
Running Java on Linux on System z

Bryan Chan
Java for System z Development, IBM Corporation

bryan.chan@ca.ibm.com

August 14, 2013
Session 13525

mailto:bryan.chan@ca.ibm.com

22

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without
notice at IBM’s sole discretion. Information regarding potential future products is intended to outline our
general product direction and it should not be relied on in making a purchasing decision. The information
mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver
any material, code or functionality. Information about potential future products may not be incorporated
into any contract. The development, release, and timing of any future features or functionality described
for our products remains at our sole discretion.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND
STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE
FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR
ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL
HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS
OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING
THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

Trademarks, Copyrights, Disclaimers

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

3

Content

 IBM Java on System z
 History, overview and roadmap

 IBM J9 Virtual Machine and IBM Testarossa JIT
 IBM Monitoring and Diagnostic Tools for Java

 Java 7 SR3
 zEC12 exploitation and performance

4

IBM and Java

 Java is critically important to IBM
 Infrastructure for IBM's software portfolio

 WebSphere, Lotus, Tivoli, Rational, Information Management

 IBM is investing strategically for Java in Virtual Machines
 Since Java 5.0, a single JVM supports multiple configurations

 Java ME, Java SE, Java EE
 New technology base (J9/Testarossa) on which to deliver improved

performance, reliability, serviceability

 IBM also invests and supports public innovation in Java
 OpenJDK, Eclipse, Apache (XML, Aries, Derby, Geronimo, Harmony, Tuscany, Hadoop,...)

 Broad participation in relevant open standards (JCP, OSGi)

5

Reference
Java

Technology
(OpenJDK,

others)

IBM
Java

IBM Java
Technology

Centre

Listen to and act upon market Listen to and act upon market
requirementsrequirements

World class service and World class service and
supportsupport

Available on more platforms Available on more platforms
than any other Java than any other Java
implementationimplementation

Highly optimizedHighly optimized
Embedded in IBM’s Embedded in IBM’s

middleware portfolio and middleware portfolio and
available to ISV partnersavailable to ISV partners

Quality Engineering
Performance

Security
Reliability

Serviceability

Production Requirements
IBM Software Group

IBM eServer
ISVs

IBM Clients

IBM's Approach to Java Technology

6

Debugger Profilers Java Application Code

JVMTI JSE7
Classes

JSE6
Classe

s

Harmony
Classes

User
Natives

GC / JIT / Class Lib. Natives Java Native Interface (JNI)

Core VM (Interpreter, Verifier, Stack Walker)

Trace & Dump Engines

Port Library (Files, Sockets, Memory)

Thread Library

AIX Linux Windows z/OS

PPC-32
PPC-64

x86-32
x86-64

PPC-32
PPC-64

zArch-31
zArch-64

x86-32
x86-64

zArch-31
zArch-64

Operating
Systems

Java Runtime
Environment
e.g. J9 R26

Java API
e.g. Java6/Java7

User Code

User Code

Java Platform API

VM-aware

Core VM

JVM Architectural Overview

7

Differences between Oracle and IBM Java

 Both use the same reference implementation of Java Class
Libraries (e.g. OpenJDK)

 Key differences
 Security: Standards do not impose strong separation of interest
 ORB: OMG CORBA standard rules
 XML: Xerces/Xalan shipped by both vendors since Java 5,

although different levels may be used

 IBM J9/Testarossa runtime vs. Oracle HotSpot
 Different tuning and controls for JVM, JIT and GC
 Tooling is distinct (e.g. IBM Health Center)

8

Java 1.4
GA 4Q2002
31-bit z/OS and 31-bit/64-bit Linux on z

31-bit and 64-bit Java 5
J9/TR Technology
GA 4Q2005
z/OS and Linux on z

31-bit Java 1.1.8
GA 1999

31-bit and 64-bit Java 6
J9/TR Technology
GA 4Q2007
z/OS and Linux on z

31-bit Java 1.3.1
z/OS and Linux on z
GA 3Q2000

z/OS 64-bit Java 1.4.2
J9/TR Technology (1st product use)
GA 4Q2004

31-bit Java 1.1.1, then 1.1.4 and 1.1.6
First z/OS Java product – GA 1997

WAS6.1
JEE1.4

WAS6.0
JEE1.4

WAS7.0
JEE5

IBM continues to invest
aggressively in Java for System z,
demonstrating a rich history of
innovation and performance
improvements.

