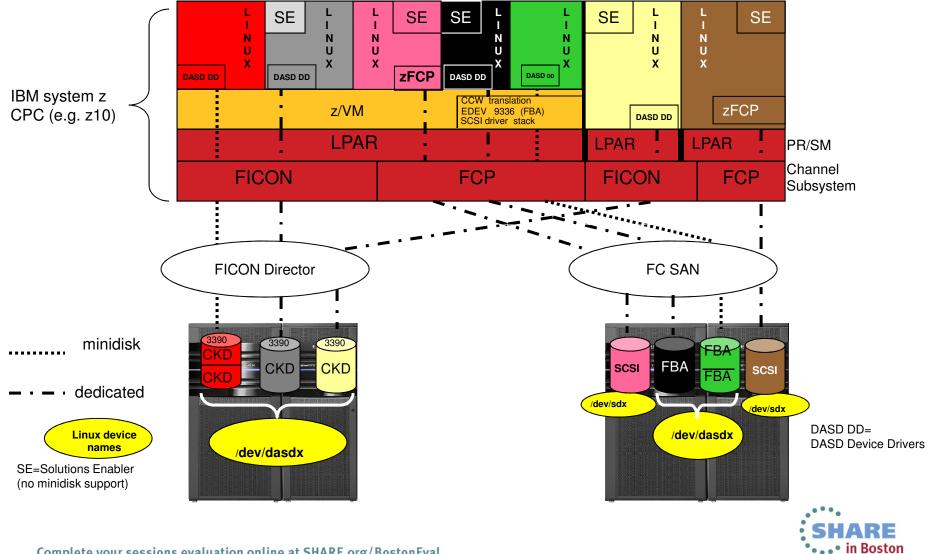


LESS=MORE WITH VIRTUAL PROVISIONING AND LINUX ON SYSTEM Z

Gail Riley EMC Corporation August 15, 2013 Session Number 13534

Agenda

- Introduction to Virtual Provisioning
- Virtual Provisioning features for Linux on System z
 - FBA
 - CKD
- Virtual Provisioning Benefits
- Fully Automated Storage Tiering for Virtual Pools (FAST VP) Overview



Objectives

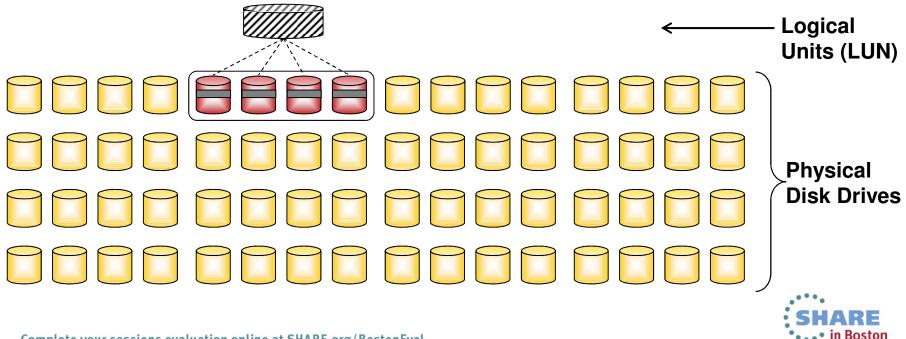
- Discuss the options for deploying virtual provisioning for both CKD and FBA devices in Linux on System z environment
- Understand the key components virtual provisioning
- Examine interrelationships that are built during the creation of virtual provisioned (thin) devices

