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Agenda

• I/O Performance Model

• ECKD Architecture

• RAID Disk Subsystems

• Parallel Access Volumes

• Virtual Machine I/O

• Linux Disk I/O

http://zvmperf.wordpress.com/
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Linux on z/VM Tuning Objective

Resource Efficiency

� Achieve SLA at minimal cost

• “As Fast As Possible” is a very expensive SLA target

� Scalability has its limitations

• The last 10% peak capacity is often the most expensive

Recommendations are not always applicable

� Every customer environment is different

� Very Few Silver Bullets

� Consultant skills and preferences
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Benchmark Challenges

Benchmarks have limited value for real workload

� Every real life workload is different

• All are different from synthetic benchmarks

• There are just too many options and variations to try

� Benchmarks can help understand the mechanics

• Provide evidence for the theoretical model

Use performance data from your real workload

� Focus on the things that really impact service levels
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Anatomy of Basic Disk I/O

Who Cares About Disk
“Disks are very fast today”

“Our response time is a few ms”

Selection Criteria

� Capacity

� Price

IBM 3380-AJ4

(1981)

Seagate Momentus 
7200.3 (2011)

Price $80K $60

Capacity 2.5 GB 250 GB

Latency 8.3 ms 4.2 ms

Seek Time 12 ms 11 ms

Host Interface 3 MB/s 300 MB/s

Device Interface 2.7 MB/s 150 MB/s© 2010 Brocade, SHARE in Seattle, “Understanding FICON I/O Performance”

Reality: In comparison, 
disk I/O today is slow
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Anatomy of Basic Disk I/O

Reading from disk
� Seek – Position the heads over the right track

� Latency – Wait for the right sector

� Read – Copy the data into memory

Average I/O Operation
� Seek over 1/3 of the tracks  ~ 10 ms

� Wait for 1/2 a rotation          ~  3 ms

� Read the data ~  1 ms

Host Disk

Start 
I/O Seek

Locate

Transfer
Data

I/O 
Response 

Time

P
ro

c
e
s
s
in

g

I/O 
Rate

buffer

Host and disk decoupled by 
speed matching buffer

disk

host

Start 
I/O

Time



9

Classic DASD Configuration

CKD – Count Key Data Architecture

� Large system disk architecture since 60’s

� Track based structure

• Disk record size to mach application block size

� Disk I/O driven by channel programs

• Autonomous operation of control unit and disk

• Reduced CPU and memory requirements

� ECKD – Extended Count Key Data

• Efficient use of cache control units

• Improved performance with ESCON and FICON channel

FBA – Fixed Block Architecture

� Popular with 9370 systems

� Not supported by z/OS

� Access by block number

� Uniform block size
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Classic DASD Configuration

Channel Attached DASD
� Devices share a channel
� Disconnect and reconnect
� Track is cached in control unit buffer

IOSQ
� Device Contention
� Interrupt Latency

PEND
� Channel Busy
� Path Latency
� Control Unit Busy
� Device Busy

DISC
� Seek
� Latency
� Rotational Delay

CONN
� Data Transfer
� Channel Utilization

Host OS Control Unit Device

Start I/O

I/O Complete

IOSQ

PEND
Command
Transfer

DISC

CONN

Data
Transfer

Application
Read

Data

Available

CHPID

http://zvmperf.wordpress.com/2013/06/07/disk-io-response-time-metrics/
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Classic DASD Configuration

Instrumentation provided by z/VM Monitor

� Metrics from z/VM and Channel

• Traditionally used to optimize disk I/O performance

� Response time improvement through seek optimization

• Relocating data sets to avoid multiple hot spots

• I/O scheduling – elevator algorithm 

Screen: ESADSD2                                 ESAMON 3.807 03/23 16:24-16:33
1 of 3  DASD Performance Analysis - Part 1      DEVICE 3505          2097

Dev        Device %Dev <SSCH/sec-> <-----Response times (ms)--->    
Time      No. Serial Type   Busy   avg  peak  Resp  Serv  Pend  Disc  Conn    
-------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----
16:25:00 3505 0X3505 3390-? 26.3 728.8 728.8   0.4   0.4   0.2   0.0   0.2    
16:26:00 3505 0X3505 3390-? 76.9 977.4 977.4   0.8   0.8   0.3   0.1   0.4    
16:27:00 3505 0X3505 3390-? 62.0 480.0 977.4   1.3   1.3   0.5   0.1   0.6    
16:28:00 3505 0X3505 3390-? 15.8 198.9 977.4   0.8   0.8   0.1   0.5   0.2    
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Contemporary Disk Subsystem