Timelines and deliveries are subject to change.

Testimonials: http://www-01.ibm.com/software/os/systemz/testimonials/
http://www.centerline.net/review/#/3332_B

31-bit and 64-bit Java 6.0.1/7.0
J9/TR Technology
GA 1Q2011/4Q2011
z/OS & z/Linux (7.0 only)

WAS8.0
JEE6 WAS8.5

JEE6

1999

2009

2003

2005

2007

2011

1998

2004

2000
2001

2012

2008

Java on System z – 15 Years of Innovation
Java 6.0.1 SR6/7.0 SR5
J9/TR Technology
GA 2Q2013
z/OS & z/Linux

http://www-01.ibm.com/software/os/systemz/testimonials/
http://www.centerline.net/review/#/3332_B
http://www.centerline.net/review/#/3332_B

9

Language Updates
Java 5.0
• New Language features:

• Autoboxing
• Enumerated types
• Generics
• Metadata

Java 6.0
• Performance Improvements
• Client WebServices Support

Java 7.0
• Support for dynamic languages
• Improve ease of use for SWING
• New IO APIs (NIO2)
• Java persistence API
• JMX 2.x and WS connection for

JMX agents
• Language changes

IBM Java Runtimes
IBM Java 5.0 (J9 R23)
• Improved performance

• Generational Garbage Collector
• Shared classes support
• New J9 Virtual Machine
• New Testarossa JIT technology

• First Failure Data Capture
• Full Speed Debug
• Hot Code Replace
• Common runtime technology

• ME, SE, EE

IBM Java 6.0 (J9 R24)
• Improvements in

• Performance
• Serviceability tooling
• Class Sharing

• XML parser improvements
• z10™ Exploitation

• DFP exploitation for BigDecimal
• Large Pages
• New ISA features

5.0

6.0

2005 2009

SE
 5

.0

18
 p

la
tfo

rm
s

SE
 6

.0
20

 p
la

tfo
rm

s

EE 5

WAS
6.1

WAS
7.0

2006 2008

WAS
6.0

20072004

EE 6.x

**Timelines and deliveries are subject to change.

2010 2011

IBM Java 6.0.1/7.0
(J9 R26)
• Improvements in

• Performance
• GC Technology

• z196™ Exploitation
• OOO Pipeline
• 70+ New Instructions

• JZOS/Security Enhancements

WAS
8.5

2012 2013 2014
7.0

SE
60

1/
 7

.x
>=

 2
0

pl
at

fo
rm

s

Java 8.0**
• Language improvements
• Closures for simplified fork/join

IBM Java 7.0 SR5/Next**
• Improvements in

• Performance
• GC Technology

• zEC12™ Exploitation
• Transactional Execution
• Runtime Instrumentation
• Flash 1Meg pageable LPs
• 2G large pages
• Hints/traps

• Data Access Accelerator
• Cloud: Multi-tenancy/Virtualization

Java Road Map

10

Java 7.0: What to look for

 New I/O
• Data mining and analytics workloads are increasingly I/O-intensive
• Asynchronous I/O offers significant performance and footprint gains

 Concurrency Libraries
• Exploit larger multi-core systems (e.g. next-generation POWER and System z) to

provide better scalability, higher throughput and lower TCO via server consolidations
 Dynamic language support

• Leverage the advantages of a single runtime for dynamic language applications
written in PHP, Groovy, jRuby and Jython

 Language improvements
• Improved efficiency through simplified day-to-day programming tasks
• Protect developer commitment to, and customer/ISV investment in, the Java

ecosystem

11

Java 8 Beta Program

 Provides Java SE 8 compatibility, while exploiting the unique capabilities
of IBM platforms to achieve performance and usability improvements

• To provide early technology access during the development cycle
• To assist Java 8 in satisfying customer requirements
• To provide feedback to IBM

 New in IBM SDK, Java Technology Edtion, Version 8:
• Compatibility with the new Java SE 8
• Leveraging new IBM hardware (e.g. IBM zEnterprise EC12)
• Improved performance for workload optimized runtimes, which delivers better

application throughput without changes to application code
• Enhanced support for Cloud & Multi-tenancy environments
• Improved efficiency of manipulating native data records/types directly from Java

code
 Managed and Open Beta

• http://www.ibm.com/developerworks/java/jdk/beta/index.html

http://www.ibm.com/developerworks/java/jdk/beta/index.html

12

http://www.dzone.com/links/presentation_languagelibraryvm_coevolution_in_jav.html

