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Tracking and Trending for 
Capacity Planning and 
Performance Analysis

Ray Wicks

ATS at the Washington Systems Center

561-236-5846

RayWicks@us.ibm.com

Abstract
This session covers the technicalities of simple 
linear Regression Analysis and the extension of this 
into multivariate analysis found in Time Series. The 
approach is generally intuitive so that one can learn 
what is being said and what it means. You’ll see the 
principles of how-to and the evaluation of different 
regressions.

The examples used will generally be taken from 
system data (utilizations, rates). We will look at the 
reasons for both tracking and trending along with 
the reasons why such activities can fail. The simpler 
examples will use EXCEL.
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Trade Marks, Copyrights & Stuff
Many terms are trademarks of different companies and 
are owned by them.

On foils that appear in this presentation 
are not in the handout. This is to prevent 
you from looking ahead and spoiling my 
jokes and surprises. Also foils added after
I made handouts.
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The Knowing the Future
a.k.a. Prediction

Niels Bohr said: “Prediction is very hard to do. 
Especially about the future.”

Karl Popper was asked: Will the future be like the 
past? 
“I do not know that the future will be like the 
past; on the contrary, I have good reason to 
expect that it will be different in many ways” 

Two issues: Accuracy and Variation.

Accuracy and Effort

Message: Complete accuracy is hard, may not be needed and 
costs a lot. Do your questions need that accuracy?
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GDP Prediction

18 Predictions,
6 Wrong, 
That’s a Grade of 
67%.

Message: Ask yourself, how is my decision effected by the 
prediction being wrong?

How Accurate Is It?

Time

Prediction

t0

Starting from an initial point of maybe dubious accuracy, we apply a growth 
rate (also dubious) and then recommend actions costing lots of money.



SHARE August 2013 Session 13465 7/9/2013

Trending (c) Ray Wicks 2013 5

Accuracy

Timet0Time

Prediction

t0

Accuracy is found in values that are close to the expected curve. This closeness 
implies an expected bound or variation in reality. So a thicker line makes sense. 

Rather than a thick line…

Timet0Time

Prediction

t0

t0 is Now and errors compound in time.
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How Accurate Is It?

Time

Prediction

t0 t

p

Time

Prediction

t0 t

p

At time t, is the prediction a precise point p or a fuzzy patch?
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Accuracy

Message: How far off the line is too far? And, I better track this 
stuff.

A Conversation

You: The answer is 42.67.

Them: I measured it and the answer is 42.663!

You: Give me a break.

Them: I just want to be exact.

You: OK the answer is around 42.67. 

Them: How far around.

You: ????
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Fuzzy Expectations: X is around 42.67
or X-42.67 ≈ 0
or X-42.67 ≤ ∆

42.67

Around 42.67 = if you pick a number on 
[42.67- ∆, 42.67+ ∆] it is as good as equal 42.67.

42.67+∆42.67-∆

How to define ∆?

Fuzzy Expectations or Fuzzy Reality?

Probability of Expected 
Value

Expected Value
The expected value could move 
within this bound if the experiment 
was repeated with higher probability 
of it being close to the center.
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Confidence Interval

[ μ – 1.96 σ/n , μ + 1.96 σ/n ]

[ μ – zα/2 σ/n   , μ + zα/2 σ/n ]

Using a Standard Normal Probability table, 
95% confidence (2 tail) is found by looking 
for a z score of 0.025.

In Excel: =Confidence(μ, σ, n)

=Confidence(0.5,1,100) = 1.96

Summary
Given a list of numbers X={Xi} i=1 to n

Statistics
Term Formula Excel PS View
Count (number of items) n

=Count(X)
Number of points 
plotted

Average X=Sum(X)/n =Average(X) Center of gravity
Median§ X[ROUND DOWN 1+N*0.5] =MEDIAN(X) Middle number
Variance V=(Xi-X)2)/n =Var(X) Spread of data

Standard Deviation s=SQRT(V) =Stnd(X) Spread of data
Coeficient of Variation 
(Std/Avg) CV=s/X

Spread of data around 
average

Minimum First in Sorted list =MIN(X) Bottom of plot
Maximum Last in Sorted list =Max(X) Top of plot
Range

[Minimum,Maximum]
Distance between top 
and bottom

90th percentile§ X[ROUND DOWN 1+n*0.9] =Percentile(X,0.9) 10% from the top
Confidence interval

Look in book =Confidence(0.05,s,n)
Expected Variability of 
average (a thick line)

 §= Percentile formulae 
assume a sorted list; Low 
to high.