Big Round Brown Disk

� Specialized Mainframe DASD

� One-to-one map of Logical Volume on Physical Volume

� Physical tracks in CKD format

� ECKD Channel Programs to exploit hardware capability

Contemporary Disk Subsystem

� Multiple banks of commodity disk drives

• RAID configuration

• Dual power supply

• Dual controller 

� Microcode to emulate ECKD channel programs

• Data spread over banks, ranks, array sites

� Lots of memory to cache the data 
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RAID Configuration

RAID: Redundant Array of Independent Disks

� Setup varies among vendors and models

� Error detection through parity data

� Error correction and hot spares

� Spreading the I/O over multiple disks

Performance Considerations

� The drives are “just disks”

� RAID does not avoid latency

� Large data cache to avoid I/O

� Cache replacement strategy

Additional Features

� Instant copy

� Autonomous backup

� Data replication
ECKD

Emulation

Cache

FICON
Channels
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RAID Configuration

Provides Performance Metrics like 3990-3
� Model is completely different
� DISC includes all internal operations

• Reading data into cache
• Data duplication and synchronization

Bimodal Service Time distribution
� Cache read hit

• Data available in subsystem cache
• No DISC time

� Cache read miss
• Back-end reads to collect data
• Service time unrelated to logical I/O

Average response time is misleading
� Cache hit ratio
� Service time for cache read miss

Response Time
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RAID Configuration

Example:

� Cache Hit Ratio       90%

� Average DISC       0.5 ms

� Service Time Miss   5 ms

Read Prediction

� Detecting sequential I/O

� ECKD: Define Extent

RAID does not improve hit ratio

� Read-ahead can improve hit ratio

� RAID makes read-ahead cheaper

ECKD

Emulation

Cache

FICON
Channels
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Disk I/O Example

Dev        Device Total  ERP  %Dev <SSCH/sec-> <-----Response times (ms)--->
Time      No. Serial Type    SSCH SSCH  Busy   avg  peak  Resp  Serv  Pend  Disc  Conn
-------- ---- ------ ------ ----- ---- ---- ----- ----- ----- ----- ----- ----- -----
15:12:00 954A PR954A 3390-9  6350    0  36.8 105.8 105.8   3.5   3.5   0.2   1.2   2.1
15:12:00 95D5 PR954A 3390-9  6677    0  35.9 111.3 111.3   3.2   3.2   0.2   1.1   1.9
15:12:00 95D6 PR954A 3390-9  6532    0  35.7 108.9 108.9   3.3   3.3   0.2   1.2   2.0

Pct. <---- Total I/O ----> <------ Write Activity ------>
Dev        Actv <Per Sec> Cache       Total  DFW  DFW  Seq       NVS

Time      No. Serial Samp  I/O Hits  Hit% Read%   I/O  I/O Hits  I/O Hit% Full
-------- ---- ------ ---- ---- ---- ----- ----- ----- ---- ---- ---- ---- ----
15:12:00 954A PR954A  100  326  326 100.0     0 325.7325.7325.7325.7 326  326  308  100  123123123123

Pct. <---- Total I/O ---->              <-Tracks/second->
Dev        Actv <Per Sec> Cache       <--Cache---> <-Staged->    De-

Time      No. Serial Samp  I/O Hits  Hit% Read% Inhib Bypass   Seq Nseq staged
-------- ---- ------ ---- ---- ---- ----- ----- ----- ------ ----- ---- ------
15:12:00 954A PR954A  100  326  326 100.0     0     0      0     0    0   2194219421942194

<----------Rates (per sec)-------->
<Processor Pct Util> Idle <-Swaps-> <-Disk IO-> Switch Intrpt

Time     Node     Total Syst User Nice  Pct   In  Out    In   Out   Rate   Rate
-------- -------- ----- ---- ---- ---- ---- ---- ---- ----- ----- ------ ------
15:12:00 roblnx2    5.9  5.7  0.2    0 60.2    0    0     0  210K210K210K210K 272.1272.1272.1272.1 0

