
TECHNICAL DEBT – WHAT IS IT COSTING YOUR COMPANY?
Denise P. Kalm

TECHNICAL DEBT – WHAT IS IT COSTING YOUR COMPANY?

www.cm�rstgroup.comCM First2

Executive Summary
Technical debt may be a new concept but it is an old problem that increases
business risk and cost to your company. Technical debt is the cost of programming
choices and decisions that were made consciously to meet a business objective,
unconsciously because of lack of knowledge or experience or historically because
they made sense initially but are no longer best practices today. All development
will result in some amount of technical debt – the challenge is to manage it, reduce
it and develop practices to keep it at a level that does not impact performance and
availability of your critical business services. Software solutions now exist to help
make paying down your debt a much less onerous process.

Technical Debt – The Problem

“The savvy developer treats technical debt just as the entrepreneur does �nancial
debt. They use it. It speeds delivery.”

In 1992, Ward Cunningham, inventor of “wikis” and a signatory to the Agile
Manifesto Doctrine, coined the term “technical debt” to describe the application
design trade-o�s organizations make every day. The metaphor is apt; executives
often make conscious decisions to deliver new business functionality as quickly as
possible. As with �nancial debt, they weigh the bene�ts of faster time-to-market
and increased pro�ts against the probability of sub-optimal code. In some cases,
speed is required simply to meet a government mandate. Whatever the cause,
whether it is in service of maintaining a competitive edge or meeting compliance
requirements, technical debt is incurred whenever corners have to be cut in
design, coding and testing. Like �nancial debt, interest accrues. In this case,
‘interest’ means impact on availability as well as higher support and application
maintenance costs. Another term for technical debt is ‘de�cit programming,’ a term
coined by David Panariti.

Some of these choices were made in the early days of computing where it seemed
safe to assume that applications written today would be supplanted with new and
better code tomorrow. Surviving the Y2K challenge involved a substantial interest
payment to remediate applications where shortcuts were applied. These shortcuts
saved substantial money, resources and time when all these elements were in
short supply. No one expected the code containing all these shortcuts to last 20+
years, but it did. Now, we know better. Code lasts a long time.

Another cost-saving technique initiated in the ‘90’s also increased the technical
debt. Assumptions were made that coding languages were now so powerful and
easy to learn that junior programmers could be trusted to create business-critical
applications from detailed speci�cations. But even senior programmers have
been known to have some bad coding habits. Facing time pressure and learning
‘on the job,’ junior programmers were even more likely to make mistakes, take
shortcuts and sometimes copy old code from other applications to get the job
done. Another area of concern was with outsourcing. Outsourcing development
added to the problem. With programmers in other countries, it becomes di�cult
to vet the code or the ability of the coders. Inside a company, technical
management can prescribe standards and institute oversight; with an outsourcer,
both objectives may be di�cult to achieve.

The 21st century debt includes quick turnaround to link applications on disparate
platforms. The value can be substantial, but the interest continues to accumulate.
In addition, technical debt compounds over time. As applications are modi�ed by
a variety of people, each making assumptions about the underlying code, more
problems are inevitably introduced. Unless a piece of code is very short-lived, very
basic or completely documented, technical debt is a concern you have to monitor
and manage.

How big is the technical debt problem? Caper Jones notes, “Poor software quality
has become one of the most expensive topics in human history: $150 billion per
year in U.S.; $500 billion per year worldwide.” He also noted that programmers
were “less than 50% e�cient in �nding bugs in their own software.” Looking at
just a single industry, “Gartner estimates that the global insurance industry has
accumulated more than $8 billion of IT debt during the past 10 years.”

Types of Technical Debt
Technical debt comes in a variety of forms, but without understanding the
sources, remediation is impossible. The most fundamental type comes when an
application is initially designed. Often, the full scope of a business service is
poorly understood at design time, so while the design might be ideal in the initial
implementation, it does not adapt to the many changes required as the
application matures. In other cases, poor design can be the result of a
misunderstanding between the architects, the business and the development
team. Still another cause could be compromises made as an agile project evolves.

Code debt groups a number of problems into one bucket. The most obvious is
badly written code. This happens primarily because of coding inexperience. The
next, paradoxically, arises from very senior programmers. Overly complex code
may work very e�ciently, but when it is complex, updates to it without a clear
understanding of the complexity may result in problems. In the case where
modules were written much earlier, good code is no long optimal because new
language facilities and options may have superseded the original capabilities.
And some languages no longer have enough practitioners who understand them
– the language itself may have become obsolete.

