
Copyright © 2013 Velocity Software, Inc. All Rights Reserved. Other
products and company names mentioned herein may be trademarks of their
respective owners.

Linux on z/VM Performance

Understanding Disk I/O

Rob van der Heij

Velocity Software

http://www.velocitysoftware.com/

rvdheij@velocitysoftware.com

2

Agenda

• I/O Performance Model

• ECKD Architecture

• RAID Disk Subsystems

• Parallel Access Volumes

• Virtual Machine I/O

• Linux Disk I/O

http://zvmperf.wordpress.com/

5

Linux on z/VM Tuning Objective

Resource Efficiency

� Achieve SLA at minimal cost

• “As Fast As Possible” is a very expensive SLA target

� Scalability has its limitations

• The last 10% peak capacity is often the most expensive

Recommendations are not always applicable

� Every customer environment is different

� Very Few Silver Bullets

� Consultant skills and preferences

6

0

20

40

60

80

100

120

140

writ e rewrit e read reread random rd random wr
0

20

40

60

80

100

120

140

160

w rite rew rite read reread random rd random w r

Benchmark Challenges

Benchmarks have limited value for real workload

� Every real life workload is different

• All are different from synthetic benchmarks

• There are just too many options and variations to try

� Benchmarks can help understand the mechanics

• Provide evidence for the theoretical model

Use performance data from your real workload

� Focus on the things that really impact service levels

7

Anatomy of Basic Disk I/O

Who Cares About Disk
“Disks are very fast today”

“Our response time is a few ms”

Selection Criteria

� Capacity

� Price

IBM 3380-AJ4

(1981)

Seagate Momentus
7200.3 (2011)

Price $80K $60

Capacity 2.5 GB 250 GB

Latency 8.3 ms 4.2 ms

Seek Time 12 ms 11 ms

Host Interface 3 MB/s 300 MB/s

Device Interface 2.7 MB/s 150 MB/s© 2010 Brocade, SHARE in Seattle, “Understanding FICON I/O Performance”

Reality: In comparison,
disk I/O today is slow

8

Anatomy of Basic Disk I/O

Reading from disk
� Seek – Position the heads over the right track

� Latency – Wait for the right sector

� Read – Copy the data into memory

Average I/O Operation
� Seek over 1/3 of the tracks ~ 10 ms

� Wait for 1/2 a rotation ~ 3 ms

� Read the data ~ 1 ms

Host Disk

Start
I/O Seek

Locate

Transfer
Data

I/O
Response

Time

P
ro

c
e
s
s
in

g

I/O
Rate

buffer

Host and disk decoupled by
speed matching buffer

disk

host

Start
I/O

Time

9

Classic DASD Configuration

CKD – Count Key Data Architecture

� Large system disk architecture since 60’s

� Track based structure

• Disk record size to mach application block size

� Disk I/O driven by channel programs

• Autonomous operation of control unit and disk

• Reduced CPU and memory requirements

� ECKD – Extended Count Key Data

• Efficient use of cache control units

• Improved performance with ESCON and FICON channel

FBA – Fixed Block Architecture

� Popular with 9370 systems

� Not supported by z/OS

� Access by block number

� Uniform block size

10

Classic DASD Configuration

Channel Attached DASD
� Devices share a channel
� Disconnect and reconnect
� Track is cached in control unit buffer

IOSQ
� Device Contention
� Interrupt Latency

PEND
� Channel Busy
� Path Latency
� Control Unit Busy
� Device Busy

DISC
� Seek
� Latency
� Rotational Delay

CONN
� Data Transfer
� Channel Utilization

Host OS Control Unit Device

Start I/O

I/O Complete

IOSQ

PEND
Command
Transfer

DISC

CONN

Data
Transfer

Application
Read

Data

Available

CHPID

http://zvmperf.wordpress.com/2013/06/07/disk-io-response-time-metrics/

11

Classic DASD Configuration

Instrumentation provided by z/VM Monitor

� Metrics from z/VM and Channel

• Traditionally used to optimize disk I/O performance

� Response time improvement through seek optimization

• Relocating data sets to avoid multiple hot spots

• I/O scheduling – elevator algorithm

Screen: ESADSD2 ESAMON 3.807 03/23 16:24-16:33
1 of 3 DASD Performance Analysis - Part 1 DEVICE 3505 2097