210K blocks per second =
105 MB/s -> 6.3 GB written

105 MB/s  & 272 context 
switches -> ~ 400 KB I/O’s
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Parallel Access Volumes

S/390 I/O Model: Single Active I/O per Logical Volume

� Made sense with one logical volume per physical volume

� Too restrictive on contemporary DASD subsystems

• Logical volume can be striped over multiple disks

• Cached data could be accessed without real disk I/O

• Even more restrictive with large logical volumes

ECKD
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Parallel Access Volumes

Base and Alias Subchannels

� Alias appear like normal device subchannel

• Host and DASD subsystem know it maps on the same set of data

• Simultaneous I/O possible on base and each alias subchannel

� DASD subsystem will run them in parallel when possible

• Operations may be performed in different order

Cache
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Parallel Access Volumes

Access to cached data while previous I/O is still active

� I/O throughput mainly determined by cache miss operations

• Assumes moderate hit ratio and an alias subchannel available

Example

� Cache hit ratio of 90%

• Cache hit response time 0.5 ms

• Cache miss response 5.5 ms

PEND 0.2 ms

DISC 5.0 ms

CONN 0.3 ms

Single Subchannel

Base

Alias

cache miss cache hits

Elapsed Time
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Parallel Access Volumes

Queuing of next I/O closer to the device

� Interesting with high cache hit ratio when PEND is significant

� Avoids delay due to PEND time

• Service time for cache hit determined only by CONN time

• Assuming sufficient alias subchannels

Example

� Cache hit ratio of 95%

• Cache hit response time 0.5 ms

• Cache miss response 5.5 ms

PEND 0.2 ms

DISC 5.0 ms

CONN 0.3 ms

Single 
Subchannel

Base

Alias

Alias

Elapsed Time
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Parallel Access Volumes

Multiple parallel data transfers over different channels

� Parallel operations retrieving from data cache

• Depends on DASD subsystem architecture and bandwidth

• Configuration aspects (ranks, banks, etc)

• Implications on FICON capacity planning

� Cache hit service time improved by the number of channels

• Combined effect: service time determined by aggregate bandwidth

• Assumes infinite number of alias subchannels

• Assumes sufficiently high cache hit ratio

PEND 0.2 ms

DISC 5.0 ms

CONN 0.3 ms

Single 
Subchannel

Base

Alias

Alias

Alias
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Parallel Access Volumes

Performance Benefits
1. Access to cached data while previous I/O is still active

• Avoids DISC time for cache miss

2. Queuing the request closer to the device
• Avoid IOSQ and PEND time

3. Multiple operations in parallel retrieving data from cache
• Utilize multiple channels for single logical volume

Restrictions

� PAV is chargeable feature on DASD subsystems
• Infinite number of alias devices is unpractical and expensive

� Workload must issue multiple independent I/O operations
• Typically demonstrated by I/O queue for the device (IOSQ time)

� Single workload can monopolize your I/O subsystem
• Requires additional monitoring and tuning
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Parallel Access Volumes

Static PAV

� Alias devices assigned in DASD Subsystem configuration

� Association observed by host Operating System

Dynamic PAV

� Assignment can be changed by higher power (z/OS WLM)

� Moving an alias takes coordination between parties

� Linux and z/VM tolerate but not initiate Dynamic PAV

HyperPAV

� Pool of alias devices is associated with set of base devices

� Alias is assigned for the duration of a single I/O

� Closest to “infinite number of alias devices assumed”
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Parallel Access Volumes

Virtual machines can exploit PAV

PAV-aware guests (Linux)

� Dedicated Base and Alias devices

� Costly when the guest does not need it all the time

PAV-aware guests with minidisks

� Uses virtual HyperPAV alias devices

� Requires sufficient real HyperPAV alias devices

PAV-unaware guests (CMS or Linux)

� Minidisks on shared logical volumes

� z/VM manages and shares the alias devices

� Break large volumes into smaller minidisks to exploit PAV
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Linux Disk I/O

Virtual machines are just like real machines
� Prepare a channel program for the I/O

� Issue a SSCH instruction to virtual DASD (minidisk)