A common problem is that people under time pressure copy what’s working and
move it somewhere else. When an issues arises or the code otherwise needs
modi�cation, how do you �nd all the places it has been copied into? Capers Jones
notes that 21% of COBOL code is unreachable, meaning that it is never executed.
But in many cases, developers are not aware of this and changes made may cause
untested code to become reachable, or unreachable code to be copied.

Two unexpected areas of technical debt come from lack of documentation and
lack of testing protocols. Few developers enjoy writing documentation, so in
many cases and for many applications, documentation is scanty or non-existent.
As new teams come in, they have to start from scratch �guring out the purpose of
various modules and the underlying design. Testing is an issue – code that is not
regularly tested may be a problem just waiting to happen.

Code fraught with these kinds of problems becomes brittle. Like ta�y as it hardens,
making changes to older code can be di�cult without the risk that it will break.

Confounding Factors
Organizational structure may tend to help to increase or limit the potential for
accruing technical debt. In many shops, the development team has no interaction
with the lines of business. Deadlines are determined by the business without
development involvement or input. In many cases, the business has no idea of
whether their requirements are feasible or achievable. Development personnel
also may not hear directly from the customer what his needs are. Yet,
development groups will strive to meet those deadlines making their best e�orts
to deliver the business services required. In too many places, groups with a stake
in the overall success of the application (performance analysts, DBAs, storage
support, network technicians) only see the �nished product and thus, cannot o�er
their expertise to ensure an optimal solution. Outsourcing only makes this more
complicated. Particularly when outsourced sta� is on the other side of the globe,
the required communications most likely will not occur practically ensuring a
lower quality result.

The lack of a process improvement program can also lead to increased technical
debt. With fewer sta� members and increased pressure to get code out the door,
little time is left to go back and review code beyond �xing outright bugs and trying
to eliminate outages. Even those companies dedicated to quality may �nd they
don’t know how to identify their code debt, let alone �nd the time to remedy it.

The Cost of Technical Debt
It can be easy to dismiss this problem by saying ‘if it isn’t broken, why �x it?’ The
problem with technical debt is that it is that your suite of business applications is
like a house. A super�cial glance might give the impression of a stable structure,
but if the foundation has developed cracks, the roof is about to leak or the wiring
is brittle and about to fail, it is broken, even if you can’t tell. Even if your code is
only a few years old, you may have started to accrue debt, putting stress on your
business service ‘infrastructure.’

A quick view of the impact can be seen in Figure 1. Not only does quality continue
to degrade, but so does customer satisfaction. Your ability to serve new markets
and new customers depends on the ease of successfully and safely changing
application code.

For companies trying to manage risk, knowing that the foundation of your
business – your code – may have serious weaknesses should cause concern. The
risks and costs are many beginning with the very real possibility that the next
change to a program could cause an outage. Most businesses have a good idea of
how much an hour of downtime costs them in lost revenue, but with the
increasing ‘need for speed’ in an always-on world, lost customers could multiply
the impact of an outage. Allied to this is the fact that �xing a problem in complex,
poorly understood code can be much more time-consuming, lengthening the
duration of the outage. Many companies don’t realize that their code is essentially
undocumented until a major outage occurs. With constant employee turnover,
both through employee choice and layo�s, new people are encountering
applications that have been touched by many people at di�erent skill levels. This
means that even regular maintenance, whether to add new features, to �x issues
or to apply compliance features, will be slower, more di�cult and more
error-prone. When attempting to interconnect applications to build a new
capability, those interconnections can be problematic as well. Again, the more
technical debt, the more of a black box the application has become. And what
you don’t know about your code can hurt you and your business.

3 CM First www.cm�rstgroup.com

TECHNICAL DEBT – WHAT IS IT COSTING YOUR COMPANY?

“Technical debt can negatively impact the long-term viability of a software solution.
It makes it more expensive to support a solution and can eventually make
enhancing a solution cost-prohibitive,” Nathan Wilson, Gartner analyst noted.
Cameron Haight and Ronni J. Colville said, “As IT technical debt increases, the run
cost of IT increases, leaving less funding available to support ‘grow and transform’
activities.”

Other costs include impacts to performance. As code becomes more complex, it
often performs poorly. Often, no one has taken a look at the application
holistically since early in the design phase, so ine�ciencies are inevitable.
Ine�cient applications cost you in more ways than response time and slowdowns
(which also cost you customer loyalty). Ine�ciencies inevitably translate to
increased system resource demand. And while the cost of computer resources
across all platforms has been dramatically reduced, in many cases, upgrades in
hardware lead to increased software costs.