Java 8: Language Innovation – Lambdas

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
}

Collections.sort(people, Collections.comparing(
 (Person p) -> p.getLastName()));

 New syntax to allow concise code snippets/expressions
 Useful for sending code to java.lang.concurrent
 On the path to enabling more parallelism

http://www.dzone.com/links/presentation_languagelibraryvm_coevolution_in_jav.html

13

http://www.dzone.com/links/presentation_languagelibraryvm_coevolution_in_jav.html

Java 8: Language Innovation – Lambdas

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
}

people.sort(comparing(Person::getLastName));

 New syntax to allow concise code snippets/expressions
 Useful for sending code to java.lang.concurrent
 On the path to enabling more parallelism

http://www.dzone.com/links/presentation_languagelibraryvm_coevolution_in_jav.html

14

Java 8: Data Access Accelerator

 A Java library for bare-bones data
conversion and arithmetic
 Operates directly on byte arrays
 Avoids expensive Java object instantiation
 Orchestrated with JIT for deep platform opts
 Library is platform- and JVM-neutral

 Current approach

 Proposed Solution

Marshalling and Unmarshalling
 Tranforms byte arrays ↔ Java variables
 Supports both big-endian and little-endian byte arrays

Packed Decimal (PD) Operations
 Arithmetic: +, -, *, /, %
 Logical: >, <, >=, <=, ==, !=
 Validation: verifies if a PD operand is well-formed
 Others: optimized shifts, moves on PD operand

Decimal Type Conversions
 Decimal ↔ Primitive

 Convert Packed Decimal (PD), External Decimal (ED) and
Unicode Decimal (UD) ↔ primitive types (int, long)

 Decimal ↔ Decimal
 Convert between decimal types (PD, ED, UD)

 Decimal ↔ Java
 Convert decimal types ↔ BigDecimal/BigInteger objects

byte[] addPacked(byte a[], byte b[]) {
 BigDecimal a_bd = convertPackedToBd(a);
 BigDecimal b_bd = convertPackedToBd(b);
 a_bd.add(b_bd);
 return (convertBDtoPacked(a_bd));
}

byte[] addPacked(byte a[], byte b[]) {
 DAA.addPacked(a, b);
 return a;
}

15

PackedObjects
Experimental feature in the IBM JVM.
Introduces a new Java type that
implements an explicit object model
which tightly packs fields allowing for
natural and efficient direct mapping of
structured data.

Goals
• Allow for explicit source-level

representation of structured data in Java
• Improve serialization and I/O

performance
• Allow direct access to “native” (off-heap)

data

Timelines and deliveries are subject to change.

http://www.slideshare.net/mmitran/ibm-java-packed-objects-mmit-20121120
http://duimovich.blogspot.ca/2012/11/packed-objects-in-java.html

Looking Ahead: PackedObjects with IBM Java

16

Java heap (72 bytes)

JVM

Native storage (20 bytes)

I/O

 Data typically must be copied/re-formatted to/from Java heap
 Costly in path length and footprint

JVM only speaks “Java”

17

• Allows controlled layout of storage of data structures on the Java heap
• Reduces footprint of data on Java heap
• No (de)serialization required

JVM

Native storage (20 bytes)

I/O

On-Heap PackedObject

18

• Enable Java to talk directly to the native data structure
• Avoid overhead of data copy onto/off Java heap
• No (de)serialization required

Off-Heap PackedObject

JVM

Native storage (20 bytes)

I/O

Meta Data

19

 Multi-tenancy support will allow multiple
applications to run in a single shared JVM
for high-density deployments

• Win: Footprint reduction enabled by sharing runtime and JVM
artifacts while enforcing resource consumption quotas

• Platform Coverage: 64-bit, balanced GC policy only
• Ergonomics: Single new command-line flag

(-Xmt = multi-tenancy)

Timelines and deliveries are subject to change.