� Handle the interrupt that signals completion

z/VM does the smoke and mirrors
� Translate the channel program

• Virtual address translation, locking user pages

• Fence minidisk with a Define Extent CCW

� Issue the SSCH to the real DASD

� Reflect interrupt to the virtual machine

Diagnose I/O
� High-level Disk I/O protocol

� Easier to manage

� Synchronous and Asynchronous z
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Linux Disk I/O

Linux provides different driver modules
� ECKD – Native ECKD DASD

• Minidisk or dedicated DASD

• Also for Linux in LPAR

� FBA – Native FBA DASD
• Does not exist in real life

• Virtual FBA – z/VM VDISK

• Disk in CMS format

• Emulated FBA – EDEVICE

� DIAG – z/VM Diagnose 250
• Disk in CMS reserved format

• Device independent

� Real I/O is done by z/VM

� No obvious performance favorite
• Very workload dependent z
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Linux Disk I/O

Virtual Machine I/O also uses other resources

� CPU – CCW Translation, dispatching

� Paging – Virtual machine pages for I/O operation

Host z/VM Control Unit Device

Real
Start I/O

Real I/O 
Complete

IOSQ

PEND Command
Transfer

DISC

CONN

Data
Transfer

Linux

Virtual
Start I/O

Virtual I/O
Interrupt

Application
Read
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Linux Disk I/O

Linux Physical Block Device
� Abstract model for a disk

• Divided into partitions

� Data arranged in blocks (512 byte)

� Blocks referenced by number

Linux Block Device Layer
� Data block addressed by

• Device number (major / minor)

• Block number

� All devices look similar

Linux Page Cache
� Keep recently used data

� Buffer data to be written out

Linux

dasddasddasddasd

diag eckd fba

Block layer

Page Cache

File 
Systems

app app app app
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Linux Disk I/O

Buffered I/O

� By default Linux will buffer application I/O using Page Cache

• Lazy Write – updates written to disk at “later” point in time

• Data Cache – keep recently used data “just in case”

• Read Ahead – avoid I/O for sequential reading

� Performance improvement

• More efficient disk I/O

• Overlap of I/O and processing

Buffered I/O Throughput
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Direct I/O vs Buffered I/O
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Linux Disk I/O

Buffered I/O
� By default Linux will buffer application I/O using Page Cache

• Lazy Write – updates written to disk at “later” point in time

• Data Cache – keep recently used data “just in case”

• Read Ahead – avoid I/O for sequential reading

� Performance improvement
• More efficient disk I/O

• Overlap of I/O and processing

Direct I/O
� Avoids Linux page cache

• Application decides on buffering

• No guessing at what is needed next

� Same performance at lower cost
• Not every application needs it

Disk Write - CPU Cost - Buffered vs Direct I/O

0

1

2

3

4

5

6

7

8

9

Buf fered Direct I/O

User

CP

http://zvmperf.wordpress.com/2012/04/17/cpu-cost-of-buffered-io/
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Linux Disk I/O

Myth: Direct I/O not supported for ECKD disks

� Frequently told by DB2 experts

Truth: DB2 does not do 4K aligned database I/O

� The NO FILESYSTEM CACHING option is rejected

� Database I/O is buffered by Linux

• Uses additional CPU to manage page cache

• Touches all excess memory to cache data

� FCP disks recommended for databases with business data
• May not be an option for installations with large FICON investment

Experimental work to provide a bypass for this restriction

� Interested to work with customers who need this
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Linux Disk I/O

Synchronous I/O
� Single threaded application model
� Processing and I/O are interleaved

Asynchronous I/O
� Allow for overlap of processing and I/O
� Improves single application throughput
� Assumes a balance between I/O and CPU

Matter of Perspective
� From a high level everything is asynchronous
� Looking closer, everything is serialized again

Linux on z/VM
� Many virtual machines competing for resources
� Processing of one user overlaps I/O of the other
� Unused capacity is not wasted

CPU I/OCPU I/O CPU I/O

transaction

CPU

I/O

CPU

I/O

CPU

I/O
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Linux Disk I/O

Myth of Linux I/O Wait Percentage

� Shown in “top” and other Linux tools

� High percentage: good or bad?