One area not always considered in code quality is security exposure. Poorly
written code can lead to exploitable vulnerabilities that may go unnoticed until a
hacker discovers them. Code written by a disgruntled employee or unscrupulous
outsourcer may contain ‘backdoors,’ inviting exploitation at a later date. Either
incompetence or dishonesty can lead to another type of technical debt with
potential even more serious results. In some studies, security exposures of all
types were the number one type of technical debt.

Most companies make a great e�ort to reduce risk and operate in a prudent
fashion. But too many are unaware of the cracks in the foundation of their
application “building.” Technical debt has the potential to cause serious impact to
your revenue and to your customer base if not addressed.

Figure 2 highlights the trap companies can �nd themselves in when they do not
invest in addressing the technical debt issue.

Paying it Down
As with �nancial debt, the �rst step is to acknowledge that there is a problem.
Senior management backing is essential, �rst to set new directions for the
company in this area and next to fund the e�ort. For many companies, the
di�cult part is to �nd the problems in the code; fortunately, this does not have to
be a painful, manual e�ort anymore. You don’t have the time for that nor do you
have the resources. In fact, it is fair to say that it is impossible without strong,
automated, analysis tools. Software is available to help you identify the code that
will need refactoring, automatically and quickly.

Look for a top-quality code comprehension solution that can analyze source code
portfolios across all the hardware and operating systems in your data center.
Make sure to include all production systems and cover not just application code,
but also your JCL and other pseudo-code. The solution should provide the kind of
meta-analytics that makes the next step, refactoring, a lot easier. Code
maintainability and quality metrics are key to helping you determine
ine�ciencies, but you also want to look at data lineage, application and database
connectivity and code complexity information. In addition, if you are exploiting
Big Data or various implementations of cloud, make sure your code analysis
solution supports those as well. Your analysis software should be fast and �exible
enough to return results quickly and a�ordably. Taking only periodic snapshots or
analyzing only a portion of your code base limits the e�ectiveness of the solution.

The best software will take advantage of the processing power you have,
exploiting multi-core and multi-engine processing, parallelizing the e�ort. Near
real-time analysis will give you a true ‘state of your code,’ which is critical in
prioritizing the e�ort. The software should be a�ordable and work across your
entire code base, including legacy applications. Without this, you could risk
serious problems down the road, particularly with older applications. Then, you
will have an enterprise metadata repository of technical debt which will allow you
to prioritize and plan your e�ort. Look for a solution that will provide access to the
data in a clear, understandable fashion so that business people as well as
technology professionals can understand it and use it to make business decisions.

Focus on debt that is either costing you a great deal in ine�ciency or leading to
greater risk because of complexity or outage potential. Another factor is to focus
on obsolescent technology. Moving away from platforms with reduced support
and personnel may prove to be a signi�cant win. The initial list may seem
daunting, but by using business priorities and weighing the importance of
signi�cantly reducing risk and data center costs, the value will rapidly become
apparent. Gartner notes they typically see 10-20% of the overall development
budget allocated to �xing technical debt. And yet, this might not be enough.

A good practice is to �x debt as part of the maintenance/development cycle.
Before touching a program to enhance it, review the debt repository and �x any
problems in the program before adding requested enhancements. This starts to
reduce complexity and improves the success rate of added code. You will never
get rid of all debt (just as your company will probably never be �nancially
debt-free), but managing it and limiting it reduces corporate risk.

Each of these actions should be part of a major project that is managed just like
any other project with dates, deliverables and speci�c task assignments. This
helps ensure that refactoring has the proper weight and importance in
development work. It’s easy to backslide and incur more debt when feeling
pressured to enhance code or write new applications.

Ideally, this is the time to set the groundwork for development standards that
ensure better work in the future. Research and make standard the latest design
practices. Ensure personnel have the right training and experience to do excellent
work. Focus on simple, elegant solutions and ensure that project teams have the
time to make these happen. Engage performance experts with developers to
ensure code is written to perform from the beginning. Match testing to
development to ensure that all code written will be tested before production
implementation.

As part of continuous service and process improvement, it can be helpful to
establish peer review of code as well as implementing a development mentor
program to ensure continued knowledge transfer. Look for ways to document
code whether mandating it is the responsibility of the developer or by using
software tools to accomplish this goal. And �nally, realize that the small increase
in time needed for a quality software project will more than pay for itself in
reduced technical debt, both ‘principle and interest.’

