site disasters
Disaster recovery for regional disasters

GDPS/MGM \& GDPS/MzGM
RPO $0 \sec$ \& RTO $1-2 \mathrm{~min} /<1 \mathrm{hr}$ RPO few sec \& RTO 1 hr

[^0])
Complete your sessions evaluation online RTO - recovery time objective (downtime) Asynch replication

- SMAR=
\because in Boston

Evolving customer requirements

- Shift focus from failover model to near-continuous availability model (RTO near zero)
- Access data from any site (unlimited distance between sites)
- Multi-sysplex, multi-platform solution
- "Recover my business rather than my platform technology"
- Ensure successful recovery via automated processes (similar to GDPS technology today)
- Can be handled by less-skilled operators
- Provide workload distribution between sites (route around failed sites, dynamically select sites based on ability of site to handle additional workload)
- Provide application level granularity
- Some workloads may require immediate access from every site, other workloads may only need to update other sites every 24 hours (less critical data)
- Current solutions employ an all-or-nothing approach (complete disk mirroring, requiring extra network capacity)

From High Availability to Continuous Availability

GDPSIPPRC	GDPS/XRC or GDPSIGM	GDPSIActive-Active
Failover model	Failover model	Near Continuous Availability model
Recovery time $=2$ minutes	Recovery time <1 hour	Recovery time <1 minute
Distance $<20 \mathrm{KM}$	Unlimited distance	Unlimited distance

GDPS/Active-Active is for mission critical workloads that have stringent recovery objectives that can not be achieved using existing GDPS solutions.

- RTO approaching zero, measured in seconds for unplanned outages
- RPO approaching zero, measured in seconds for unplanned outages
- Non-disruptive site switch of workloads for planned outages
- At any distance

Active-Active is NOT intended to substitute for local availability solutions such as Parallel SYSPLEX

ActivelActive concept

- Two or more sites, separated by unlimited distances, running the same applications and having the same data to provide:
- Cross-site Workload Balancing
- Continuous Availability
- Disaster Recovery
- Data at geographically dispersed sites kept in sync via replication

Workloads are managed by a client and routed to one of many replicas, depending upon workload weight and latency constraints; extends workload balancing to SYSPLEXs across multiple sites

Monitoring spans the sites and now becomes an essential element of the solution for site health checks, performance tuning, etc

Active/Active Sites Configurations

- Configurations
- Active/Standby - GA date $30^{\text {th }}$ June 2011
- Active/Query - statement of direction
- Active/Active - intended direction
- A configuration is specified on a workload basis
- A workload is the aggregation of these components
- Software: user written applications (eg: COBOL programs) and the middleware run time environment (eg: CICS regions, InfoSphere Replication Server instances and DB2 subsystems)
- Data: related set of objects that must preserve transactional consistency and optionally referential integrity constraints (eg: DB2 Tables, IMS Databases)
- Network connectivity: one or more TCP/IP addresses \& ports (eg: 10.10.10.1:80)

Active/Standby configuration

Active/Query configuration (SOD)

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Read-only or query transactions to be routed to both sites, while update transactions are routed only to the active site

Conceptual view

SHARE

What is a GDPS/Active-Active environment?

- Two Production Sysplex environments (also referred to as sites) in different locations
- One active, one standby - for each defined workload
- Software-based replication between the two sysplexes/sites
- IMS and DB2 data is supported (VSAM SoD)
- Two Controller Systems
- Primary/Backup
- Typically one in each of the production locations, but there is no requirement that they are co-located in this way
- Workload balancing/routing switches
- Must be Server/Application State Protocol compliant (SASP)
- RFC4678 describes SASP
- What switches/routers are SASP-compliant?
- Cisco Catalyst 6500 Series Switch Content Switching Module
- F5 Big IP Switch
- Citrix NetScaler Appliance
- Radware Alteon Application Switch (bought Nortel appliance line)

VSAM Statement of Direction

- IBM intends in the future to enhance the IBM Geographically Dispersed Parallel Sysplex ${ }^{\text {TM }}$ (GDPS®)/Active-Active continuous availability solution by providing support for software replication of Virtual Storage Access Method (VSAM) data for active-standby and active-query configurations. IBM plans to provide such support for data replication for VSAM data updated by applications that run in CICS and offline in batch mode, using log data provided by CICS Transaction Server for z/OS , V5 or later and CICS VSAM Recovery for z/OS , V5 or later.
- IBM 's statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM 's sole discretion. Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code, or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.
-..- in Boston

Sample scenario - both sites active for individual workloads

What S/W makes up a GDPS/ActiveActive environment?