Linux on System z Disk Attachment **Options**

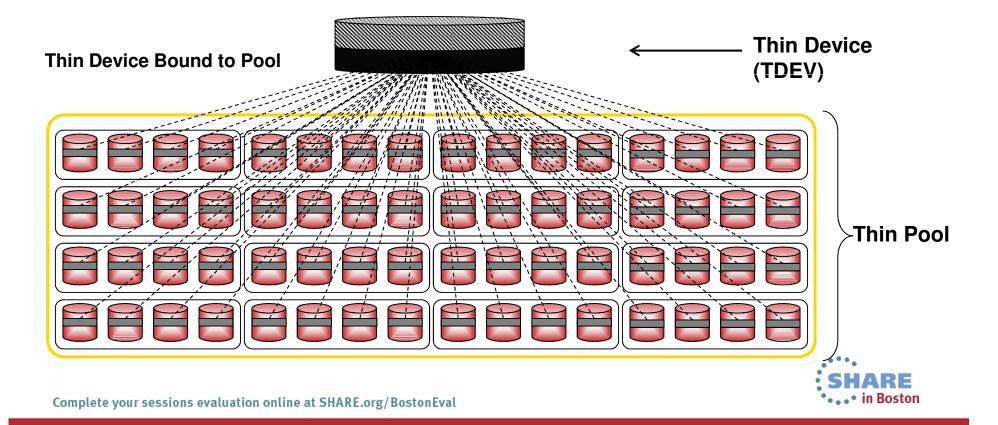
Technology · Connections · Results

Complete your sessions evaluation online at SHARE.org/BostonEval

Virtual Provisioning = Thin Provisioning


- From wiki:
 - "Thin provisioning is the act of using <u>virtualization technology</u> to give the appearance of having more physical resources than are actually available."
 - "Thin provisioning is a mechanism that applies to large-scale centralized computer disk storage systems, <u>SANs</u>, and <u>storage virtualization</u> systems. Thin provisioning allows space to be easily allocated to servers, on a just-enough and justin-time basis."

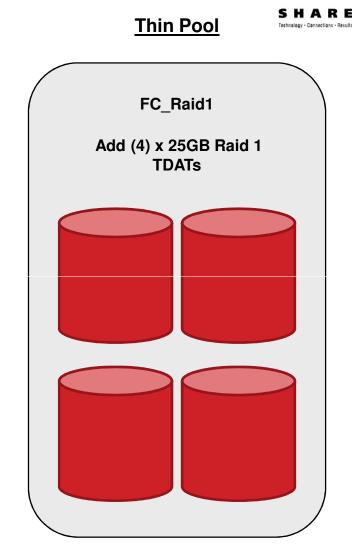
Data Layout – RAID group Allocation


- Capacity for a single logical volume is allocated from a group of physical disks
 - Example: RAID 5 with striped data + parity
- Workload is spread across a few physical disks

Data Layout – Pool-based Allocation Virtual Provisioning

- Storage capacity is structured in pools
- Thin devices are disk devices that are provisioned to hosts

Storage Requirement: Performance

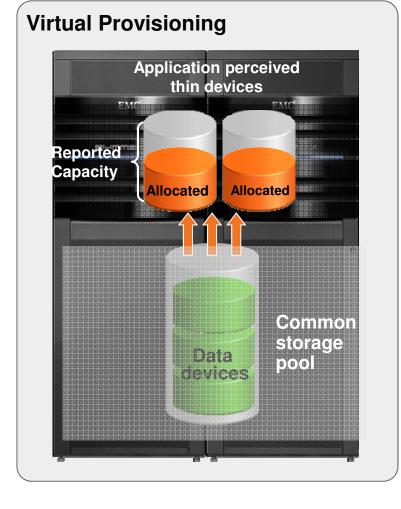

- Goal is to spread workload across all available system resources
 - Optimize resource utilization
 - Maximize performance
- Three approaches:
 - RAID data protection
 - Symmetrix Meta Devices
 - Virtual Provisioning

Complete your sessions evaluation online at SHARE.org/BostonEval

VP Components

- Thin Data Device (TDAT)
 - An internal, non-addressable device
 - Provides the physical storage for a thin device
 - Multiple RAID protection types
 - RAID 1, RAID 5, RAID 6
- Thin Pool
 - a shared, physical storage resource of a single RAID protection and drive technology
 - the first TDAT added determines the protection type for the pool