Conclusions
For too many years, development was a ‘write and forget’ practice. But as with any
kind of debt, the longer you go without paying the interest, let alone the principle,
the more expensive the note becomes. In this case, technical debt translates to
greatly increased business risk as companies devolve most of their business
functionality onto IT systems. Ignoring it doesn’t just cost you money – it can cost
you customers and your good name. The good news is that once you
acknowledge that you have the problem, the solution isn’t as daunting as it once
may have been. Software can help you identify, manage and ameliorate your
technical debt. And once you begin to address it, you can also put into place
measures to reduce the debt you incur in the future.

Technical Debt – The Problem

“The savvy developer treats technical debt just as the entrepreneur does �nancial
debt. They use it. It speeds delivery.”

In 1992, Ward Cunningham, inventor of “wikis” and a signatory to the Agile
Manifesto Doctrine, coined the term “technical debt” to describe the application
design trade-o�s organizations make every day. The metaphor is apt; executives
often make conscious decisions to deliver new business functionality as quickly as
possible. As with �nancial debt, they weigh the bene�ts of faster time-to-market
and increased pro�ts against the probability of sub-optimal code. In some cases,
speed is required simply to meet a government mandate. Whatever the cause,
whether it is in service of maintaining a competitive edge or meeting compliance
requirements, technical debt is incurred whenever corners have to be cut in
design, coding and testing. Like �nancial debt, interest accrues. In this case,
‘interest’ means impact on availability as well as higher support and application
maintenance costs. Another term for technical debt is ‘de�cit programming,’ a term
coined by David Panariti.

Some of these choices were made in the early days of computing where it seemed
safe to assume that applications written today would be supplanted with new and
better code tomorrow. Surviving the Y2K challenge involved a substantial interest
payment to remediate applications where shortcuts were applied. These shortcuts
saved substantial money, resources and time when all these elements were in
short supply. No one expected the code containing all these shortcuts to last 20+
years, but it did. Now, we know better. Code lasts a long time.

Another cost-saving technique initiated in the ‘90’s also increased the technical
debt. Assumptions were made that coding languages were now so powerful and
easy to learn that junior programmers could be trusted to create business-critical
applications from detailed speci�cations. But even senior programmers have
been known to have some bad coding habits. Facing time pressure and learning
‘on the job,’ junior programmers were even more likely to make mistakes, take
shortcuts and sometimes copy old code from other applications to get the job
done. Another area of concern was with outsourcing. Outsourcing development
added to the problem. With programmers in other countries, it becomes di�cult
to vet the code or the ability of the coders. Inside a company, technical
management can prescribe standards and institute oversight; with an outsourcer,
both objectives may be di�cult to achieve.

The 21st century debt includes quick turnaround to link applications on disparate
platforms. The value can be substantial, but the interest continues to accumulate.
In addition, technical debt compounds over time. As applications are modi�ed by
a variety of people, each making assumptions about the underlying code, more
problems are inevitably introduced. Unless a piece of code is very short-lived, very
basic or completely documented, technical debt is a concern you have to monitor
and manage.

How big is the technical debt problem? Caper Jones notes, “Poor software quality
has become one of the most expensive topics in human history: $150 billion per
year in U.S.; $500 billion per year worldwide.” He also noted that programmers
were “less than 50% e�cient in �nding bugs in their own software.” Looking at
just a single industry, “Gartner estimates that the global insurance industry has
accumulated more than $8 billion of IT debt during the past 10 years.”

Types of Technical Debt
Technical debt comes in a variety of forms, but without understanding the
sources, remediation is impossible. The most fundamental type comes when an
application is initially designed. Often, the full scope of a business service is
poorly understood at design time, so while the design might be ideal in the initial
implementation, it does not adapt to the many changes required as the
application matures. In other cases, poor design can be the result of a
misunderstanding between the architects, the business and the development
team. Still another cause could be compromises made as an agile project evolves.

Code debt groups a number of problems into one bucket. The most obvious is
badly written code. This happens primarily because of coding inexperience. The
next, paradoxically, arises from very senior programmers. Overly complex code
may work very e�ciently, but when it is complex, updates to it without a clear
understanding of the complexity may result in problems. In the case where
modules were written much earlier, good code is no long optimal because new
language facilities and options may have superseded the original capabilities.
And some languages no longer have enough practitioners who understand them
– the language itself may have become obsolete.

A common problem is that people under time pressure copy what’s working and
move it somewhere else. When an issues arises or the code otherwise needs
modi�cation, how do you �nd all the places it has been copied into? Capers Jones
notes that 21% of COBOL code is unreachable, meaning that it is never executed.
But in many cases, developers are not aware of this and changes made may cause
untested code to become reachable, or unreachable code to be copied.