- GDPS/Active-Active
- IBM Tivoli NetView for z/OS
- IBM Tivoli NetView for z/OS Enterprise Management Agent (NetView agent)
- IBM Tivoli Monitoring
- System Automation for z/OS
- IBM Multi-site Workload Lifeline for z/OS
- Middleware - DB2, IMS, CICS...
- Replication Software
- IBM InfoSphere Database Replication for DB2 for z/OS
- IBM InfoSphere IMS Replication for z/OS
- Optionally the Tivoli OMEGAMON XE suite of monitoring products

What is an Active/Active Workload?

- A workload is the aggregation of these components
- Software: user written applications (eg: COBOL programs) and the middleware run time environment (eg: CICS regions, InfoSphere Replication Server instances and DB2 subsystems)
- Data: related set of objects that must preserve transactional consistency and optionally referential integrity constraints (eg: DB2 Tables, IMS Databases)
- Network connectivity: one or more TCP/IP addresses \& ports (eg: 10.10.10.1:80)

Software - deeper insight

- All components of a Workload should be defined in SA* as
- One or more Application Groups (APG)
- Individual Applications (APL)
- The Workload itself is defined as an Application Group
- SA z/OS keeps track of the individual members of the Workload's APG and reports a "compound" status to the A/A Controller

* Note that although SA is required on all systems, you can be using an alternative automation product to manage your workloads.

Software - sharing components between workloads

- Certain components of a workload, for instance DB2, could be also viewed as "infrastructure"
- Relationship(s) from the Workload ensure that the supporting "infrastructure" resources are available when needed
- Infrastructure is typically started at IPL time

Software - sharing components between workloads

Shared members

- Other components of a Workload, for instance, capture and apply engines can also be shared
- However, GDPS requires that they are members of the Workload

Rationale

- The A/A Controller needs to know the capture and apply engines that belong to a Workload in order to
- Quiesce work properly including replication
- Send commands to them

Data - deeper insight

- In DB2 Replication, the mapping between a table at the source and a table at the target is called a subscription
- Example shows 2 subscriptions for tables T1 and T2
- A subscription belongs to a QMap, which defines the sendq that is used to send data for that subscription
- Example shows that both subscriptions are using the same QMap (SQ1)
- In IMS Replication, a subscription is a combination of a source server and a target server
- The subscription is the object that is started/stopped by GDPS/A-A.
- This corresponds to the QMap in Q Replication
- Each IMS Replication subscription contains a list of replication mappings
- There is one replication mapping for each IMS database being replicated
- This corresponds to a subscription in Q Replication

S/W replication technique (for example DB2)

1. Transaction committed
2. Capture read the DB updates from the log
3. Capture put the updates on the send-queue
4. Apply received the updates from the receive-queue
5. Apply copied the DB updates to the target databases

Connectivity - deeper insight

(1) ----- Advisor to Agents
(2) ----- Advisor to LBs
(3) ----- Advisor to Advisor
(4) ---- - Advisor to SEs
(5) ---- Advisor NMI

Connectivity - deeper insight

- In the IBM Multi-site Workload Lifeline product you must define your workloads:
- Example:
cross_sysplex_list
\{
10.212.128.151..40000,G0,WORKLOAD_CICSWEB
10.212.128.118..40000,G1,WORKLOAD_CICSWEB
10.212.128.151..40001,G0,WORKLOAD_CICSTPCC
10.212.128.118..40001,G1,WORKLOAD_CICSTPCC
10.212.128.151..40011,G0,WORKLOAD_IMSTPCC
10.212.128.118..40011,G1,WORKLOAD_IMSTPCC
\}
- Specifies the IP address of the 2nd-tier load balancer, the site name for that load balancer, the port number of the server application used for the workload, and the workload name
- Used by the Advisor to map 1st-tier load balancer group registrations with workload names
- Information here must match the definitions in the tier 1 load balancer

Connectivity - deeper insight

- CSS vserver entry - is used by the clients to address the workload. There is one entry for each workload. This is an entry for the workload that listens on port 40000

Example:

vserver GDPS-VSERV-CIC0
virtual 9.212.135.220 tcp 40000
no unidirectional
serverfarm GDPS-FARM-CICS0
no persistent rebalance
Inservice

- CSS serverfarm entry - is used to specify the IP addresses of the Tier 2 loadbalancers. These are the site specific Sysplex Distributor addresses for the G0 sysplex and G1 Sysplex. This serverfarm entry is referred to in the vserver entry above.
Example:
serverfarm GDPS-FARM-CICS0
nat server
nat client CLIENT
bindid 65520
real 10.212.128.151
inservice
real 10.212.128.118
Inservice

Architectural building blocks

GDPSIA-A configuration

GDPSIActive-Active (the product)

