
Fit for Purpose Architecture Selection
and Design

Frank J. De Gilio
IBM Corporation

Monday August 12 1:30 pm

Session: 13558

Insert
Custom
Session
QR if
Desired.

Acknowledgement
•  Sally J Eystad – Atlanta
•  Eduardo Oliveira - Atlanta
•  Don Hemrick - Atlanta
•  Satya Sharma – Austin
•  Jim Mitchell – Austin
•  Joel Tendler – Austin
•  William Starke – Austin
•  Greg Pfister – Austin
•  David Ruth – Austin
•  Ndu Emuchay - Austin
•  Indulis Bernsteins - Australia
•  Ray Williams – Calgary
•  Scott D Randall - Cambridge
•  Kevin D Dixon – Charlotte
•  William Genovese - Charlotte
•  Darryl Van Nort – Chicago
•  Susan Grabinski – Chicago
•  Dennis Robertson - Chicago
•  Todd Engen – Columbus
•  Susan Schreitmueller – Dallas
•  Linda Chidsey - Dallas
•  Rick Lebsack – Denver
•  Jim Cook - Lexington
•  Gord Palin – Markham
•  John Schlosser – Milwaukee
•  Gary Crupi – Milwaukee
•  John Banchy – Minneapolis
•  Cindy Banchy - Minneapolis

•  Randy Holmes – Minneapolis
•  Mickey Sparks – Minneapolis
•  John Northway - Minneapolis
•  Scott Lundell – Omaha
•  DeWayne Hughes - Omaha
•  Brian Gagnon – Pittsburgh
•  Chris Meurer - Pittsburgh
•  Joseph Temple – Poughkeepsie
•  Kathy Jackson - Poughkeepsie
•  Colleen Ashe - Poughkeepsie
•  Pak-kin Mak – Poughkeepsie
•  Frank DeGilio – Poughkeepsie
•  Hilon Potter – Poughkeepsie
•  William Clarke – Poughkeepsie
•  Timothy Durniak – Poughkeepsie
•  Gururaj Rao - Poughkeepsie
•  Jim Barros - Raleigh
•  Steve Kunkel – Rochester
•  Craig Wilcox – Rochester
•  Edith Lueke – Rochester
•  Mark Dixon - Sacramento
•  Dale Martin - San Francisco
•  Jeff Josten - Santa Teresa
•  Bill Reeder - Seattle
•  Danny Williams – UK
•  Jeffrey Callan - Waltham
•  Wakaki Thompson – Wayne
•  Edward Hoyle - Winston Salem
•  James Huston - White Plains

Caveats

•  This presentation covers both platform positioning and selection
•  Positioning: Generalized discussion of platform design & attributes
•  Selection: Evaluating options for workloads in a specific customer context

•  By definition there will be exceptions to any generalization
•  Broad technology & market observations – a starting point for discussion
•  Not all customers are the same – primary focus is on medium to large

customers

•  Agreement on common terminology definitions is key
•  Similar terms can sometimes mean different things for different platforms
•  Speaker will try to define terms – audience should ask if unsure

Many Factors Affect Choice

Would you purchase
a family car solely

on one factor?

Car Server Platform

Purchase price Purchase price

Gas mileage, cost of repairs,
insurance cost

Cost of operation, power
consumption, floor space

Reliability Reliability

Safety, maneuverability,
visibility, vendor service

Availability, disaster recovery,
vendor service

Storage capacity, number of
seats, towing capacity Scalability, throughput

Horsepower Chip performance

Dash board layout
Automatic or manual Instrumentation and skills

Handling, comfort, features Manageability

Looks, styling, size Peer and industry recognition

Selecting a Platform

System
z

System
x

Power

Time Horizon
ISV Support

Non-Functional
Requirements

Power, cooling,
floor space
constraints

Strategic Direction
and Standards

Cost Models Skills

Politics

Platform
Architecture

Technology
Adoption
Level

Deployment
Model

Scale

Geographic
Considerations

Local Factors are Important

•  Local factors (constraints)
•  Skills
•  Technology adoption levels
•  Platform management practices
•  Number of servers
•  Organizational considerations
•  Data center issues
•  Culture