SHARE August 2013 Session 13465 7/9/2013

Trending (c) Ray Wicks 2013 10

Correlation & Prediction
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The Intent of regression analysis
Given a set of paired observations {(xi,yi)} for i=1 to n
The goal is to develop a function that uses X as a 
predictor of  Y.
Y = f(X) such that  yi-yi is minimal. 
Or Yi = Yi + e where e is the error term.

Question: Does X cause (correlate, act as a predictor) 
of Y?

A concern when X is Time. Given {(ti,yi)}, can time be a 
cause?  If T is peak daily period and Y is CPU%, does 
time of day cause CPU% level? No it is a correlate. 
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Briefly: Correlation is not 
Causality

Cause → Effect    (sufficient cause)
~Effect → ~Cause  (necessary cause)

R2 or CORR(C,E) may indicate a linear 
relationship without there being a causal 
connection.

In cities of various sizes:
 C = number of TVs is highly correlated with E = 
number of murders.
 C = religious events is highly correlated with E = 
number of suicides.

Causality & Correlation
Claim: Eating Cheerios will lower your cholesterol
Cause → Effect
Cause: Eating Cheerios
Effect: Lower Cholesterol

Test: Real cause
Intervening Variable

Bacon & Eggs                                          Cholesterol

Cheerios                                           Lower Cholesterol    

Bacon & Eggs                                       Lower Cholesterol  

There is a correlation between Eating Cheerios and lower
Cholesterol but is there a causal relationship?

X
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Interesting Correlations
1. The Japanese eat very little fat
and suffer fewer heart attacks than Americans.

2. The Mexicans eat a lot of fat
and suffer fewer heart attacks than Americans. 

3. The Chinese drink very little red wine 
and suffer fewer heart attacks than Americans.

4. The Italians drink a lot of red wine
and suffer fewer heart attacks than Americans.

5. The Germans drink a lot of beers and eat lots 
of sausages and fats and suffer fewer heart attacks than 
Americans. 

CONCLUSION?

Correlation
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Correlation = COV(X,Y) / σx σy

= σxy
2 / σx σy

= E[(x-μx)(y-μy)] / σx σy

Correlation  [-1,1]

=CORREL(CPU%,DASDIO) = 0.86
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The B.S. Model

y = 60.941x + 655.76

R2 = 0.8377

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80

CPU%

D
A

S
D

 I/
O

DASD

DASD

GKWE

Thinking

CPU

Memory

Our B.S. model anticipates a correlation between 
CPU time and DASD rate.

Linear Fit

y = 59.877x + 733.8

R2 = 0.7425
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Predictive Analysis
 Given {Xi,Yi} i=1,n 

 Find Yi=F(Xi) such that the sum of errors squared is 
minimized (Sum(Yi – Yi)2 )

 The evaluate F(Xi) from i = n+1 to n+j  (j future 
periods/values) 

y = 0.0588x + 8.7307
R2 = 0.7978
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Y=0.0588x + 8.7307

Y=0.0588*1000 + 8.7307

Y = 67.5%

Linear Regression

y = 3.0504x + 385.42

R2 = 0.7881
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Reality

y = 3.0504x + 385.42

R2 = 0.7881
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Linear regression’s predictions assume that 
the future looks like the past.

Linear Fit for {Xi,Yi}

X

Y

Yi=B0 + B1Xi 

Xi

Yi

Yi

e

B0

Y

(Yi - Y)2

(Yi - Y)2

On the line would be perfect. 
Next to that would be a line 
with minimum error (e). 
Actually minimum e2 is better. 

Goodness of Fit R2 =
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Excel Help

Search Excel Help for R Squared return:

RSQ: Returns the square of the Pearson product 
moment correlation coefficient through data points 
in known_y's and known_x's. For more 
information, see PEARSON. The r-squared value 
can be interpreted as the proportion of the 
variance in y attributable to the variance in x.