Dev Device %Dev <SSCH/sec-> <-----Response times (ms)--->
Time No. Serial Type Busy avg peak Resp Serv Pend Disc Conn
-------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----
16:25:00 3505 0X3505 3390-? 26.3 728.8 728.8 0.4 0.4 0.2 0.0 0.2
16:26:00 3505 0X3505 3390-? 76.9 977.4 977.4 0.8 0.8 0.3 0.1 0.4
16:27:00 3505 0X3505 3390-? 62.0 480.0 977.4 1.3 1.3 0.5 0.1 0.6
16:28:00 3505 0X3505 3390-? 15.8 198.9 977.4 0.8 0.8 0.1 0.5 0.2

12

Contemporary Disk Subsystem

Big Round Brown Disk

� Specialized Mainframe DASD

� One-to-one map of Logical Volume on Physical Volume

� Physical tracks in CKD format

� ECKD Channel Programs to exploit hardware capability

Contemporary Disk Subsystem

� Multiple banks of commodity disk drives

• RAID configuration

• Dual power supply

• Dual controller

� Microcode to emulate ECKD channel programs

• Data spread over banks, ranks, array sites

� Lots of memory to cache the data

13

RAID Configuration

RAID: Redundant Array of Independent Disks

� Setup varies among vendors and models

� Error detection through parity data

� Error correction and hot spares

� Spreading the I/O over multiple disks

Performance Considerations

� The drives are “just disks”

� RAID does not avoid latency

� Large data cache to avoid I/O

� Cache replacement strategy

Additional Features

� Instant copy

� Autonomous backup

� Data replication
ECKD

Emulation

Cache

FICON
Channels

14

RAID Configuration

Provides Performance Metrics like 3990-3
� Model is completely different
� DISC includes all internal operations

• Reading data into cache
• Data duplication and synchronization

Bimodal Service Time distribution
� Cache read hit

• Data available in subsystem cache
• No DISC time

� Cache read miss
• Back-end reads to collect data
• Service time unrelated to logical I/O

Average response time is misleading
� Cache hit ratio
� Service time for cache read miss

Response Time

P
ro

b
a
b

il
ti

y

15

RAID Configuration

Example:

� Cache Hit Ratio 90%

� Average DISC 0.5 ms

� Service Time Miss 5 ms

Read Prediction

� Detecting sequential I/O

� ECKD: Define Extent

RAID does not improve hit ratio

� Read-ahead can improve hit ratio

� RAID makes read-ahead cheaper

ECKD

Emulation

Cache

FICON
Channels

16

Disk I/O Example

Dev Device Total ERP %Dev <SSCH/sec-> <-----Response times (ms)--->
Time No. Serial Type SSCH SSCH Busy avg peak Resp Serv Pend Disc Conn
-------- ---- ------ ------ ----- ---- ---- ----- ----- ----- ----- ----- ----- -----
15:12:00 954A PR954A 3390-9 6350 0 36.8 105.8 105.8 3.5 3.5 0.2 1.2 2.1
15:12:00 95D5 PR954A 3390-9 6677 0 35.9 111.3 111.3 3.2 3.2 0.2 1.1 1.9
15:12:00 95D6 PR954A 3390-9 6532 0 35.7 108.9 108.9 3.3 3.3 0.2 1.2 2.0

Pct. <---- Total I/O ----> <------ Write Activity ------>
Dev Actv <Per Sec> Cache Total DFW DFW Seq NVS