SHARE
Temmolioy - corsetions Results

- Automation code is an extension on many of the techniques tried and tested in other GDPS products and with many client environments for management of their mainframe CA \& DR requirements
- Control code only runs on Controller systems
- Workload management - start/stop components of a workload in a given Sysplex
- Replication management - start/stop replication for a given workload between sites
- Routing management - start/stop routing of transactions to a site
- System and Server management - STOP (graceful shutdown) of a system, LOAD, RESET, ACTIVATE, DEACTIVATE the LPAR for a system, and capacity on demand actions such as CBU/OOCoD
- Monitoring the environment and alerting for unexpected situations
- Planned/Unplanned situation management and control - planned or unplanned site or workload switches; automatic actions such as automatic workload switch (policy dependent)
- Powerful scripting capability for complex/compound scenario automation

Planned workload/site switch

Note: multiple workloads and needed infrastructure resources are not shown for clarity sake
28 Complete your sessions evaluation online at SHARE.org/BostonEval

Planned workload/site switch (cont)

COMM = 'Switch all workloads to SITE2'
ROUTING = 'STOP WORKLOAD=ALL SITE=AAPLEX1'
ASSIST = 'CHECK ALL WORKLOAD UPDATES REPLICATED'
ROUTING = 'START WORKLOAD=ALL SITE=AAPLEX2'

- Stop routing transactions to all workloads active to Sysplex AAPLEX1 in Site1
- Wait until all updates on AAPLEX1 are replicated to Sysplex AAPLEX2 in Site2
- check via the TEP or the Replication Dashboard that all updates have drained from the active to standby site, before stopping replication between the sites
- Start routing transactions for workloads previously active in Site1 to Site2
- Note: Replication is expected to be active in both directions at all times

The workloads are now processing transactions in Site2 for all workloads with replication from Site2 to Site1

Unplanned site failure

Go Home scenario

Nathedery \cdot Correction

After an unplanned workload/site outage Note: there is the potential for transactions to have been stranded in the failed site, had completed execution and committed data to the database at the time of the failure, but this data had not been replicated to the standby site. Assume the data is still available on the disk subsystems	After a planned workload/site outage Note: as the process to perform a planned site switch ensures that there are no stranded updates in the active site at the start of the switch, there is no need to start replication in the opposite direction in order to deliver stranded updates.
Start the site or workload that had failed	Start the site or workload that had been stopped
Restart replication from the site brought back online to the currently active site - this delivers any stranded changes resulting from the unplanned outage (*)	
Re-synchronize the recovering site with data from the currently active site, by starting replication in the other direction	Re-synchronize the restarted site or workload with data from the currently active site, by starting replication from the active to now standby site
Re-direct the workload, once the recovered site is operational and can process workloads	Re-direct the workload, once the restarted site is both operational and the data replication has caught up and can now process workloads

[^1]
Testing results*

Configuration:

-9 * CICS-DB2 workloads + 1 * IMS workload
-Distance between site 300 miles ($\approx 500 \mathrm{kms}$)

Test1:

Planned site switch

GDPS Active/Active

15 seconds

> GDPS/XRC GDPS/GM
> $\approx 1-2$ hour

GDPS/XRC GDPS/GM
≈ 1 hour

[^2]
Deployment of GDPS/Active-Active

- Option 1 - create new sysplex environments for active/active workloads
- Simplifies operations as scope of Active/Active environment is confined to just this or these specific workloads and the Active/Active managed data
- Option 2 - ActivelActive workload and traditional workload co-exist within the same sysplex
- Still will need new active sysplex for the second site
- Increased complexity to manage recovery of Active/Active workload to one place, and remaining systems to a different environment, from within the same sysplex
- Existing GDPS/PPRC customer will have to understand operational interactions between GDPS/PPRC and GDPS/Active-Active

No single right answer - will depend on your environment and requirements/objectives

Disk Replication and Software Replication with GDPS

Tesmology Corsetioss Results

Two switch decisions for Sysplex A problems ...
Workload Switch - switch to SW copy (B); once problem is fixed, simply restart SW replication Site Switch - switch to SW copy (B) and restart DR Sysplex A from the disk copy

Summary

- Manages availability at a workload level
- Provides a central point of monitoring \& control
- Manages replication between sites
- Provides the ability to perform a controlled workload site switch
- Provides near-continuous data and systems availability and helps simplify disaster recovery with an automated, customized solution
- Reduces recovery time and recovery point
 objectives - measured in seconds
- Facilitates regulatory compliance management with a more effective business continuity plan
- Simplifies system resource management