Data
Multi-
tenancy

Virtualization

• Hypervisor, Virtual Guest, and Extended-OS JMX Beans
• Allows applications to detect and identify the installed hypervisor and query

attributes of LPAR
• Provides richer access to operating system performance statistics

Looking Ahead: Cloud with IBM Java

20

Looking Ahead: Cloud with IBM Java

 Runtime adjustable heap size (-Xsoftmx)
 JMX beans allow for dynamically adjusting heap size
 Allows users to take advantage of hot-add of memory in virtualized

environments
 Available in Java 7 SR3

 JIT support for “deep idle” state
 Enabled with -Xtune:virtualized (Java 7 SR4)
 Reduces CPU cycles used by the JIT during idle periods

 Important for dense virtualized System z environments
 Early results with WAS Liberty show ~2x to ~6x reduction

21

Hardware

OS Images

Middleware

Application

Hardware

OS Images

Middleware

Application

Hardware

OS Images

Middleware

Application

OS Images

Middleware

Application

Hardware

OS Image

Middleware

Application

Middleware

Application

Hardware

OS Image

Middleware (e.g. WAS)

Application Application

Share-nothing
(maximum isolation)

Shared hardware Shared OS Shared Process

Hardware

OS Image

Middleware (e.g. WAS)

Application

Tenant Tenant

Share-everything
(maximum sharing)

Isolation

Density

-Xshareclasses -Xshareclasses

Tenant API

‘Mission critical’
apps

‘free’ apps

1+ GB / tenant 100’s MB / tenant1+ GB / tenant 10’s MB / tenant 10’s KB / tenant

Timelines and deliveries are subject to change.

Multi-tenancy: Isolation and Density

22

IBM Java Runtime Environment

 IBM's implementation of Java 5, Java 6 and Java 7 are built with IBM
J9 Virtual Machine and IBM Testarossa JIT Compiler technology

• Independent clean-room JVM runtime & JIT compiler

 Combines best-of-breed from embedded, development and server
environments... from a cell phone to a mainframe!

• Lightweight flexible/scalable technology
• World-class garbage collection – gencon, balanced GC policies
• Startup & footprint – Shared classes, Ahead-of-time (AOT) compilation
• 64-bit performance – Compressed References & Large Pages
• Deep System z exploitation – zEC12, z196, z10, z9, z990

 Millions of installations of J9 VM and Testarossa compiler!

23

 IBM's production JIT on all platforms
since Java 5

 Developed at the IBM Toronto Lab
 30+ years of expertise in compilation and

optimization technologies

• Close relationship with:
• Research: productizing innovative ideas and experimental technologies

(Tokyo/Watson Research Lab)

• Hardware: best possible performance with the underlying system and
processor (Poughkeepsie, Austin, xSeries)

• IBM Middleware: work with DB2®, WAS to provide strong performance
(SVL, Toronto, Raleigh)

IBM Testarossa JIT Compiler – Introduction

24

IBM Testarossa JIT Compiler – Features

 Dynamic
 Triggered at run time based on projected profitability
 Compiled methods can be freely mixed with interpreted callers/callees
 Multiple versions of methods compiled at different optimization levels

 Adaptive
 Sensitive to program's need for CPU

 Runs on asynchronous thread, throttled during start-up
 Profile program and generate tailored, re-optimized code

 Optimizing
 Comprehensive collection of conventional optimizations

 Control flow simplification, data flow analysis, etc.
 Speculative and Java-specific optimizations

 Call devirtualization, partial inlining, lock coarsening, etc.
 Deep exploitation of System z micro-architecture

25

IBM Testarossa JIT – Compilation Strategy

 Focus compilation CPU time where it matters
 Stagger investment over time to amortize cost

 Methods start being interpreted
 Interpreter profiling improves initial compilations

 After N invocations, methods get compiled at “warm”
 Identify hot methods by sampling

 Re-compile methods at “hot” or “scorching”
 Transition to “scorching” via temporary profiling step

 Direct global optimizations using profiled data
 Identify hot paths through method

 Register allocation, Branch straightening, etc.
 Profile values and types

 Specialize and version hot paths
 Profile virtual calls

 Inline hot targets

cold

hot

scorching

profiling

Interpreter/AOT

warm

26

IBM Testarossa JIT – System z Support

 Idioms are recognized in Java bytecodes
 Bytecodes converted to CISC instructions**
 Examples of CISC instructions

 TROT, TRTO, TRTT, TROO
(“TR” = translate, “O” = one byte, “T” = two bytes)

 SRST (search string)
 MVC (move characters)
 XC (exclusive or)
 CLC (compare logical)

** M. Kawahito, et al., “A new idiom recognition framework for exploiting hardware-assist instructions,”
ASPLOS-XII: Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, 2006.