Two unexpected areas of technical debt come from lack of documentation and
lack of testing protocols. Few developers enjoy writing documentation, so in
many cases and for many applications, documentation is scanty or non-existent.
As new teams come in, they have to start from scratch �guring out the purpose of
various modules and the underlying design. Testing is an issue – code that is not
regularly tested may be a problem just waiting to happen.

Code fraught with these kinds of problems becomes brittle. Like ta�y as it hardens,
making changes to older code can be di�cult without the risk that it will break.

Confounding Factors
Organizational structure may tend to help to increase or limit the potential for
accruing technical debt. In many shops, the development team has no interaction
with the lines of business. Deadlines are determined by the business without
development involvement or input. In many cases, the business has no idea of
whether their requirements are feasible or achievable. Development personnel
also may not hear directly from the customer what his needs are. Yet,
development groups will strive to meet those deadlines making their best e�orts
to deliver the business services required. In too many places, groups with a stake
in the overall success of the application (performance analysts, DBAs, storage
support, network technicians) only see the �nished product and thus, cannot o�er
their expertise to ensure an optimal solution. Outsourcing only makes this more
complicated. Particularly when outsourced sta� is on the other side of the globe,
the required communications most likely will not occur practically ensuring a
lower quality result.

The lack of a process improvement program can also lead to increased technical
debt. With fewer sta� members and increased pressure to get code out the door,
little time is left to go back and review code beyond �xing outright bugs and trying
to eliminate outages. Even those companies dedicated to quality may �nd they
don’t know how to identify their code debt, let alone �nd the time to remedy it.

The Cost of Technical Debt
It can be easy to dismiss this problem by saying ‘if it isn’t broken, why �x it?’ The
problem with technical debt is that it is that your suite of business applications is
like a house. A super�cial glance might give the impression of a stable structure,
but if the foundation has developed cracks, the roof is about to leak or the wiring
is brittle and about to fail, it is broken, even if you can’t tell. Even if your code is
only a few years old, you may have started to accrue debt, putting stress on your
business service ‘infrastructure.’

A quick view of the impact can be seen in Figure 1. Not only does quality continue
to degrade, but so does customer satisfaction. Your ability to serve new markets
and new customers depends on the ease of successfully and safely changing
application code.

For companies trying to manage risk, knowing that the foundation of your
business – your code – may have serious weaknesses should cause concern. The
risks and costs are many beginning with the very real possibility that the next
change to a program could cause an outage. Most businesses have a good idea of
how much an hour of downtime costs them in lost revenue, but with the
increasing ‘need for speed’ in an always-on world, lost customers could multiply
the impact of an outage. Allied to this is the fact that �xing a problem in complex,
poorly understood code can be much more time-consuming, lengthening the
duration of the outage. Many companies don’t realize that their code is essentially
undocumented until a major outage occurs. With constant employee turnover,
both through employee choice and layo�s, new people are encountering
applications that have been touched by many people at di�erent skill levels. This
means that even regular maintenance, whether to add new features, to �x issues
or to apply compliance features, will be slower, more di�cult and more
error-prone. When attempting to interconnect applications to build a new
capability, those interconnections can be problematic as well. Again, the more
technical debt, the more of a black box the application has become. And what
you don’t know about your code can hurt you and your business.

4 CM First www.cm�rstgroup.com

TECHNICAL DEBT – WHAT IS IT COSTING YOUR COMPANY?

“Technical debt can negatively impact the long-term viability of a software solution.
It makes it more expensive to support a solution and can eventually make
enhancing a solution cost-prohibitive,” Nathan Wilson, Gartner analyst noted.
Cameron Haight and Ronni J. Colville said, “As IT technical debt increases, the run
cost of IT increases, leaving less funding available to support ‘grow and transform’
activities.”

Other costs include impacts to performance. As code becomes more complex, it
often performs poorly. Often, no one has taken a look at the application
holistically since early in the design phase, so ine�ciencies are inevitable.
Ine�cient applications cost you in more ways than response time and slowdowns
(which also cost you customer loyalty). Ine�ciencies inevitably translate to
increased system resource demand. And while the cost of computer resources
across all platforms has been dramatically reduced, in many cases, upgrades in
hardware lead to increased software costs.

One area not always considered in code quality is security exposure. Poorly
written code can lead to exploitable vulnerabilities that may go unnoticed until a
hacker discovers them. Code written by a disgruntled employee or unscrupulous
outsourcer may contain ‘backdoors,’ inviting exploitation at a later date. Either
incompetence or dishonesty can lead to another type of technical debt with
potential even more serious results. In some studies, security exposures of all
types were the number one type of technical debt.