GDPS/Active-Active is the next generation of GDPS

QR Code for Evaluations

SHARE

Backup Charts

Pre-requisite products

- IBM Multi-site Workload Lifeline v1.1
- Advisor - runs on the Controllers \& provides information to the external load balancers on where to send transactions and information to GDPS on the health of the environment
- There is one primary and one secondary advisor
- Agent - runs on all production images with active/active workloads defined and provide information to the Lifeline Advisor on the health of that system
- IBM Tivoli NetView for zIOS v6.1
- Runs on all systems and provides automation and monitoring functions. The NetView Enterprise Master normally runs on the Primary Controller
- IBM Tivoli Monitoring v6.2.2 FP3
- Can run on the Controllers, on zLinux, or distributed servers provides monitoring infrastructure and portal plus alerting/situation management via Tivoli Enterprise Portal, Tivoli Enterprise Portal Server and Tivoli Enterprise Monitoring Server

Pre-requisite products

- IBM InfoSphere Replication Server for zIOS v10.1
- Runs on production images where required to capture (active) and apply (standby) data updates for DB2 data. Relies on MQ as the data transport mechanism (QREP)
- IBM InfoSphere IMS Replication for z/OS v10.1
- Runs on production images where required to capture (active) and apply (standby) data updates for IMS data. Relies on TCPIP as the data transport mechanism
- System Automation for zIOS v3.3 or higher
- Runs on all images. Provides a number of critical functions:
- BCPii
- Remote communications capability to enable GDPS to manage sysplexes from outside the sysplex
- System Automation infrastructure for workload and server management
- Optionally the OMEGAMON suite of monitoring tools to provide additional insight

Pre-requisite software matrix

SHARE

Pre-requisite software [version/release level]	GDPS Controller	$A-A$ Systems	non A-A Systems
Operating Systems			
z/OS 1.11 or higher	YES	YES	YES
Application Middleware			
DB2 for z/OS V9 or higher	NO	YES ${ }^{1)}$	as required
IMS V11	NO	YES ${ }^{1)}$	as required
Websphere MQ V7	NO	MQ is only required for DB2 data replication	as required
Replication			
InfoSphere Replication Server for z/OS V10.1	NO	YES ${ }^{1)}$	as required ${ }^{2)}$
InfoSphere IMS Replication for z/OS V10.1	NO	YES ${ }^{1)}$	as required ${ }^{2}$
Management and Monitoring			
GDPS/A-A V1.1	YES	NO	NO
Tivoli NetView for z/OS V6.1	YES	YES	YES
Tivoli System Automation for z/OS V3.3 + SPE APARs	YES	YES	YES
Multi-site Workload Lifeline Version for z/OS 1.1	YES	YES	NO
Tivoli Monitoring V6.2.2 Fix Pack 3	YES	YES	NO

[^3] the same instances as the A-A workloads

40 Complete your sessions evaluation online at SHARE.org/ BostonEval

Pre-requisite software matrix (cont)

Pre-requisite software [version/release level]	GDPS Controller	A-A Systems	non A-A Systems
Optional Monitoring Products			
IBM Tivoli OMEGAMON XE on z/OS V4.2.0	YES	YES	as required
IBM Tivoli OMEGAMON XE for Mainframe Networks V4.2.0	YES	YES	as required
IBM Tivoli OMEGAMON XE for Storage V4.2.0	YES	YES	as required
IBM Tivoli OMEGAMON XE for DB2 Performance Expert (or Performance Monitor) on z/OS v4.2.0	NO	YES ${ }^{1)}$	as required
IBM Tivoli OMEGAMON XE on CICS for z/OS v4.2.0	NO	YES ${ }^{1)}$	as required
IBM Tivoli OMEGAMON XE on IMS v4.2.0	NO	YES ${ }^{1)}$	as required
IBM Tivoli OMEGAMON XE for Messaging v7.0	NO	YES ${ }^{1)}$	as required

${ }^{1)}$ workload dependent

Note: Details of cross product dependencies are listed in the PSP information for GDPS/Active-Active which can be found by selecting the Upgrade:GDPS and Subset:AAV1R1 at the following URL:
http://www14.software.ibm.com/webapp/set2/psearch/search?domain=psp\&new=y

[^0]: RPO - recovery point objective (data loss)
 Synch replication

[^1]: (*) attempts to apply the stranded changes to the data in the active site may result in an exception or conflict, as the before image of the update that is stranded will no longer match the updated value in the active site. For IMS replication, the adaptive apply process will discard the update and issue messages to indicate that there has been a conflict and an update has been discarded. For DB2 replication, the update may not be applied, depending on conflict handling policy settings, and additionally an exception record will be inserted into a table.

[^2]: * IBM laboratory results; actual results may vary.

[^3]: ${ }^{1)}$ workload dependent $\quad{ }^{2)}$ can use Replication Server instances, but not