•  Develop comparison metrics
•  Consistent, collectable, usable

•  Become best of breed
Pl

at
fo

rm
 F

ac
to

r
(e

.g
. A

va
ila

bi
lit

y)

Platform A

Industry Average

Best of Breed

Below Average Industry Average

Best of Breed

Below Average

Platform B

Design Decisions Often Involve
Tradeoffs

•  Designs involve tradeoffs
•  Cost
•  Availability
•  Throughput
•  Simplicity
•  Flexibility
•  Functionality

•  Designs are different because
needs are different

Strategic and Tactical Platform Choices

Tactical Choices

• Can Lower decision costs
• Based on momentum, skills,

and legacy
• Narrow focus can lead to sub-

optimal solutions

Strategic Choices

• Can lower long term costs
• Can run afoul of legacy
• New technologies may change

business process & strategy

Tactical Strategic

IT Decision

• Balance tactical & strategic
• Balance of established and

visionary patterns
• Mergers and acquisitions can

add non-strategic solutions

Over time all strategic choices become legacy

Reference Architectures

•  Pattern for repeated decisions
•  Lower decision making cost
•  Lower implementation variability

•  Larger than single decision - unlike a standard

•  Based upon
•  Actual implementations
•  Architectural decisions

•  Can be long term decision setting

Functional and Non-Functional Requirements

Functional
“What it does”

•  Correct business results
•  Inputs
•  Outputs
•  Behaviors
•  External interfaces
•  Screen layouts

Non-Functional
“How well it does it”

•  Availability requirements
•  Transactions per minute
•  Security requirements
•  Ease of provisioning and support
•  Disaster recovery requirements
•  Future growth

Select platforms based upon non-functional requirements
driven by business value

Future Proof

•  May select a platform for an unclear future need
•  Potential acquisition or new business volumes
•  More stringent future non-functional requirements
•  Proposed new regulation
•  Money in this year’s budget

•  Platform features can help mitigate
•  Capacity on demand
•  More scalable servers
•  I/O drawers and/or cages

Select a Platform Based Upon All NFRs

Platform A

Platform A

Platform B

Platform B

NFR #1

NFR #2

Requirement

Requirement

Traditional Deployment Models

OS

UI

OS

App

OS

Data

OS

UI App Data

Centralized

§  Components are all
together

§  Very granular resource
sharing

§  OS workload
management

§  Strongly integrated and
stacked

Virtualizer

OS OS OS

UI App Data

Virtualized

§  Components split across
virtual images

§  Coarser grained resource
sharing

§  Virtualizer workload
management

§  Stacked and integrated
over network

Dedicated

§  Components split across
servers

§  No resource sharing
between servers

§  Limited workload
management

§  Integrated over physical
networks

Emerging Deployment Models

Cloud

§  Self service

§  Rapid provisioning

§  Advanced virtualization

§  Flexible pricing

§  Elastic scaling

§  Standardized offerings

§  Network access

Hybrid

§  Combination of other
deployment models

§  Potential uses

– Intelligent offload

– Centralized management

– SOA services

§  Transcends computing
silos

Clouds vs. Systems Pools

•  Automated
•  Capable of automation
•  Limited choice & complexity
•  Small relative to HW footprint

•  Repeated
•  Used frequently
•  Low relative effort to automate

•  Low on-going support
•  Limited maintenance, capacity

planning, performance tuning
•  HW/OS able to dynamically handle

needs

Automated
Repeated

Low Support

Cloud

Human Driven
Custom

Higher Support

Pools of Virtualized
Resources

Service
Request

New

Choosing a Platform – ISV Considerations

•  For a given deployment
•  Eliminate platforms that don’t support the ISV
•  Choose a different ISV
•  Get ISV to support platform

•  Select platform on non-functional requirements
•  Not just on middleware brand
•  NFRs vary using the same middleware

•  Consider platform agnostic middleware
•  NFRs can change over time
•  Agnostic middleware offers more flexibility