Matrix Solution for Linear Fit
B = (Mt * M)-1 * Mt * Y

Solve for Y = B0 + B1*X
 X Y YH Sq (YH-YA) Sq (Y-YA) R2

M is 5x2 1 62.3 1.3 1.316809 0.0151761 0.0196 0.819061 =(SUM(F3:F7)/SUM(G3:G7))
1 64.3 1.4 1.354367 0.007333 0.0016
1 70.8 1.4 1.476432 0.0013273 0.0016
1 71.1 1.5 1.482065 0.0017695 0.0036
1 75.8 1.6 1.570328 0.0169853 0.0256

Avg 1.44

MT is 2x5 1 1 1 1 1 ctl-shift-enter
62.3 64.3 70.8 71.1 75.8

MT*M is 2x2 5 344.3
344.3 23829.27

INV(MTM) is 2x2 39.46158 -0.57017
-0.57017 0.00828

IMTM*MT is 2x5 3.940284 2.799954 -0.90612 -1.07717 -3.756947
-0.05432 -0.03776 0.016063 0.018547 0.0574637

IMTMMT*Y is 2x1 0.146865 B0
0.018779 B1
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Excel Solution

y = 0.0188x + 0.1469

R2 = 0.8191
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A perfect fit is always possible

y = 58111x4 - 338194x3 + 736689x2 - 711801x + 257442

R2 = 1
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Albeit meaningless in this case.

Goodness of Fit.

Residual
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Residual = Yi – Ypredict
The plot of residuals should show points randomly distributed around 0.
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EXCEL Solution
y = 47.3x + 0.275

R2 = 0.9262
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Units of Work (X) CPU% (Y) YH=47.3x + 0.275 Residual=Yi-Yhi Resid*2
1.3 62.3 61.765 0.535 0.286225
1.4 64.3 66.495 -2.195 4.818025

1.45 70.8 68.86 1.94 3.7636
1.5 71.1 71.225 -0.125 0.015625
1.6 75.8 75.955 -0.155 0.024025

SSE 8.9075
Syx 1.723127002
Avg X 1.45
sum(xi-avgx)*2
T 3.182446305
N 5

Solution with Bounds

y = 47.3x + 0.275

R2 = 0.9262

50
55
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65
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85
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Computations
Units of Work (X) CPU% (Y) YH=47.489x + 0.275Residual=Yi-Yhi Resid*2(Xi-Avgx)*2 Comp LB UB

1.3 62.3 61.765 0.535 0.286225 0.0225 0.65 57.34385 66.18615
1.4 64.3 66.495 -2.195 4.818025 0.0025 0.25 63.75312 69.23688

1.45 70.8 68.86 1.94 3.7636 0 0.2 66.40759 71.31241
1.5 71.1 71.225 -0.125 0.015625 0.0025 0.25 68.48312 73.96688
1.6 75.8 75.955 -0.155 0.024025 0.0225 0.65 71.53385 80.37615

1.65 78.32 1 72.83624 83.80376
1.7 80.685 1.45 74.08168 87.28832

1.75 83.05 2 75.29479 90.80521
1.8 85.415 2.65 76.48809 94.34191

SSE 8.9075
Syx 1.723127002
Avg X 1.45
sum(xi-avgx)*2 0.05
T 3.182446305
N 5

Comp:  =(1/ROWS(X))+(POWER(A2-Avgx,2))/$F$14

LB:   =$C2-T*Sxy*SQRT($G2)

Projection with Bounds

y = 47.3x + 0.275

R2 = 0.9262

50

60

70

80

90

100

1.2 1.4 1.6 1.8 2

Units of Work

C
P

U
% CPU%

LB

UB

Linear (CPU%)



SHARE August 2013 Session 13465 7/9/2013

Trending (c) Ray Wicks 2013 21

Projection with Bounds

y = 47.3x + 0.275

R2 = 0.9262
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Linear (CPU%)

Y=mX for CPU% vs Blocks/Sec

y = 0.0235x

R2 = -0.7761
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(b=0 in Y=mX + b)
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Filtered Data CPU%>10

y = 0.0742x

R2 = 0.9028
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For each Xi, plot e = Y- Yi
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Can’t Get Any Worse
Solution?

y = 0.0612x

R2 = -0.3959
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(PS: It’s a line) 

y = -0.0002x + 8.2996
R2 = 0.4388   (CS: Not a good line)
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PS to CS Dissonance
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y = -0.0002x + 8.2996
R2 = 0.4388   (CS: Variability is scale independent)

(PS: Variability is scale dependent) 

PS to CS Dissonance

y = -6E-08x3 + 0.0063x2 - 241.55x + 3E+06
R2 = 0.7817 (CS: fit looks good)
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(PS: Polynomial fit looks good) 
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???
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In 144 Days, the $ will be worthless.