VP Components

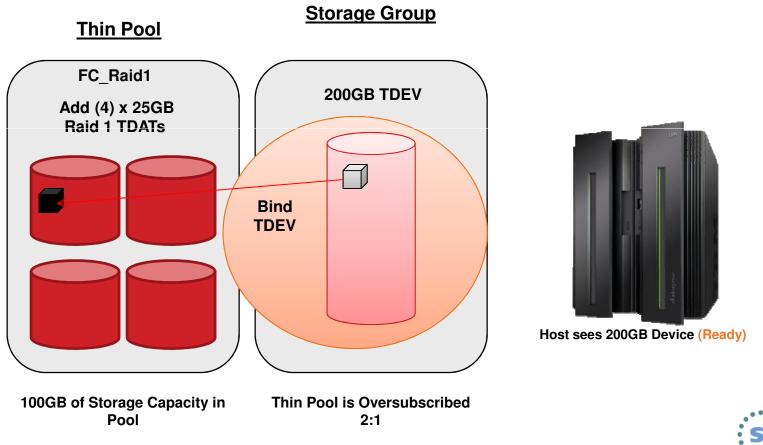

- Thin Device (TDEV) Host-addressable, cache only device
 - Bound to a thin pool and provisioned to hosts
 - Seen by the operating system as a "normal" device
 - Can be replicated both locally and remotely
 - Physical storage need not be completely allocated at device creation
 - Physical storage is allocated from a thin pool of DATA devices
- Thin Device Extent (aka track group for CKD)
 - unit of allocation from a thin pool when a host writes to a new area of a thin device
 - 12 Symmetrix tracks, (768 KB for FBA, 680KB for CKD)

Virtual Provisioning for FBA as SCSI devices with Linux on System z

VP Concepts for FBA as a SCSI LUN

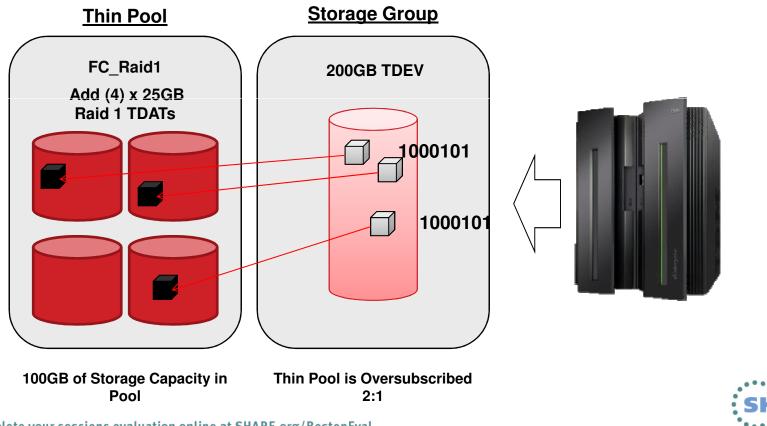
- Thin Provisioning SCSI
 - Space efficient technology
 - Data storage never 100% full
 - Present thin device to Linux
 - Only consumes storage as the host writes
 - Physical storage allocated from a shared pool
- Over Subscription
 - Thin device capacity > pool

Binding a Thin Device


- A thin device must be bound to a pool in order to be allocated any storage
- One extent is allocated from the pool when it's bound
- Any write to a new area of a thin device will trigger an extent allocation from the pool the device is bound to
 - New allocations are performed using a round robin algorithm to spread extents across all of the enabled data devices in the thin pool

Virtual Provisioning Bind

- A thin device must be bound to a pool to allocate space
- Bind allocates initial extent in thin pool



Complete your sessions evaluation online at SHARE.org/BostonEval

Virtual Provisioning Writes

 Write to new area of tdev will allocate extents round robin across the pool

Complete your sessions evaluation online at SHARE.org/BostonEval

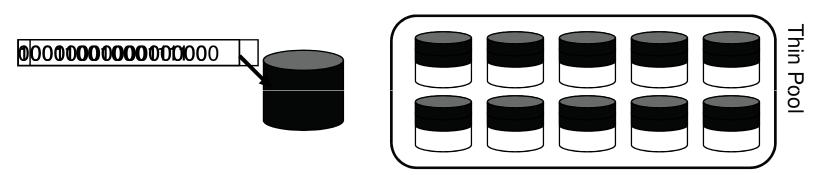
VP Threshold Settings

EMC Unisphere for VMAX V1.5.0.6

10 Home	e 谢 System (🗊 Storag	e 📘	Hosts 🕡	Data Pro	otection	🛉 Per	forr
000195700486 > Home > Administration > Alert Settings > Alert Thresholds								
Alert Inresholds								
Symmetrix ID 1	Category 2	Instance 3	State	Notification	Warning	Critical	Fatal	
000195700398	Fast VP Policy Utilization	*	enabled		60%	80%	100%	
000195700398	Snap Pool Utilization	*	enabled		60%	80%	100%	
000195700398	Thin Pool Utilization	*	enabled		60%	80%	100%	-
000195700455	Fast VP Policy Utilization	*	enabled		60%	80%	100%	
000195700455	Snap Pool Utilization	*	enabled		60%	80%	100%	
000195700455	Thin Pool Utilization	*	enabled		60%	80%	100%	
000195700486	Fast VP Policy Utilization	*	enabled		60%	80%	100%	
000195700486	Snap Pool Utilization	*	enabled		60%	80%	100%	
000195700486	Thin Pool Utilization	*	enabled		60%	80%	100%	