Most companies make a great e�ort to reduce risk and operate in a prudent
fashion. But too many are unaware of the cracks in the foundation of their
application “building.” Technical debt has the potential to cause serious impact to
your revenue and to your customer base if not addressed.

1Jones, Caper, Software Quality in 2011 – A Survey of the State of the Art,”
http://www2.smartbear.com/rs/smartbear/images/2011_State_of_Software_Quality_Casper_Jones_120611.pdf

2Weiss, Juergen, Gartner, Staggering Amount of IT Debt Is a Threat to Innovation in Insurance, 15 March 2013
ID:G00247625

Figure 2 highlights the trap companies can �nd themselves in when they do not
invest in addressing the technical debt issue.

Paying it Down
As with �nancial debt, the �rst step is to acknowledge that there is a problem.
Senior management backing is essential, �rst to set new directions for the
company in this area and next to fund the e�ort. For many companies, the
di�cult part is to �nd the problems in the code; fortunately, this does not have to
be a painful, manual e�ort anymore. You don’t have the time for that nor do you
have the resources. In fact, it is fair to say that it is impossible without strong,
automated, analysis tools. Software is available to help you identify the code that
will need refactoring, automatically and quickly.

Look for a top-quality code comprehension solution that can analyze source code
portfolios across all the hardware and operating systems in your data center.
Make sure to include all production systems and cover not just application code,
but also your JCL and other pseudo-code. The solution should provide the kind of
meta-analytics that makes the next step, refactoring, a lot easier. Code
maintainability and quality metrics are key to helping you determine
ine�ciencies, but you also want to look at data lineage, application and database
connectivity and code complexity information. In addition, if you are exploiting
Big Data or various implementations of cloud, make sure your code analysis
solution supports those as well. Your analysis software should be fast and �exible
enough to return results quickly and a�ordably. Taking only periodic snapshots or
analyzing only a portion of your code base limits the e�ectiveness of the solution.

The best software will take advantage of the processing power you have,
exploiting multi-core and multi-engine processing, parallelizing the e�ort. Near
real-time analysis will give you a true ‘state of your code,’ which is critical in
prioritizing the e�ort. The software should be a�ordable and work across your
entire code base, including legacy applications. Without this, you could risk
serious problems down the road, particularly with older applications. Then, you
will have an enterprise metadata repository of technical debt which will allow you
to prioritize and plan your e�ort. Look for a solution that will provide access to the
data in a clear, understandable fashion so that business people as well as
technology professionals can understand it and use it to make business decisions.

Focus on debt that is either costing you a great deal in ine�ciency or leading to
greater risk because of complexity or outage potential. Another factor is to focus
on obsolescent technology. Moving away from platforms with reduced support
and personnel may prove to be a signi�cant win. The initial list may seem
daunting, but by using business priorities and weighing the importance of
signi�cantly reducing risk and data center costs, the value will rapidly become
apparent. Gartner notes they typically see 10-20% of the overall development
budget allocated to �xing technical debt. And yet, this might not be enough.

A good practice is to �x debt as part of the maintenance/development cycle.
Before touching a program to enhance it, review the debt repository and �x any
problems in the program before adding requested enhancements. This starts to
reduce complexity and improves the success rate of added code. You will never
get rid of all debt (just as your company will probably never be �nancially
debt-free), but managing it and limiting it reduces corporate risk.

Each of these actions should be part of a major project that is managed just like
any other project with dates, deliverables and speci�c task assignments. This
helps ensure that refactoring has the proper weight and importance in
development work. It’s easy to backslide and incur more debt when feeling
pressured to enhance code or write new applications.

Ideally, this is the time to set the groundwork for development standards that
ensure better work in the future. Research and make standard the latest design
practices. Ensure personnel have the right training and experience to do excellent
work. Focus on simple, elegant solutions and ensure that project teams have the
time to make these happen. Engage performance experts with developers to
ensure code is written to perform from the beginning. Match testing to
development to ensure that all code written will be tested before production
implementation.

As part of continuous service and process improvement, it can be helpful to
establish peer review of code as well as implementing a development mentor
program to ensure continued knowledge transfer. Look for ways to document
code whether mandating it is the responsibility of the developer or by using
software tools to accomplish this goal. And �nally, realize that the small increase
in time needed for a quality software project will more than pay for itself in
reduced technical debt, both ‘principle and interest.’