Time No. Serial Samp I/O Hits Hit% Read% I/O I/O Hits I/O Hit% Full
-------- ---- ------ ---- ---- ---- ----- ----- ----- ---- ---- ---- ---- ----
15:12:00 954A PR954A 100 326 326 100.0 0 325.7325.7325.7325.7 326 326 308 100 123123123123

Pct. <---- Total I/O ----> <-Tracks/second->
Dev Actv <Per Sec> Cache <--Cache---> <-Staged-> De-

Time No. Serial Samp I/O Hits Hit% Read% Inhib Bypass Seq Nseq staged
-------- ---- ------ ---- ---- ---- ----- ----- ----- ------ ----- ---- ------
15:12:00 954A PR954A 100 326 326 100.0 0 0 0 0 0 2194219421942194

<----------Rates (per sec)-------->
<Processor Pct Util> Idle <-Swaps-> <-Disk IO-> Switch Intrpt

Time Node Total Syst User Nice Pct In Out In Out Rate Rate
-------- -------- ----- ---- ---- ---- ---- ---- ---- ----- ----- ------ ------
15:12:00 roblnx2 5.9 5.7 0.2 0 60.2 0 0 0 210K210K210K210K 272.1272.1272.1272.1 0

210K blocks per second =
105 MB/s -> 6.3 GB written

105 MB/s & 272 context
switches -> ~ 400 KB I/O’s

17

Parallel Access Volumes

S/390 I/O Model: Single Active I/O per Logical Volume

� Made sense with one logical volume per physical volume

� Too restrictive on contemporary DASD subsystems

• Logical volume can be striped over multiple disks

• Cached data could be accessed without real disk I/O

• Even more restrictive with large logical volumes

ECKD
Emulation

Cache

FICON
Channels

C
h
a
n
n
e
l S

u
b
s
ys

te
m

z/VM LPAR

c

b

a

L
o

g
ic

a
l V

o
lu

m
e

s

c

b

a

LPAR

LPAR

18

ECKD
Emulationc

b

a

c

b

a

c

b

a

c

b

a

c

b

a

Parallel Access Volumes

Base and Alias Subchannels

� Alias appear like normal device subchannel

• Host and DASD subsystem know it maps on the same set of data

• Simultaneous I/O possible on base and each alias subchannel

� DASD subsystem will run them in parallel when possible

• Operations may be performed in different order

Cache

FICON
Channels

C
h
a
n
n
e
l S

u
b
s
ys

te
m

LPAR

LPAR

z/VM LPAR

c

b

a

B
a

s
e

 a
n

d
 A

lia
s

19

Parallel Access Volumes

Access to cached data while previous I/O is still active

� I/O throughput mainly determined by cache miss operations

• Assumes moderate hit ratio and an alias subchannel available

Example

� Cache hit ratio of 90%

• Cache hit response time 0.5 ms

• Cache miss response 5.5 ms

PEND 0.2 ms

DISC 5.0 ms

CONN 0.3 ms

Single Subchannel

Base

Alias

cache miss cache hits

Elapsed Time

20

Parallel Access Volumes

Queuing of next I/O closer to the device

� Interesting with high cache hit ratio when PEND is significant

� Avoids delay due to PEND time

• Service time for cache hit determined only by CONN time

• Assuming sufficient alias subchannels

Example

� Cache hit ratio of 95%

• Cache hit response time 0.5 ms

• Cache miss response 5.5 ms

PEND 0.2 ms

DISC 5.0 ms

CONN 0.3 ms

Single
Subchannel

Base

Alias

Alias

Elapsed Time

21

Parallel Access Volumes

Multiple parallel data transfers over different channels

� Parallel operations retrieving from data cache

• Depends on DASD subsystem architecture and bandwidth

• Configuration aspects (ranks, banks, etc)