Trending: What to DO?
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Options?

Average In & Ready

y = 7.2692e0.0042x

R2 = 0.6615
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How About A Polynomial?
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A polynomial can be made to fit about any wandering data within the bounds of the data 
[min,max]. Beyond the bounds, any prediction is suspect.

Y=b0 + b1X + b2X2 + b3X3 + ……. + bnXn
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A time series is a sequence of observations which are ordered in 
time (or space). If observations are made on some phenomenon 
throughout time, it is most sensible to display the data in the 
order in which they arose, particularly since successive 
observations will probably be dependent. Time series are best 
displayed in a scatter plot. The series value X is plotted on the 
vertical axis and time t on the horizontal axis. Time is called the 
independent variable (in this case however, something over 
which you have little control). 
There are two kinds of time series data: 
1. Continuous, where we have an observation at every instant of 
time e.g. lie detectors, electrocardiograms. We denote this using 
observation X at time t, X(t). 
2. Discrete, where we have an observation at (usually regularly) 
spaced intervals. We denote this as Xt.

Time Series

See http://www.cas.lancs.ac.uk/glossary_v1.1/tsd.html#timeseries

Time Series Models (Briefly)
(Box-Jenkins Analysis)
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Poor Mans Time Series

INDEX AIR Diff 1
1 5.9
2 6.7 0.8
3 16.8 10.1
4 10.3 -6.5
5 12.4 2.1
6 16.5 4.1
7 19.9 3.4
8 14.6 -5.3
9 11.7 -2.9

10 26.3 14.6
11 34.5 8.2
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Ref: TSERDAT.xls

A 1 2
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B 0 -1
7 2

Matrix Operations

A+B 1 1
4 4.5



SHARE August 2013 Session 13465 7/9/2013

Trending (c) Ray Wicks 2013 29

B 0 -1
7 2

C 1 2 3
-2 3 1

Matrix Operations

B x C 2 -3 -1
3 20 23

 Row x Col 0x2 + -1x3                            7x3 + 2x1

=MMULT(B,C)     in a 2 row 3 col area and then ctl-shift-enter

Matrix Operations
2.3 5

3 7
1 3.5

2.3 3 1
5 7 3.5

30.29 41.9
41.9 58

47.93388 -34.6281
-34.6281 25.03306

M3x2
Matrix Transpose Mt  

(=Transpose(M))

Matrix Multiply M x Mt   

(=Mmult(M,MT)

Matrix Inverse (M x Mt)-1   

(=Minverse(MMT)
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Matrix Operations

30.29 41.9
41.9 58

47.93388 -34.6281
-34.6281 25.03306

X

1 4.54747E-13
0 1

The Ugly Part

INDEX AIR Diff 1
1 5.9
2 6.7 0.8
3 16.8 10.1
4 10.3 -6.5
5 12.4 2.1
6 16.5 4.1
7 19.9 3.4
8 14.6 -5.3
9 11.7 -2.9

10 26.3 14.6
11 34.5 8.2

Y X0 X1 X2 X3
2.1 1 0.8 10.1 -6.5
4.1 1 10.1 -6.5 2.1
3.4 1 -6.5 2.1 4.1

-5.3 1 2.1 4.1 3.4
-2.9 1 4.1 3.4 -5.3
14.6 1 3.4 -5.3 -2.9
8.2 1 -5.3 -2.9 14.6

Y = b0 + b1X1 + b2X2 +b3X3
Or

X4 = b0 + b1X1 + b2X2 +b3X3

From the input variable AIR, form the pair wise difference sequence 
Diff 1 = xn – xn-1. Then build the matrix M for order 3 solution.