27

 L R0, terminal_char
 LA R1, @table
 L R2, @A
 LR R3, end
 L R4, @B
LOOP: L R5, (R4)
 L R5, (R5,R1)
 AHI R4, 1
 CR R5, R0
 BRC 0, END
 S R5, (R2)
 AHI R2, 2
 AHI R3, -1
 BRC 2, LOOP
END:

IBM Testarossa JIT – System z Support

while (i < end) {
 char c = table[B[i]];
 if (c == terminal_char)
 break;
 A[i] = c;
 ++i;
}

 Example

28

IBM Testarossa JIT – System z Support

 L R0, terminal_char
 LA R1, @table
 L R2, @A
 LR R3, end
 L R4, @B
* Choice of 'xx' depends on
* types of arrays A and B
LOOP: TRxx R2, R4
 BRC 1, LOOP

while (i < end) {
 char c = table[B[i]];
 if (c == terminal_char)
 break;
 A[i] = c;
 ++i;
}

 Example

29

IBM J9 Garbage Collector Family

 Why have many policies? Why not just “the best?”
 Cannot always dynamically determine what trade-offs the user/application

are willing to make
Pause time vs. Throughput
 Trade off frequency and length of pauses vs. throughput

Footprint vs. Frequency
 Trade off smaller footprint vs. frequency of GC pauses/events

Policy Recommended usage Notes
optThroughput optimized for throughput default in Java 5 and Java 6

optAveragePause optimized to reduce pause times
gencon optimized for transactional workloads default in Java 6.0.1/Java 7
subPools optimized for large MP systems deprecated in Java 6.0.1/Java 7
balanced optimized for large heaps added in Java 6.0.1/Java 7

30

IBM J9 Garbage Collector: -Xgcpolicy:optthruput

 Default policy in Java 5 and Java 6
 Used where raw throughput is more important than short

GC pauses
 Application stopped whenever garbage is collected

Time

Thread 1

Thread 2

Thread 3

Thread n

GC

Application

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

31

 Trades high throughput for shorter GC pauses by
performing some of the garbage collection concurrently

 Application paused for shorter periods

Time

GC

Application

Concurrent Tracing

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

Thread 1

Thread 2

Thread 3

Thread n

IBM J9 Garbage Collector: -Xgcpolicy:optavgpause

32

IBM J9 Garbage Collector: -Xgcpolicy:gencon

 Best of both worlds
 Good throughput + small pause times
 Shown most value with customers

 Two types of collection
 Generational nursery (local) collection
 Partially concurrent nursery & tenured (global) collection

 Why a generational + concurrent solution?
 Objects die young in most workloads

 Generational GC allows a better ROI (less effort, better reward)
 Performance is close to or better than standard configuration

 Reduce large pause times
 Partially concurrent with application thread (“application thread is taxed”)
 Mitigates cost of object movement and cache misses

33

 Default policy in Java 6.0.1 and Java 7
 Applications with many short-lived objects benefit from

shorter pause times while still producing good throughput

Time

Global GC

Application

Concurrent Tracing
Scavenge GC

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

Thread 1

Thread 2

Thread 3

Thread n

IBM J9 Garbage Collector: -Xgcpolicy:gencon

34

IBM J9 Garbage Collector: -Xgcpolicy:gencon

 Heap is split into two areas
 Objects created in nursery (small but frequently collected)
 Objects that survive a number of collections are promoted to

tenured space (less frequently collected)

Nursery Tenured Space

35

IBM J9 Garbage Collector: -Xgcpolicy:gencon

 Nursery is further split into two spaces
 allocate and survivor
 Division dynamically adjusted according to survival rate

Nursery

Tenured SpaceAllocate Space Survivor Space

36

IBM J9 Garbage Collector: -Xgcpolicy:gencon

 A scavenge copies objects from allocate space to survivor space
 Less heap fragmentation
 Better data locality
 Faster future allocations

 If an object survives X number of scavenges, it is promoted to tenured
space

Nursery

Tenured SpaceAllocate Space Survivor Space

37

IBM J9 2.6 Enhancement: -Xgcpolicy:balanced

 Improved application responsiveness
 Reduced maximum pause times to achieve more consistent

behavior
 Incremental result-based heap collection targets best ROI areas of

the heap
 Native memory-aware approach reduces non-object heap

consumption

38

IBM J9 2.6 Enhancement: -Xgcpolicy:balanced

 Next-generation technology expands platform exploitation
possibilities
 Virtualization: group heap data by frequency of access, direct OS

paging decisions
 Dynamic re-organization of data structures to improve memory

hierarchy utilization

39

IBM J9 2.6 Enhancement: -Xgcpolicy:balanced

 Recommended deployment scenarios
 Large (>4GB) heaps
 Frequent global garbage collections
 Excessive time spent in global compaction
 Relatively frequent allocation of large (>1MB) arrays