Deployment Models and Underlying Hardware

 Dedicated

§  Acquisition costs
emphasis

§  Industry standard
components

§  Commodity availability
features common

§  Cost per unit of work is
typically higher

Centralized

Virtualized

Degree of Sharing / Robustness More Less

§  Scalability and performance critical

§  Stress on data delivery features

§  Large emphasis on single server availability

OS

UI

OS

App

OS

Data

OS

UI App Data

Virtualizer

OS OS OS

UI App Data

Server Scalability, Utilization, and Throughput

•  Throughput measures work
•  Requires performance objective
•  Can be higher with discretionary

work

•  Factors that affect throughput
•  Cache or data coherence
•  Contention for shared resources
•  Path length and latency
•  Balanced system design

•  Mixed workloads can stress
platform design

•  Isolated capacity can lower
throughput
•  Dedicated servers or partitions
•  Passive clusters
•  Separate environments
•  Business decision

Driving High Effective CPU Utilization

New

Other Resources (e.g. I/O)

C
PU

 U
til

iz
at

io
n

100%

100%

I/O
Intensive

•  High CPU utilization
•  Minimize core based SW costs

•  Must run out of CPU last

•  Over size I/O and memory if
work is unpredictable

Balanced

Cache Effectiveness

•  Throughput can decline when
cache is starved

•  Area A
•  CPU frequency, memory latency,

and threading affect slope
•  Cache is not yet a bottleneck

•  Area B
•  Insufficient cache dominates

•  Performance affected by
•  Size and distance of cache
•  Working set size and context

switch rates

New

Declining
Throughput

A B

Memory Architectures

•  NUMA Memory Model
•  Non-uniform access to memory
•  Useful for partitioned workloads
•  More components
•  Latency limits throughput

•  Flat Memory Model
•  Consistent access to memory
•  Ideal for shared workloads
•  Fewer components
•  Increasingly critical with scale

Interconnect

M M M M I/O I/O

P P P P P P P P

I/O I/O

M M I/O

P P P P

I/O

Interconnect

M M I/O

P P P P

I/O

Interconnect

Point to point crossbar interconnect

Relative Server Capacity

•  Base core capacity

•  Server specific factors
•  Efficiency
•  Additional cycles/capabilities

•  Relative server capacity
•  Workloads vary over time
•  Local metrics or relevant benchmarks

•  General purpose vs. specialized servers

Platform
Tuned

Software

High
Memory

Bandwidth

Threading
or

Superscalar
Processor
Off-load

Out of
Order

Execution

Cache,
Interconnect
& Memory

Model

Deployment
Model

Virtualization
Efficiency

Base
Core

Workload Attributes and Market Segmentation

Transaction Processing
and Database

High Transaction Rates
High Quality of Service
Peak Workloads
Resiliency and Security

Analytics and High Performance

Compute or I/O intensive
High memory bandwidth
Floating point
Scale out capable

Web, Collaboration
and Infrastructure

Highly threaded
Throughput-oriented
Scale out capable
Lower Quality of Service

Business Applications

Scale
High Quality of Service
Large memory footprint
Responsive infrastructure

High Level Workload Definition

•  Workloads are a combination of:
•  Application function: What it does and how it does it
•  Data structure: Data residency, topology, access model
•  Usage pattern: Utilization profile over time, mix of use cases
•  Service level: Non-functional requirements
•  Integration: Interaction between application & data

components

•  The workload requirements will create varying demands
when determining server alternatives

Workload Architectures – More Technical
View

Mixed

• Highly threaded

• Shared data and
work queues

• Parallel data
structures

• Small discrete
applications

Parallel Data
Structures

Shared
Data & Queues

Small Discrete
Applications

Mixed

Highly
Threaded

Workload Characteristics
Small Discrete
Applications

Small Discrete Applications
•  Little pressure on any resource
• Minimal memory footprint
• Ripe for virtualization
• May have inactive, low or spiky use

Shared Data & Work Queues
• Single thread performance key
• Benefits from large shared caches
•  Fast lock processing
• Hypervisor spin lock detection