Attributes of a FBA/SCSI device Thin Pool

- A thin pool can be over subscribed
 - Provision more space than exists in the pool
- Maximum Subscription % controls whether a pool can be over subscribed (allocated)
- Pool Reserve Capacity (PRC) pools enabled capacity to be reserved for allocating new extents for the bound devices in the pool


Space Reclamation Feature for FBA/SCSI

- Available capacity in the thin pool can be maximized by returning unneeded extents
- Reclamation eligibility is based on
 - tracks that contain all-zero data
 - tracks Never Written By Host (NWBH)

Space Reclamation for SCSI LUN on Linux

- Reclaims thin pool storage by deallocating unnecessary track groups
 - Scans each track group and discards those containing all zeros
 - Deallocated tracks are presented as all zeros by Symmetrix to host

- Primary use is post migration from "thick" to "thin"
 - Migration performed using TimeFinder/Clone
- Reclamation should be run prior to configuring any replication relationships
 - Thin devices in existing TimeFinder or SRDF relationships will be skipped

Thin Provisioning "cleanup"

- Cleanup terms are used loosely which can be confusing
- New host based SCSI commands* for thin device cleanup
 - SCSI unmap
 - SCSI write same with unmap
- SCSI standard (t10.org) T10 Technical Committee on SCSI Storage Interfaces
- Support for these SCSI commands are
 - Kernel dependent Linux vendor and release
 - Storage array dependent
- * Any new technology should be tested and fully understood before being put into production

SHARE Tethology - Cennetions - Results

Thin Provisioning Cleanup from Linux on System z

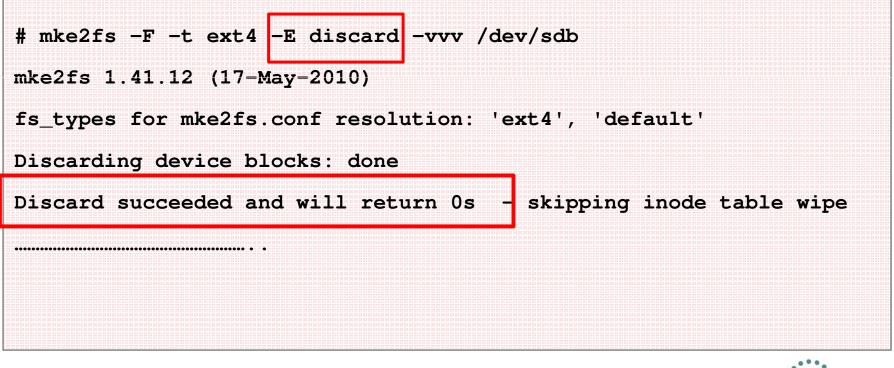
- SCSI commands
 - Unmap -sent to thin device to unmap (or deallocate) one or more logical blocks
 - Write Same (with unmap flag) writes at least one block and unmap(s) other logical blocks
- fstrim executable, batch command used on filesystems
- Discard
 - option on mkfs and mount command for ext4 and xfs filesystems
 - controls if filesystem supports the SCSI unmap command so it can free specific blocks on thin devices at file deletion

Linux SCSI Cleanup Support Requirements

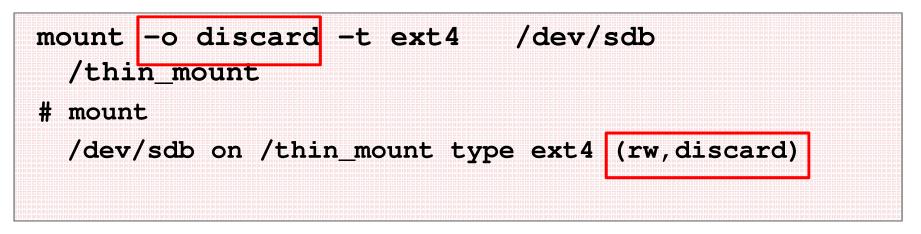
- Linux Releases supporting the discard option on the filesystem mount command
 - SLES* 11 SP2
 - RHEL* 6.2 with a hot fix and ext4
 - RHEL* 6.3 and ext4
 - LVM RHEL /etc/lvm.conf
- Storage Array
 - EMC VMAX 40k @ Enginuity 5876.159.102 + Epack (fix 65470)
- *Check the vendor's support matrix for the latest specific details