 Input welcome: Help set directions by telling us your needs

40

IBM J9 Garbage Collector: Tuning

 Typical approach
 Pick a policy based on desired application behavior
 Monitor GC behavior; overhead should be no more than 10%
 Tune heap sizes (-Xms, -Xmx)
 Tune helper threads (-Xgcthreads)
 Many other knobs exist

 Best practices
 Avoid finalizers
 Don't use System.gc()

41

IBM J9 Garbage Collector: Tuning

 IBM Garbage Collection and Memory Visualizer (GCMV)
 Uses -verbose:gc output to provide detailed view of Java memory

footprint and GC behavior
 Uses ps -p $PID -o pid,vsz,rss output to plot native footprint

42

IBM J9 Garbage Collector: Tuning

 GC tuning documentation
 http://www.ibm.com/developerworks/views/java/libraryview.js

p?search_by=java+technology+ibm+style
 http://www-01.ibm.com/support/docview.wss?

uid=swg27013824&aid=1
 http://proceedings.share.org/client_files/SHARE_in_San_Jos

e/S1448KI161816.pdf
 http://www.redbooks.ibm.com/redpapers/pdfs/redp3950.pdf

 Memory leaks are possible even with GC
 Detect large objects/object cycles with IBM Memory Analyzer

http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=java+technology+ibm+style
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=java+technology+ibm+style
http://www-01.ibm.com/support/docview.wss?uid=swg27013824&aid=1
http://www-01.ibm.com/support/docview.wss?uid=swg27013824&aid=1
http://proceedings.share.org/client_files/SHARE_in_San_Jose/S1448KI161816.pdf
http://proceedings.share.org/client_files/SHARE_in_San_Jose/S1448KI161816.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp3950.pdf

43

 ISA Workbench
 A free application that simplifies

and automates software support
 Helps customers analyze and

resolve questions and problems
with IBM software products

 Includes rich features and
serviceability tools for quick
resolution to problems

 Meant for diagnostics and
problem determination
 Not a production monitoring tool

What is IBM Support Assistant?

44

IBM Monitoring and Diagnostic Tools for Java:
Health Center

 What problem am I solving?
 What is my JVM doing? Is

everything OK?
 Why is my application running

slowly?
 Why is it not scaling?
 Am I using the right JVM options?

 Health Center Overview
 Lightweight monitoring tool with very low overhead
 Understands how your application behaves and

offers recommendations for potential problems
 Features: GC visualization, method profiling/tracing,

thread monitoring, class loading history, lock
analysis, file I/O and native memory usage tracking

 Suitable for all applications running on IBM JVMs

45

IBM Monitoring and Diagnostic Tools for Java:
Health Center

Track available system
memory and native

memory used by the JVM

Keep track of running
threads and monitor

contention

46

IBM Monitoring and Diagnostic Tools for Java:
GCMV

 What problem am I solving?
 How is the garbage collector behaving?

Can I do better?
 How much time is GC taking?
 How much free memory does my JVM have?

 GCMV Overview
 Analyzes Java verbose GC logs and

provides insight into application behavior
 Visualize a wide range of GC data and Java

heap statistics over time
 Provides the means to detect memory leaks

and to optimize garbage collection
 Uses heuristics to make recommendations

and guide user in tuning GC performance

47

IBM Monitoring and Diagnostic Tools for Java:
Memory Analyzer

 What problem am I solving?
 Why did I run out of Java memory?
 What's in my Java heap? How can I

explore it and get new insights?