Shared
Data & Queues

Mixed Mixed
• Different SLAs
• Varying size & number of threads
•  Large close caches
• Variable context switch rates

Parallel Data
Structures

Parallel Data Structures
• High sustained thread use/count
• High memory and I/O bandwidth
• Benefits from large private caches
• Efficient use of dedicated resources

Highly
Threaded

Highly Threaded
•  Lots of software threads
• Modest thread interaction
• Benefits from large private caches
•  Low latency memory access

Workload Characteristics and Platform Requirements

§ OLTP databases
§ N-Tier transaction

processing

§  Structured BI
§  XML parsing
§ HPC applications

§ Web app servers
§  SAP app servers

§ HTTP, FTP, DNS
§  File and print
§  Small end user apps

§  z/OS and IBM i
§ Hypervisors with

virtual guests, WPAR

§  Thread interaction
raises contention &
coherence delays

§ Coherency traffic
increases memory &
cache bus utilization

§ High context switch
rates

§  Low thread
interaction

§ High memory
bandwidth

§  Low context switch
rates

§  Lots of software
threads

§ Modest thread
interaction

§ Does not pressure
any resource

§ Requires minimal
memory footprint

§  Inefficient on
dedicated resources

§ No shared data

§ Different SLAs
§  Varying sizes and

number of threads
§ May be N-Tier or

independent
§  Variable context

switch rates

§  Scale on robust SMP
§ Cluster technology

dependent
§  Large shared caches

and wide busses
§  Fewer, bigger

threads

§  Scale well on
clusters

§  Large private caches
§ High thread count
§ High memory and I/O

bandwidth
§ Often on dedicated

machines

§  Scale on large SMP
§ Can scale on clusters
§ High thread count
§  Low latency memory

access
§  Large private caches

§  Single instances can
run on almost any
hardware

§  Small numbers will
virtualize on any
hardware

§ Robust SMP allows
better virtualization
flexibility

§  Scale on robust SMP
§ High internal

bandwidth
§  Thread speed and

number is workload
dependent

§  Large, close caches
§ High memory

bandwidth

Shared
Data & Queues

Parallel Data
Structures

Small Discrete
Applications

Ex
am

pl
es

C

ha
ra

ct
er

is
tic

s
Pl

at
fo

rm
 C

on
si

de
ra

tio
ns

Mixed Highly
Threaded

Amdahl’s Law
•  Limits to parallel applications
•  Not all applications benefit from, or are coded for, more threads
•  Individual thread performance matters
•  Benchmarks often exploit unrealistic parallelism
•  Applies to SMPs and clusters

Amdahl's Law
(N = Infinity)

0
20
40
60
80

100
120

99 90 75 65 55 45 35 25 15

Percent Parallel

S
p

e
e

d
u

p

Amdahl’s Law

N

1

(1 - P) + P
Speedup =

P = Proportion of a program
 that can be made parallel

N = Number of threads

Multiple Platforms May be Appropriate
•  A business service

•  May have multiple workload
types

•  Can exhibit multiple workload
types based on usage patterns

•  Impact on selection
•  A mix of optimized platforms may

be more cost effective
•  Other local factors and non-

functional requirements apply

Data
Warehouse

Parallel

Core Banking
System

Mixed

Internet
Banking

Threaded

Internet Banking
Front-End

Small

 Banking Example

Capacity and Performance - Deployment
Models

•  Deployment Considerations
•  Network effects
•  Sharing of resources
•  Workload management
•  Multi-programming level

•  Impact
•  Total resource requirements
•  Server utilization
•  Performance/capacity mgt
•  Disaster recovery

Data
Layer

User
Interface

Application
Layer

Data

Automation and Feedback Loops

§  Automation is built on feedback controls
§  Scaling out lengthens feedback loops
§  Long feedback loops can result in

solutions that are:
–  Over-provisioned
–  Inconsistent
–  Sluggish

Scope Limitation Leads to Sub-
Optimization

•  A single application or department
view is easiest to understand

•  Issues
•  May be driven by politics
•  Runs counter to enterprise IT optimization
•  May make an enterprise view harder to establish
•  Can lead to large hidden costs
•  Server sprawl