Conclusions
For too many years, development was a ‘write and forget’ practice. But as with any
kind of debt, the longer you go without paying the interest, let alone the principle,
the more expensive the note becomes. In this case, technical debt translates to
greatly increased business risk as companies devolve most of their business
functionality onto IT systems. Ignoring it doesn’t just cost you money – it can cost
you customers and your good name. The good news is that once you
acknowledge that you have the problem, the solution isn’t as daunting as it once
may have been. Software can help you identify, manage and ameliorate your
technical debt. And once you begin to address it, you can also put into place
measures to reduce the debt you incur in the future.

Technical Debt – The Problem

“The savvy developer treats technical debt just as the entrepreneur does �nancial
debt. They use it. It speeds delivery.”

In 1992, Ward Cunningham, inventor of “wikis” and a signatory to the Agile
Manifesto Doctrine, coined the term “technical debt” to describe the application
design trade-o�s organizations make every day. The metaphor is apt; executives
often make conscious decisions to deliver new business functionality as quickly as
possible. As with �nancial debt, they weigh the bene�ts of faster time-to-market
and increased pro�ts against the probability of sub-optimal code. In some cases,
speed is required simply to meet a government mandate. Whatever the cause,
whether it is in service of maintaining a competitive edge or meeting compliance
requirements, technical debt is incurred whenever corners have to be cut in
design, coding and testing. Like �nancial debt, interest accrues. In this case,
‘interest’ means impact on availability as well as higher support and application
maintenance costs. Another term for technical debt is ‘de�cit programming,’ a term
coined by David Panariti.

Some of these choices were made in the early days of computing where it seemed
safe to assume that applications written today would be supplanted with new and
better code tomorrow. Surviving the Y2K challenge involved a substantial interest
payment to remediate applications where shortcuts were applied. These shortcuts
saved substantial money, resources and time when all these elements were in
short supply. No one expected the code containing all these shortcuts to last 20+
years, but it did. Now, we know better. Code lasts a long time.

Another cost-saving technique initiated in the ‘90’s also increased the technical
debt. Assumptions were made that coding languages were now so powerful and
easy to learn that junior programmers could be trusted to create business-critical
applications from detailed speci�cations. But even senior programmers have
been known to have some bad coding habits. Facing time pressure and learning
‘on the job,’ junior programmers were even more likely to make mistakes, take
shortcuts and sometimes copy old code from other applications to get the job
done. Another area of concern was with outsourcing. Outsourcing development
added to the problem. With programmers in other countries, it becomes di�cult
to vet the code or the ability of the coders. Inside a company, technical
management can prescribe standards and institute oversight; with an outsourcer,
both objectives may be di�cult to achieve.

The 21st century debt includes quick turnaround to link applications on disparate
platforms. The value can be substantial, but the interest continues to accumulate.
In addition, technical debt compounds over time. As applications are modi�ed by
a variety of people, each making assumptions about the underlying code, more
problems are inevitably introduced. Unless a piece of code is very short-lived, very
basic or completely documented, technical debt is a concern you have to monitor
and manage.

How big is the technical debt problem? Caper Jones notes, “Poor software quality
has become one of the most expensive topics in human history: $150 billion per
year in U.S.; $500 billion per year worldwide.” He also noted that programmers
were “less than 50% e�cient in �nding bugs in their own software.” Looking at
just a single industry, “Gartner estimates that the global insurance industry has
accumulated more than $8 billion of IT debt during the past 10 years.”

Types of Technical Debt
Technical debt comes in a variety of forms, but without understanding the
sources, remediation is impossible. The most fundamental type comes when an
application is initially designed. Often, the full scope of a business service is
poorly understood at design time, so while the design might be ideal in the initial
implementation, it does not adapt to the many changes required as the
application matures. In other cases, poor design can be the result of a
misunderstanding between the architects, the business and the development
team. Still another cause could be compromises made as an agile project evolves.

Code debt groups a number of problems into one bucket. The most obvious is
badly written code. This happens primarily because of coding inexperience. The
next, paradoxically, arises from very senior programmers. Overly complex code
may work very e�ciently, but when it is complex, updates to it without a clear
understanding of the complexity may result in problems. In the case where
modules were written much earlier, good code is no long optimal because new
language facilities and options may have superseded the original capabilities.
And some languages no longer have enough practitioners who understand them
– the language itself may have become obsolete.

A common problem is that people under time pressure copy what’s working and
move it somewhere else. When an issues arises or the code otherwise needs
modi�cation, how do you �nd all the places it has been copied into? Capers Jones
notes that 21% of COBOL code is unreachable, meaning that it is never executed.
But in many cases, developers are not aware of this and changes made may cause
untested code to become reachable, or unreachable code to be copied.