Complete your sessions evaluation online at SHARE.org/BostonEval

Verification of discard support


- Thin device must be mapped and masked to Linux
- Examine file(s) to verify discard support for the device
 - /sys/block/<device>/queue /discard_max_bytes # cat /sys/block/sdc/queue/discard max bytes 25165824
- from kernel.org:
- "The discard max bytes parameter is set by the device driver to the maximum number of bytes that can be discarded in a single operation. Discard requests issued to the device must not exceed this limit. A discard max bytes value of 0 means that the device does not support discard functionality."

Create ext4 filesystem with discard


 ext4 filesystem created with discard first discards blocks on thin device, then creates filesystem

SHARE Technology - Cannecijans - Results

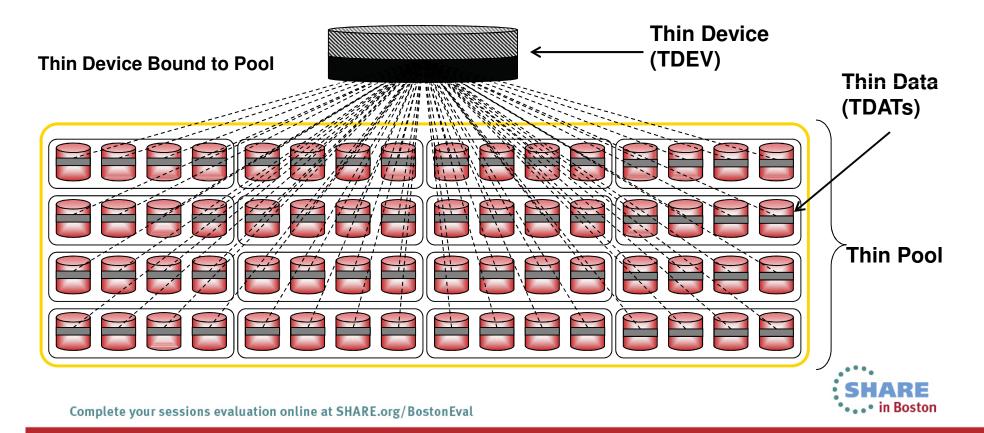
mount ext4 with discard

- Filesystem mounted with the discard option
 - Frees up space on thin device at time of file deletion
 - <u>And when the array receives the actual write request</u>
 NOTE: there is overhead associated with active discard so this should be tested in your own environment

SHARE Tethnology - Cannetilins - Results

Linux fstrim

- Filesystem mounted without the discard option
 - Does not frees up space on thin device at time of file deletion
- mount ext4 filesystem without discard mount option
- Use fstrim to free up space on a filesystem on a thin device, where files were previously deleted
- fstrim is executed against a filesystem and it's underlying thin device
- Linux support
 - release and vendor dependent
 - check vendor's support matrix for proper support requirements


Virtual Provisioning for CKD devices with Linux on System z

Data Layout – Pool-based Allocation Virtual Provisioning

- Storage capacity is structured in pools
- Thin devices are disk devices that are provisioned to hosts

VP Components for CKD

- CKD VP components are same for CKD as they are for FBA:
 - Thin Pool a shared, physical storage resource of a single RAID protection and drive technology
 - Data Device (TDAT) RAID protected devices that provide the actual storage for a thin pool
 - Thin Device (TDEV) cache only devices that are bound to a thin pool and provisioned to hosts
 - Track Group— allocation unit from a thin pool when a host writes to a new area of a thin device
 - 12 Symmetrix tracks, 680 KB (aka thin device extent)