• Implications on FICON capacity planning

� Cache hit service time improved by the number of channels

• Combined effect: service time determined by aggregate bandwidth

• Assumes infinite number of alias subchannels

• Assumes sufficiently high cache hit ratio

PEND 0.2 ms

DISC 5.0 ms

CONN 0.3 ms

Single
Subchannel

Base

Alias

Alias

Alias

22

Parallel Access Volumes

Performance Benefits
1. Access to cached data while previous I/O is still active

• Avoids DISC time for cache miss

2. Queuing the request closer to the device
• Avoid IOSQ and PEND time

3. Multiple operations in parallel retrieving data from cache
• Utilize multiple channels for single logical volume

Restrictions

� PAV is chargeable feature on DASD subsystems
• Infinite number of alias devices is unpractical and expensive

� Workload must issue multiple independent I/O operations
• Typically demonstrated by I/O queue for the device (IOSQ time)

� Single workload can monopolize your I/O subsystem
• Requires additional monitoring and tuning

23

Parallel Access Volumes

Static PAV

� Alias devices assigned in DASD Subsystem configuration

� Association observed by host Operating System

Dynamic PAV

� Assignment can be changed by higher power (z/OS WLM)

� Moving an alias takes coordination between parties

� Linux and z/VM tolerate but not initiate Dynamic PAV

HyperPAV

� Pool of alias devices is associated with set of base devices

� Alias is assigned for the duration of a single I/O

� Closest to “infinite number of alias devices assumed”

24

Parallel Access Volumes

Virtual machines can exploit PAV

PAV-aware guests (Linux)

� Dedicated Base and Alias devices

� Costly when the guest does not need it all the time

PAV-aware guests with minidisks

� Uses virtual HyperPAV alias devices

� Requires sufficient real HyperPAV alias devices

PAV-unaware guests (CMS or Linux)

� Minidisks on shared logical volumes

� z/VM manages and shares the alias devices

� Break large volumes into smaller minidisks to exploit PAV

25

Linux Disk I/O

Virtual machines are just like real machines
� Prepare a channel program for the I/O

� Issue a SSCH instruction to virtual DASD (minidisk)

� Handle the interrupt that signals completion

z/VM does the smoke and mirrors
� Translate the channel program

• Virtual address translation, locking user pages

• Fence minidisk with a Define Extent CCW

� Issue the SSCH to the real DASD

� Reflect interrupt to the virtual machine

Diagnose I/O
� High-level Disk I/O protocol

� Easier to manage

� Synchronous and Asynchronous z

y

x

C
h

a
n

n
e

l S
u

b
s
ys

te
m

z/VM LPAR

y

Linux

26

Linux Disk I/O

Linux provides different driver modules
� ECKD – Native ECKD DASD

• Minidisk or dedicated DASD

• Also for Linux in LPAR

� FBA – Native FBA DASD
• Does not exist in real life

• Virtual FBA – z/VM VDISK

• Disk in CMS format

• Emulated FBA – EDEVICE

� DIAG – z/VM Diagnose 250
• Disk in CMS reserved format

• Device independent

� Real I/O is done by z/VM

� No obvious performance favorite
• Very workload dependent z

y

x

C
h

a
n

n
e

l S
u

b
s
ys

te
m

z/VM LPAR

Linux

dasddasddasddasd

diag eckd fba

0

10

20

30

40

50

60

70

80

90

w rite rew rite read reread random rd random w r

DIAG

ECKD

27

Linux Disk I/O

Virtual Machine I/O also uses other resources

� CPU – CCW Translation, dispatching

� Paging – Virtual machine pages for I/O operation

Host z/VM Control Unit Device

Real
Start I/O

Real I/O
Complete

IOSQ

PEND Command
Transfer

DISC

CONN

Data
Transfer

Linux

Virtual
Start I/O

Virtual I/O
Interrupt

Application
Read

Data
Available

CCW Translation
Paging

Dispatching

V
ir

tu
a

l
M

a
c

h
in

e
I/

O
 R

e
s

p
o

n
s

e
 T

im
e

28

Linux Disk I/O

Linux Physical Block Device
� Abstract model for a disk

• Divided into partitions

� Data arranged in blocks (512 byte)