� Just shows there was idle CPU and active I/O

• Less demand for CPU shows high iowait%

• Adding more virtual CPUs increases iowait%

• High iowait% does not indicate an “I/O problem”

top - 11:49:20 up 38 days, 21:27,  2 users,  load average: 0.57, 0.13, 0.04

Tasks:  55 total,   2 running,  53 sleeping,   0 stopped,   0 zombie

Cpu(s):  0.3%us,  1.3%sy,  0.0%ni,  0.0%id, 96.7%wa,  0.3%hi,  0.3%si,  1.0%st

top - 11:53:32 up 38 days, 21:31,  2 users,  load average: 0.73, 0.38, 0.15

Tasks:  55 total,   3 running,  52 sleeping,   0 stopped,   0 zombie

Cpu(s):  0.0%us, 31.1%sy,  0.0%ni,  0.0%id, 62.5%wa,  0.3%hi,  4.3%si,  1.7%st
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Linux Disk I/O

Myth of Linux Steal Time

� Shown in “top” and other Linux tools

• “We have steal time, can the user run native in LPAR?”

� Represents time waiting for resources

• CPU contention

• Paging virtual machine storage

• CP processing on behalf of the workload

• Idle Linux guest with application polling

� Linux on z/VM is a shared resource environment

• Your application does not own the entire machine

• Your expectations may not match the business priorities

� High steal time may indicate a problem

• Need other data to analyze and explain

top - 11:53:32 up 38 days, 21:31,  2 users,  load average: 0.73, 0.38, 0.15

Tasks:  55 total,   3 running,  52 sleeping,   0 stopped,   0 zombie

Cpu(s):  0.0%us, 31.1%sy,  0.0%ni,  0.0%id, 62.5%wa,  0.3%hi,  4.3%si,  1.7%st

http://zvmperf.wordpress.com/2013/02/28/explaining-linux-steal-percentage/
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Linux Disk I/O

Logical Block Devices

� Device Mapper

� Logical Volume Manager

Creates new block device

� Rearranges physical blocks

Avoid excessive mixing of data

Be aware for more exotic methods

� Mirrors and redundancy

� Anything beyond RAID 0

� Do not mess with I/O scheduler

Linux

Block layer

Page Cache

File 
Systems

app app app app

Logical Block Devices

concatenation striping
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Linux Disk I/O

Disk Striping

� Function provided by LVM and mdadm

� Engage multiple disks in parallel for your workload

Like shipping with many small trucks

� Will the small trucks be faster?

• What if everyone does this?

� What is the cost of reloading the goods?

• Extra drivers, extra fuel?

� Will there be enough small trucks?

• Cost of another round trip?

Split large I/O into 
small I/O’s

queue for the proper 
devices

merge into large I/O’s
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Linux Disk I/O

Performance Aspects of Striping

� Break up a single large I/O into many small ones

• Expecting that small ones are quicker than a large ones

• Expect the small ones to go in parallel

� Engage multiple I/O devices for your workload

• No benefit if all devices already busy

• Your disk subsystem may already engage more devices

• You may end up just waiting on more devices

Finding the Optimal Stripe Size is Hard

� Large stripes may not result in spreading of the I/O

� Small stripes increases cost

• Cost of split & merge proportional to number of stripes

� Some applications will also stripe the data

� Easy approach: avoid it until performance data shows a problem
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The Mystery of Lost Disk Space

Claim: ECKD formatting is less efficient
� “because it requires low-level format” 

1

Is this likely to be true?
� Design is from when space was very expensive

� Fixed Block has low level format too – but hidden from us

ECKD allows for very efficient use of disk space
� Allows application to pick most efficient block size

� Capacity of a 3390 track varies with block size
• 48 KB with 4K block size

• 56 KB as single block

� Complicates emulation of 3390 tracks on fixed block device
• Variable length track size (log-structured architecture)

• Fixed size a maximum capacity (typically 64 KB for easy math)

1
Claim in various IBM presentations



39

Conclusion

Avoid using synthetic benchmarks for tuning
� Hard to correlate to real life workload

Measure application response
� Identify any workload that does not meet the SLA
� Review performance data to understand the bottleneck

• Be aware of misleading indicators and instrumentation
• Some Linux experts fail to understand virtualization

� Address resources that cause the problem
• Don’t get tricked into various general recommendations

Performance Monitor is a must
� Complete performance data is also good for chargeback
� Monitoring should not cause performance problems
� Consider a performance monitor with performance support

Avoid betting with your Linux admin on synthetic benchmarks
� Drop me a note if you cannot avoid it
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