 Memory Analyzer Overview
 Examines memory dumps and

identifies Java memory leaks
 Analyzes footprint and provides

insight into wasted space

 Features: visual objects by size/class/classloader, dominator tree analysis, path to
GC roots analysis, object query language (OQL)

 Works with IBM system dumps, IBM portable heap dumps as well as Oracle HPROF
binary heap dumps

 IBM Extensions for Memory Analyzer offer additional, product-specific capabilities

48

IBM Monitoring and Diagnostic Tools for Java:
Memory Analyzer

Navigate the dominator tree,
and find which objects keep

which other objects alive

Build custom queries with
OQL to search for specific

object instances

49

IBM Monitoring and Diagnostic Tools for Java

 All tools can be downloaded/installed as plugins for IBM Support
Assistant Workbench
 http://www.ibm.com/software/support/isa/workbench.html
 http://www.ibm.com/developerworks/java/jdk/tools/

 Newest addition: Interactive Diagnostic Data Explorer (IDDE)
 Postmortem analysis of system core dumps or javacore files
 Useful for debugging JVM issues

http://www.ibm.com/software/support/isa/workbench.html
http://www.ibm.com/developerworks/java/jdk/tools/

50

Continued aggressive investment in Java on Z
Significant set of new hardware features

tailored for and co-designed with Java
Hardware Transaction Memory (HTM) (no z/VM)

Better concurrency for multi-threaded applications
e.g. ~2X improvement to j.u.c.ConcurrentLinkedQueue

Run-time Instrumentation (RI)
Innovative new HW facility designed for managed runtimes
Enables new expanse of JRE optimizations

2GB page frames (no z/VM or z/Linux)

Improved performance targeting 64-bit heaps

Pageable 1MB large pages using flash (no zVM)

Better versatility of managing memory

New software hints/directives
Data usage intent improves cache management
Branch pre-load improves branch prediction

New trap instructions
Reduce over-head of implicit bounds/null checks

New 5.5 GHz 6-Core Processor Chip
Large caches to optimize data serving
Second generation OOO design

Up-to 60% improvement in throughput amongst Java
workloads measured with zEC12 and Java7SR3

Engineered Together—IBM Java and zEC12 Boost Workload Performance
http://www.ibmsystemsmag.com/mainframe/trends/whatsnew/java_compiler/

Timelines and deliveries are subject to change.

zEC12 – More hardware for Java

51

 Allow lockless interlocked execution of a block of code called a “transaction”
 Transaction: segment of code that appears to execute “atomically” to other CPUs

 Other processors in the system will see either-all-or-none of the storage updates by the transaction

 How it works
 TBEGIN instruction starts speculative execution of transaction
 Storage conflict detected by hardware and causes roll-back of storage and registers

 Transaction can be re-tried; or
 A fall-back code path that performs locking can be used to guarantee forward progress

 Changes made by transaction become visible to other CPUs after TEND instruction

Storage conflict:
Trans. A will abort
Trans. B will commit
changes to X and Y

TBEGIN
…
load Y
load X
…
TEND

CPU 0: Trans. A
X = Y = 0;
TBEGIN
X = 1
store X
Y = 1
store Y
TEND

CPU 1: Trans. B

CPU 0 can only see (X=Y=0) or (X=Y=1),
cannot see (X=1,Y=0) or (X=0,Y=1)

Hardware Transactional Memory (HTM)

52

Transaction Lock Elision on HashTable.get()
Java Prototype

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

Th
ro

ug
hp

ut
 (o

ps
/se

c)

Threads must serialize despite only
reading… just in-case a writer updates
the hash

read_hash(key) {
 Wait_for_lock();
 read(hash, key);
 Release_lock();
}

Thr1: read_hash()

Thr2: read_hash()

Thr3:read_hash()

T

Lock elision allows readers to
execute in parallel, and safely back-
out should a writer update hash

read_hash(key)
 TRANSACTION_BEGIN
 read hash.lock;
 BRNE serialize_on_hash_lock
 read (hash, key);
 TRANSACTION_END

Thr1: read_hash() ... Thr3: read_hash()

T’

HTM Example: Transactional Lock Elision (TLE)

53

 ~2x improved scalability of j.u.c.ConcurrentLinkedQueue
 Unbound Thread-Safe LinkedQueue

• First-in-first-out (FIFO)
• Insert elements into tail (en-queue)
• Poll elements from head (de-queue)
• No explicit locking required

 Example usage: a multi-threaded work queue
• Tasks are inserted into a concurrent linked queue as multiple worker threads poll work

from it concurrently

head

node

node

node

 tail

….

last
node

Enqueue

first
node

Dequeue

New TX-base
implementation

Traditional CAS-base
implementation

(Controlled measurement environment, results may vary)

Transactional Execution: ConcurrentLinkedQueue

54
(Controlled measurement environment, results may vary)

Linux on System z Multi-Threaded 64 bit Java Workload 16-Way
~60% Hardware (zEC12) and Software (SDK 7 SR3) Improvement