� Blocks referenced by number

Linux Block Device Layer
� Data block addressed by

• Device number (major / minor)

• Block number

� All devices look similar

Linux Page Cache
� Keep recently used data

� Buffer data to be written out

Linux

dasddasddasddasd

diag eckd fba

Block layer

Page Cache

File
Systems

app app app app

29

Linux Disk I/O

Buffered I/O

� By default Linux will buffer application I/O using Page Cache

• Lazy Write – updates written to disk at “later” point in time

• Data Cache – keep recently used data “just in case”

• Read Ahead – avoid I/O for sequential reading

� Performance improvement

• More efficient disk I/O

• Overlap of I/O and processing

Buffered I/O Throughput

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512

Block Size (KB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Write

Read

30

Direct I/O vs Buffered I/O

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512

Block Size (KB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Write

Read

Wr Direct

Rd Direct

Linux Disk I/O

Buffered I/O
� By default Linux will buffer application I/O using Page Cache

• Lazy Write – updates written to disk at “later” point in time

• Data Cache – keep recently used data “just in case”

• Read Ahead – avoid I/O for sequential reading

� Performance improvement
• More efficient disk I/O

• Overlap of I/O and processing

Direct I/O
� Avoids Linux page cache

• Application decides on buffering

• No guessing at what is needed next

� Same performance at lower cost
• Not every application needs it

Disk Write - CPU Cost - Buffered vs Direct I/O

0

1

2

3

4

5

6

7

8

9

Buf fered Direct I/O

User

CP

http://zvmperf.wordpress.com/2012/04/17/cpu-cost-of-buffered-io/

31

Linux Disk I/O

Myth: Direct I/O not supported for ECKD disks

� Frequently told by DB2 experts

Truth: DB2 does not do 4K aligned database I/O

� The NO FILESYSTEM CACHING option is rejected

� Database I/O is buffered by Linux

• Uses additional CPU to manage page cache

• Touches all excess memory to cache data

� FCP disks recommended for databases with business data
• May not be an option for installations with large FICON investment

Experimental work to provide a bypass for this restriction

� Interested to work with customers who need this

32

Linux Disk I/O

Synchronous I/O
� Single threaded application model
� Processing and I/O are interleaved

Asynchronous I/O
� Allow for overlap of processing and I/O
� Improves single application throughput
� Assumes a balance between I/O and CPU

Matter of Perspective
� From a high level everything is asynchronous
� Looking closer, everything is serialized again

Linux on z/VM
� Many virtual machines competing for resources
� Processing of one user overlaps I/O of the other
� Unused capacity is not wasted

CPU I/OCPU I/O CPU I/O

transaction

CPU

I/O

CPU

I/O

CPU

I/O

33

Linux Disk I/O

Myth of Linux I/O Wait Percentage

� Shown in “top” and other Linux tools

� High percentage: good or bad?

� Just shows there was idle CPU and active I/O

• Less demand for CPU shows high iowait%

• Adding more virtual CPUs increases iowait%

• High iowait% does not indicate an “I/O problem”

top - 11:49:20 up 38 days, 21:27, 2 users, load average: 0.57, 0.13, 0.04

Tasks: 55 total, 2 running, 53 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.3%us, 1.3%sy, 0.0%ni, 0.0%id, 96.7%wa, 0.3%hi, 0.3%si, 1.0%st

top - 11:53:32 up 38 days, 21:31, 2 users, load average: 0.73, 0.38, 0.15

Tasks: 55 total, 3 running, 52 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.0%us, 31.1%sy, 0.0%ni, 0.0%id, 62.5%wa, 0.3%hi, 4.3%si, 1.7%st

34

Linux Disk I/O

Myth of Linux Steal Time

� Shown in “top” and other Linux tools

• “We have steal time, can the user run native in LPAR?”