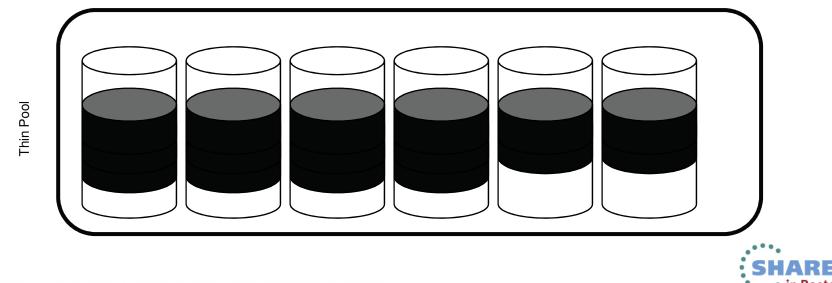
VP for CKD with Linux on System z

- Thin CKD device supports z/VM and/or Linux on z
- Thin CKD device must be fully provisioned and persistent for z/VM and Linux
- Initial format of thin CKD device fully allocates device
 - cpfmtxa
 - dasdfmt
- Space reclamation and cleanup are not supported

Benefits of VP with CKD for Linux on System z

- Ease provisioning
- Wide striping for better performance
- EMC FAST VP Fully Automated Storage Tiering

Common Functions of VP for CKD and FBA

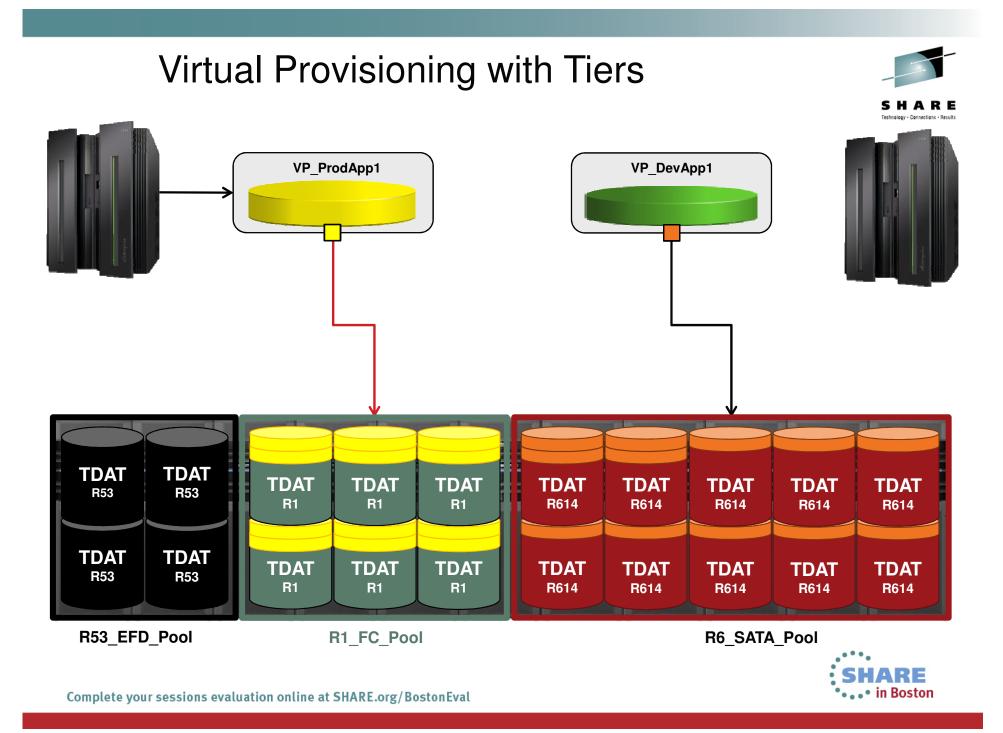

- Underlying VP technology is the same for FBA and CKD therefore certain management activities are also the same
 - Pool Rebalancing
 - TDAT Drain for device removal
 - Fully Automated Storage Tiering VP (FAST VP)

Automated Pool Rebalancing

- Rebalances allocated tracks across data devices contained within thin pool
- Levels out imbalances caused by:
 - Thin pool expansion
 - Unbinding thin devices from the thin pool