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

zEC12 SDK 7 SR3
 Aggressive +
 LP Code Cache
zEC12 SDK 7 SR1

z196 SDK 7 SR1

 64-Bit Java Multi-threaded Benchmark on 16-Way

Java 7 SR3 on z/Linux on zEC12: Performance

 Aggregate 60% improvement from zEC12 and Java 7 SR3
 zEC12 offers a ~45% improvement over z196 running the multi-threaded Java benchmark
 Java 7 SR3 offers an additional ~10% improvement (with -Xaggressive)

55

 ~12x aggregate hardware and software improvement comparing Java 5 SR4 on z9 to Java 7 SR3 on zEC12
 LP = large pages enabled for Java heap CR = Java compressed references
 Java 7 SR3 using -Xaggressive and 1MB large pages

(Controlled measurement environment, results may vary)

Linux on System z - Multi-Threaded 64 bit Java Workload 16-Way
~12x Improvement in Hardware and Software

0

20

40

60

80

100

120

140

160

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

zEC12 SDK 7 SR3
 Aggressive +
 LP Code Cache
zEC12 SDK 7 SR1

z196 SDK 7 SR1

z196 SDK 6 SR9

z10 SDK 6 SR4

z9 SDK 5 SR4
 NO (CR or Heap LP)

 64-Bit Java Multi-threaded Benchmark on 16-Way

Java 7 SR3 on z/Linux on zEC12: Performance

56
(Controlled measurement environment, results may vary)

 Aggregate improvement in hardware, JDK and WAS

 ~4x aggregate hardware and software improvement comparing
WAS 6.1 (Java 5) on z9 to WAS 8.5 (Java 7) on zEC12

WAS on z/Linux: Performance Improvement

J9 R23 J9 R23 J9 R24 J9 R24 J9 R26 J9 R26

57

Bryan Chan
bryan.chan@ca.ibm.com

58

© Copyright IBM Corporation 2013. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of
any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended
to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement
governing the use of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to
be a commitment to future product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are
trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks
of others.

59

Summary of Links

 Documentation
• http://www.ibm.com/developerworks/java/jdk/docs.html

 z/OS SDK
• http://www.ibm.com/servers/eserver/zseries/software/java

 System z Linux SDK
• http://www.ibm.com/developerworks/java/jdk/linux/download.html

 GC tuning documentation
• http://www.ibm.com/developerworks/views/java/libraryview.jsp?

search_by=java+technology+ibm+style
 IBM Support Assistant

• http://www.ibm.com/software/support/isa/

http://www.ibm.com/developerworks/java/jdk/docs.html
http://www.ibm.com/servers/eserver/zseries/software/java
http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://www.ibm.com/developerworks/java/jdk/linux/download.html
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=java+technology+ibm+style
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=java+technology+ibm+style
http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=java+technology+ibm+style
http://www.ibm.com/software/support/isa/

	Running Java on Linux on System z
	Slide 2
	Slide 3
	Slide 4
	IBM’s Approach to Java Technology
	JVM Architectural Overview
	Slide 7
	Java on System z – 15 Years of Innovation
	 Java Road Map
	Slide 10
	Slide 11
	Java8: Language Innovation -- Lambdas
	Slide 13
	Slide 14
	Looking Ahead: PackedObjects with IBM Java
	Speak to me in ‘Java’
	On-Heap PackedObject
	Off-Heap PackedObject
	Looking Ahead: Cloud with IBM Java
	Slide 20
	Multitenancy: Isolation and Density
	Slide 22
	IBM Testarossa JIT Compiler – Introduction
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	IBM J9 Garbage Collector: -Xgcpolicy:optavgpause
	Slide 32
	IBM J9 Garbage Collector: -Xgcpolicy:gencon
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	What is IBM Support Assistant?
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	zEC12 – More Hardware for Java
	Hardware Transactional Memory (HTM)
	HTM Example: Transactional Lock Elision (TLE)
	 Transactional Execution: Concurrent Linked Queue
	Linux on System z and Java7SR3 on zEC12: 64-Bit Java Multi-threaded Benchmark on 16-Way
	Slide 55
	WAS on zLinux – Aggregate HW, SDK and WAS Improvement: WAS 6.1 (Java 5) on z9 to WAS 8.5 (Java 7) on zEC12
	Slide 57
	Slide 58
	Slide 59

