

Bibliography

Ray has spent most of his career at IBM in the performance analysis and capacity planning end of the business in Poughkeepsie, London, and now at the Washington Systems Center. He is the major contributor to IBM's internal PA & CP tool zCP3000. This tool is used extensively by the IBM services and technical support staff world wide to analyze existing zSeries configurations (Processor, storage, and I/O) and make projections for capacity expectations.

Ray has given classes and lectures worldwide. He was a visiting scholar at the University of Maryland where he taught part time at the Honors College.

He won the prestigious Computer Measurement Group's A.A. Michelson award in 2000.

	Sumn	nary		
Given a list of numbers X=	{Xi} i=1 to n	<u> </u>		
Statistics				
Term	Formula	Excel	PS View	
Count (number of items)	n		Number of points	
		=Count(X)	plotted	
Average	X=Sum(X)/n	=Average(X)	Center of gravity	
Median§	X[ROUND DOWN 1+N*0.5]	=MEDIAN(X)	Middle number	
Variance	V=(Xi-X) ²)/n	=Var(X)	Spread of data	
Standard Deviation	s=SQRT(V)	=Stnd(X)	Spread of data	
Coeficient of Variation			Spread of data around	
(Std/Avg)	CV=s/X		average	
Minimum	First in Sorted list	=MIN(X)	Bottom of plot	
Maximum	Last in Sorted list	=Max(X)	Top of plot	
Range	[Minimum,Maximum]		Distance between top and bottom	
90th percentile§	X[ROUND DOWN 1+n*0.9]	=Percentile(X,0.9)	10% from the top	
Confidence interval	Look in book	=Confidence(0.05,s,n)	Expected Variability of average (a thick line)	
§= Percentile formulae assume a sorted list; Low to high.				

The Intent of regression analysis Given a set of paired observations $\{(x_i, y_i)\}$ for i=1 to n The goal is to develop a function that uses X as a predictor of Y. Y = f(X) such that y_i - y_i is minimal. Or Yi = Yi + e where e is the error term. Question: Does X cause (correlate, act as a predictor) of Y? A concern when X is Time. Given $\{(t_i, y_i)\}$, can time be a cause? If T is peak daily period and Y is CPU%, does time of day cause CPU% level? No it is a correlate.

Claim: Eating Cheerios	s will lower your cholesterol
ause → Effect ause: Eating Cheerio	S
ffect: Lower Choleste	erol
est: Real cause	
Intervening Varia	able
Bacon & Eggs	Cholesterol
Cheerios	Lower Cholesterol
Baco & Eggs —	Lower Cholesterol
here is a correlation l	between Eating Cheerios and lower
olesterol but is ther	e a causal relationship?

Inits of Work (X)	CPU% (Y)	YH=47.489x + 0.275	Residual=Yi-Yhi	Resid*2	Xi-Avgx)*2	Comp	LB	U
1.3	62.3	61.765	0.535	0.286225	0.0225	0.65	57.34385	66.1861
1.4	64.3	66.495	-2.195	4.818025	0.0025	0.25	63.75312	69.2368
1.45	70.8	68.86	1.94	3.7636	0	0.2	66.40759	71.3124
1.5	71.1	71.225	-0.125	0.015625	0.0025	0.25	68.48312	73.9668
1.6	75.8	75.955	-0.155	0.024025	0.0225	0.65	71.53385	80.3761
1.65		78.32				1	72.83624	83.8037
1.7		80.685				1.45	74.08168	87.2883
1.75		83.05				2	75.29479	90.8052
1.8		85.415	005	0.0075		2.65	76.48809	94.3419
			SSE	8.9075				
			Syx	1.723127002				
			Avy A	1.45	0.05			
			T	3 182446305	0.00			
			I N	5.102440303				
		Comp: =(1	/ROWS(X))	+(POWEF	R(A2-Av	gx,2))/	\$F\$14	

			v	= b0 ± b1	$X1 \pm h2X$	2 ∓P3X3	
INDEX	AIR	Diff 1		- 50 - 51	Or	2 . 0070	
1	5.9		X4	$= b0 + b^{2}$	1X1 + b2>	(2 +b3X3	
2	6.7	0.8					
3	16.8	10.1	Y		M		
4	10.3	-6.5					
5	12.4	2.1	Y	X0	X1	X2	Х
6	16.5	4.1	2.1	1	0.8	10.1	-6.
7	19.9	3.4	4.1	1	10.1	-6.5	2.
8	14.6	-5.3	-5.3	1	-0.5	2.1 4 1	4.
9	11.7	-2.9	-2.9	1	4.1	3.4	-5.
10	26.3	14.6	14.6	1	3.4	-5.3	-2.
11	34 5	82	8.2	1	-5.3	-2.9	14.

With a Little Magic Solve for B									
$B = (M^{t} * M)^{-1} * M^{t} * Y$									
* = Matrix multiply									
B0= 6.493 B1= -0.951 B2= -1315 B3= -0.673									
SAS:	//WICKS (????,?? //SAS EX	JOB ??),WICKS,M (FC SAS	SGLEVEL=1	MSGCLASS=0,NOT	IFY=WICKS				
	DATA CA	PTURE;		,					
	CARDS;	′ X1-X3;				Or Excel			
	2.1	0.8	10.1	-6.5					
	4.1	10.1	-6.5	2.1					
	3.4	-6.5	2.1	4.1					
	-5.3	2.1	4.1	3.4 5.2					
	-2.9	4.1	3.4 -5.2	-5.3					
	8.2	3.4 -5 3	-0.0	-2.9 14.6					
	PROC R	EG:	-2.0						
	MODEL	Y = X1-X3 ;							