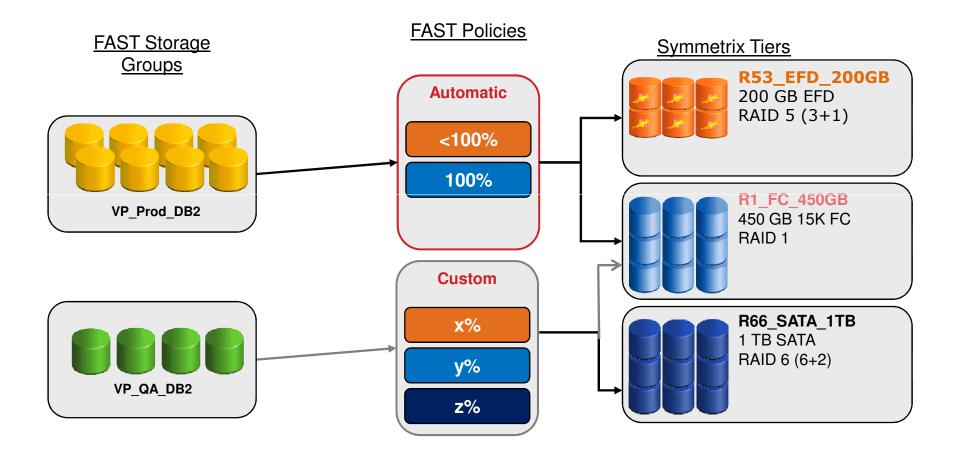
Pool Rebalancing

- Scheduled process that runs at given intervals
- Can be influenced by two extended pool attributes:
 - Rebalancing Variance %
 - controls whether a data device (TDAT) will be chosen for a possible rebalance
 - Maximum Rebalance Scan Device Range
 - the maximum number of data devices (TDATs) to concurrently balance at any one time
- Runs at a very low priority



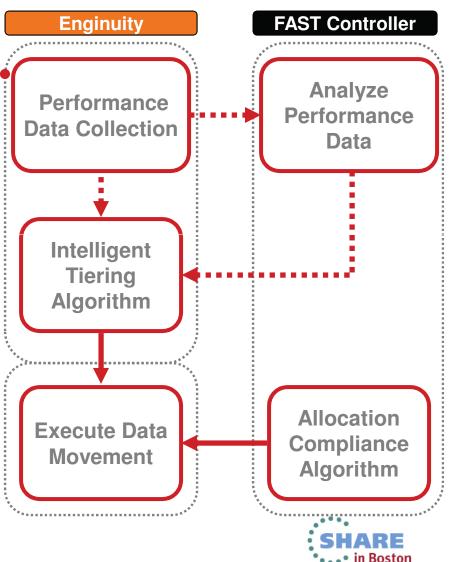
VP Benefits

- Improved capacity utilization (with VP LUNs and Linux)
 - Reduces the amount of allocated but unused physical storage
 - Avoids over-allocation of physical storage to applications
- Efficient utilization of available resources
 - Wide striping distributes I/O across spindles
 - Reduces disk contention and enhances performance
 - Maximizes return on investment
- Ease and speed of provisioning
 - Simplifies data layout
 - Lowers operational and administrative costs
- Basis for Automated Tiering (FAST VP)
 - Active performance management at a sub-volume, sub dataset level


Fully Automated Storage Tiering VP

- FAST VP is a policy-based system that promotes and demotes data at the sub-volume (LUN), and more importantly, file, which makes it responsive to the workload and efficient in its use of control unit resources
- Performance behavior analysis is ongoing
- Active performance management
- FAST VP delivers all these benefits without using any host resources

Storage Elements



Complete your sessions evaluation online at SHARE.org/BostonEval

FAST VP Implementation – Task Segmentation

- Performance data
 - Analysis every 10 minutes
 Provides thresholds
 - 'Decay' over time
- Intelligent Tiering
 - Thresholds from analysis
 - Performance move needs
- Allocation Compliance
 - Capacity move needs

Summary

- Virtual Provisioning is available for FBA/SCSI and CKD devices
- FBA as SCSI devices
 - Space is allocated as needed
 - Over subscription is allowed
 - Cleanup of unused space via space reclamation or T10 SCSI commands
 - Linux and Storage array dependent
- CKD for Linux on System z
 - Fully allocated
 - No reclaim or cleanup
- Wide Striping for better performance
- FAST VP Fully Automated Storage Tiering VP

Thank you!

Complete your sessions evaluation online at SHARE.org/BostonEval