•  Enterprise wide, scope specific, reference architectures

Commit Scope

•  Commit Scope
•  Data for an application must be in sync

and committed together
•  Must also be backed off together

•  Impact of Deployment Model
•  Latency increases the time resources are held
•  More parts increases integrity issues during commit scope

•  Can be significant in HA and DR scenarios

All for one and one for all

Interference Analysis

•  Interference analysis
•  Few things operate in isolation

•  New application or service
•  May impact existing applications
•  May include procedural impacts

including life cycle management
•  Can be significant for composite

applications

•  Non-functional requirements
•  A requirement or change in one

NFR can affect another

Non-Functional Inheritance

•  Sum of calling applications
arrival rates

•  Fastest of the calling
applications response times

•  Highest of calling applications
availability

•  Non-functional inheritance
drives up requirements

Application A

Application B

IBM’s Consolidation Project
Linux on
System z

AIX on
Power

Windows / Linux on System
x

ISV
Filter

Software available only on a particular platform

Performance
Filters

Low CPU Peak
Average memory usage

High CPU Peaks
Higher memory usage

Workload
Filters

Transactional I/O
Proximity to Data
Proximity to Apps

Already virtualized on AIX
AIX product development

Already virtualized on Intel
Small counts of isolated
images
Linux not met by System z

This table reflects an IBM example based upon IBM’s local factors

Platform Selection Framework

Define
Business &

IT Objectives

Define
Scope

Apply Known
Filters &

Constraints

Determine
Criteria &

Assign
Priorities

Complete
TCO

Select
Platform

Examples:
§ Simplify and

Reduce
Complexity

§ Reduce Costs
§  Improve

Service Levels
§  Improve

Profitability
§ New business

function
§ Etc.

§ Applications
§  Infrastructure
§ Prod/Dev/Test
§  Logical

Decomposition
§  etc.

§  Technology
Preferences:

-  platforms
-  skills
-  Marketplace

-  NFRs

§ Determine
Categories

-  Cost
-  NFRs
-  IT Process &

Support
-  Strategic Fit

§ Assign
Weighting

§ Determine
subcategories

§ Assign priorities

§  For short list
of platforms,
complete
TCO.

Provide
Context

Reduce
Solution

Set Customer
Decision
Criteria

§  Report

Crunch
the

numbers

Merge
results

Platform Selection Process

•  Start with business need
and scope

•  Understand local
standards

•  Choose software stack
•  Consider operational context

•  Select hardware based
on NFRs & local factors
•  First data then apps
•  Consider operational context

b

b

Business

Org
Standards

App
Functions

Choose
Software

Place
Data
Place
App

New

Example Platform Selection Process
 Business & IT Objectives

•  Reduced costs
•  Reduced complexity
•  Improve server levels
•  New business function

 Define Scope

•  Application(s) in question
•  Environments considered
•  Locations
•  Length of decision
•  Identify standards,

constraints & interference

 For Data then App

•  Address local

factors
•  Evaluate prioritized

NFRs
•  Assess for

interference

Eliminate platforms

Analyze Costs and
Weights

Select Platform

Build
Guidance
Weighting

Model

Technical Validation
(as required)

•  Stress test
•  Benchmark
•  Modeling
•  Solution review

Eliminate platforms

Complete
TCO

Analysis

Summary of Key Points

•  Many factors influence platform selection – a simple matrix does not exist

•  Local factors affect platform selection

•  Infrastructure size matters

•  Each deployment model has its place – virtualize or centralize where possible

•  There is no single platform or middleware capacity metric

•  Larger servers offer virtualization advantages

•  Non-functional requirements are the significant element of platform selection

•  Select platforms based upon workload requirements not middleware

•  An enterprise wide view provides the best optimization opportunity

•  The choice of cost and value elements, along with time horizon, can dictate which platform is
considered the lowest cost

•  Cost models have different purposes – use the right one for the job