Y M
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With a Little Magic
Solve for B

B = (Mt * M)-1 * Mt * Y
* = Matrix multiply
B0= 6.493 B1= -0.951 B2= -1315 B3= -0.673

//WICKS  JOB 
(????,????),WICKS,MSGLEVEL=1,MSGCLASS=O,NOTIFY=WICKS   
//SAS EXEC SAS                                                      
//SYSIN DD *                                                        
OPTIONS LINESIZE=80 NOCENTER;                                      

DATA CAPTURE;                                                       
INPUT Y X1-X3;
CARDS;

2.1 0.8 10.1 -6.5
4.1 10.1 -6.5 2.1
3.4 -6.5 2.1 4.1
-5.3 2.1 4.1 3.4
-2.9 4.1 3.4 -5.3
14.6 3.4 -5.3 -2.9
8.2 -5.3 -2.9 14.6                                                             
PROC REG;                                                           
MODEL Y = X1-X3 ; 

SAS:

Or Excel ►

Excel Steps for Multiple Regression

X0 X1 X2 X3
1 0.8 10.1 -6.5
1 10.1 -6.5 2.1
1 -6.5 2.1 4.1
1 2.1 4.1 3.4
1 4.1 3.4 -5.3
1 3.4 -5.3 -2.9
1 -5.3 -2.9 14.6

Y = b0 + b1X1 + b2X2 +b3X3
B = (Mt * M)-1 * Mt * Y

1 1 1 1 1 1 1
0.8 10.1 -6.5 2.1 4.1 3.4 -5.3

10.1 -6.5 2.1 4.1 3.4 -5.3 -2.9
-6.5 2.1 4.1 3.4 -5.3 -2.9 14.6

M =
[7 x 4]

Mt = Transpose(M) =
[4 x 7]
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More Steps

5 9.5
-51.32 -112.47
213.54 -101.74

-101.74 324.69

Y = b0 + b1X1 + b2X2 +b3X3
B = (Mt * M)-1 * Mt * Y

0.228013 -0.02868 -0.02368 -0.02402
-0.02868 0.011571 0.006773 0.006969
-0.02368 0.006773 0.009772 0.006101
-0.02402 0.006969 0.006101 0.008108

MTM= Mt * M = MMULT(MT,M) = 
[4 x 7]*[7 x 4] = [4 x 4]

invMTM  = Inverse(MTM) =
[4 x 4]

More Steps

6.492618
-0.95067
-1.31524
-0.67382

Y = b0 + b1X1 + b2X2 +b3X3
B = (Mt * M)-1 * Mt * Y

invMTMMT  = MMULT( invMTM,MT) =
[4 x 4]*[4 x 7] = [4 x7]

SOLB = MULT(invMTMMT.Y) =
[4 x 7]*[7 x 1] = [4 x 1]

0.122092 0.041831 0.266191 -0.01096 0.157264 0.325667 0.097916
0.003684 0.0588 -0.06109 0.047085 0.004853 -0.04544 -0.00789
0.040781 -0.00598 -0.02217 0.051352 0.004981 -0.07013 0.00116
-0.00954 0.023739 -0.02327 0.043193 -0.01768 -0.05618 0.039731
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The Prediction

INDEX AIR Diff 1 Pred Diff 1 Pred AIR
1 5.9
2 6.7 0.8
3 16.8 10.1
4 10.3 -6.5
5 12.4 2.1 -3.17 7.13
6 16.5 4.1 4.02 16.42
7 19.9 3.4 7.15 23.65
8 14.6 -5.3 -3.19 16.71
9 11.7 -2.9 1.69 16.29

10 26.3 14.6 12.19 23.89
11 34.5 8.2 5.51 31.81
12 -15.48 19.02
13 -7.74 11.28
14 24.27 35.55
15 15.04 50.59
16 -28.20 22.39

Xn = 6.493 - 0.951Xn-1 -1315Xn-2 -0.673Xn-3

=
+

Diff 1 Plot
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Prediction for AIR

 AIR
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0 5 10 15 20

Period

A
IR

AIR

Pred AIR

Xn = 6.493 - 0.951Xn-1 -1315Xn-2 -0.673Xn-3

R2 = 0.89
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