� Represents time waiting for resources

• CPU contention

• Paging virtual machine storage

• CP processing on behalf of the workload

• Idle Linux guest with application polling

� Linux on z/VM is a shared resource environment

• Your application does not own the entire machine

• Your expectations may not match the business priorities

� High steal time may indicate a problem

• Need other data to analyze and explain

top - 11:53:32 up 38 days, 21:31, 2 users, load average: 0.73, 0.38, 0.15

Tasks: 55 total, 3 running, 52 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.0%us, 31.1%sy, 0.0%ni, 0.0%id, 62.5%wa, 0.3%hi, 4.3%si, 1.7%st

http://zvmperf.wordpress.com/2013/02/28/explaining-linux-steal-percentage/

35

Linux Disk I/O

Logical Block Devices

� Device Mapper

� Logical Volume Manager

Creates new block device

� Rearranges physical blocks

Avoid excessive mixing of data

Be aware for more exotic methods

� Mirrors and redundancy

� Anything beyond RAID 0

� Do not mess with I/O scheduler

Linux

Block layer

Page Cache

File
Systems

app app app app

Logical Block Devices

concatenation striping

36

Linux Disk I/O

Disk Striping

� Function provided by LVM and mdadm

� Engage multiple disks in parallel for your workload

Like shipping with many small trucks

� Will the small trucks be faster?

• What if everyone does this?

� What is the cost of reloading the goods?

• Extra drivers, extra fuel?

� Will there be enough small trucks?

• Cost of another round trip?

Split large I/O into
small I/O’s

queue for the proper
devices

merge into large I/O’s

37

Linux Disk I/O

Performance Aspects of Striping

� Break up a single large I/O into many small ones

• Expecting that small ones are quicker than a large ones

• Expect the small ones to go in parallel

� Engage multiple I/O devices for your workload

• No benefit if all devices already busy

• Your disk subsystem may already engage more devices

• You may end up just waiting on more devices

Finding the Optimal Stripe Size is Hard

� Large stripes may not result in spreading of the I/O

� Small stripes increases cost

• Cost of split & merge proportional to number of stripes

� Some applications will also stripe the data

� Easy approach: avoid it until performance data shows a problem

38

The Mystery of Lost Disk Space

Claim: ECKD formatting is less efficient
� “because it requires low-level format”

1

Is this likely to be true?
� Design is from when space was very expensive

� Fixed Block has low level format too – but hidden from us

ECKD allows for very efficient use of disk space
� Allows application to pick most efficient block size

� Capacity of a 3390 track varies with block size
• 48 KB with 4K block size

• 56 KB as single block

� Complicates emulation of 3390 tracks on fixed block device
• Variable length track size (log-structured architecture)

• Fixed size a maximum capacity (typically 64 KB for easy math)

1
Claim in various IBM presentations

39

Conclusion

Avoid using synthetic benchmarks for tuning
� Hard to correlate to real life workload

Measure application response
� Identify any workload that does not meet the SLA
� Review performance data to understand the bottleneck

• Be aware of misleading indicators and instrumentation
• Some Linux experts fail to understand virtualization

� Address resources that cause the problem
• Don’t get tricked into various general recommendations

Performance Monitor is a must
� Complete performance data is also good for chargeback
� Monitoring should not cause performance problems
� Consider a performance monitor with performance support

Avoid betting with your Linux admin on synthetic benchmarks
� Drop me a note if you cannot avoid it

Copyright © 2013 Velocity Software, Inc. All Rights Reserved. Other
products and company names mentioned herein may be trademarks of their
respective owners.

Linux on z/VM Performance

Understanding Disk I/O

Rob van der Heij

Velocity Software

http://www.velocitysoftware.com/

rvdheij@velocitysoftware.com

Session 13522