Two unexpected areas of technical debt come from lack of documentation and
lack of testing protocols. Few developers enjoy writing documentation, so in
many cases and for many applications, documentation is scanty or non-existent.
As new teams come in, they have to start from scratch �guring out the purpose of
various modules and the underlying design. Testing is an issue – code that is not
regularly tested may be a problem just waiting to happen.

Code fraught with these kinds of problems becomes brittle. Like ta�y as it hardens,
making changes to older code can be di�cult without the risk that it will break.

Confounding Factors
Organizational structure may tend to help to increase or limit the potential for
accruing technical debt. In many shops, the development team has no interaction
with the lines of business. Deadlines are determined by the business without
development involvement or input. In many cases, the business has no idea of
whether their requirements are feasible or achievable. Development personnel
also may not hear directly from the customer what his needs are. Yet,
development groups will strive to meet those deadlines making their best e�orts
to deliver the business services required. In too many places, groups with a stake
in the overall success of the application (performance analysts, DBAs, storage
support, network technicians) only see the �nished product and thus, cannot o�er
their expertise to ensure an optimal solution. Outsourcing only makes this more
complicated. Particularly when outsourced sta� is on the other side of the globe,
the required communications most likely will not occur practically ensuring a
lower quality result.

The lack of a process improvement program can also lead to increased technical
debt. With fewer sta� members and increased pressure to get code out the door,
little time is left to go back and review code beyond �xing outright bugs and trying
to eliminate outages. Even those companies dedicated to quality may �nd they
don’t know how to identify their code debt, let alone �nd the time to remedy it.

The Cost of Technical Debt
It can be easy to dismiss this problem by saying ‘if it isn’t broken, why �x it?’ The
problem with technical debt is that it is that your suite of business applications is
like a house. A super�cial glance might give the impression of a stable structure,
but if the foundation has developed cracks, the roof is about to leak or the wiring
is brittle and about to fail, it is broken, even if you can’t tell. Even if your code is
only a few years old, you may have started to accrue debt, putting stress on your
business service ‘infrastructure.’

A quick view of the impact can be seen in Figure 1. Not only does quality continue
to degrade, but so does customer satisfaction. Your ability to serve new markets
and new customers depends on the ease of successfully and safely changing
application code.

For companies trying to manage risk, knowing that the foundation of your
business – your code – may have serious weaknesses should cause concern. The
risks and costs are many beginning with the very real possibility that the next
change to a program could cause an outage. Most businesses have a good idea of
how much an hour of downtime costs them in lost revenue, but with the
increasing ‘need for speed’ in an always-on world, lost customers could multiply
the impact of an outage. Allied to this is the fact that �xing a problem in complex,
poorly understood code can be much more time-consuming, lengthening the
duration of the outage. Many companies don’t realize that their code is essentially
undocumented until a major outage occurs. With constant employee turnover,
both through employee choice and layo�s, new people are encountering
applications that have been touched by many people at di�erent skill levels. This
means that even regular maintenance, whether to add new features, to �x issues
or to apply compliance features, will be slower, more di�cult and more
error-prone. When attempting to interconnect applications to build a new
capability, those interconnections can be problematic as well. Again, the more
technical debt, the more of a black box the application has become. And what
you don’t know about your code can hurt you and your business.

5 CM First www.cm�rstgroup.com

TECHNICAL DEBT – WHAT IS IT COSTING YOUR COMPANY?

“Technical debt can negatively impact the long-term viability of a software solution.
It makes it more expensive to support a solution and can eventually make
enhancing a solution cost-prohibitive,” Nathan Wilson, Gartner analyst noted.
Cameron Haight and Ronni J. Colville said, “As IT technical debt increases, the run
cost of IT increases, leaving less funding available to support ‘grow and transform’
activities.”

Other costs include impacts to performance. As code becomes more complex, it
often performs poorly. Often, no one has taken a look at the application
holistically since early in the design phase, so ine�ciencies are inevitable.
Ine�cient applications cost you in more ways than response time and slowdowns
(which also cost you customer loyalty). Ine�ciencies inevitably translate to
increased system resource demand. And while the cost of computer resources
across all platforms has been dramatically reduced, in many cases, upgrades in
hardware lead to increased software costs.

One area not always considered in code quality is security exposure. Poorly
written code can lead to exploitable vulnerabilities that may go unnoticed until a
hacker discovers them. Code written by a disgruntled employee or unscrupulous
outsourcer may contain ‘backdoors,’ inviting exploitation at a later date. Either
incompetence or dishonesty can lead to another type of technical debt with
potential even more serious results. In some studies, security exposures of all
types were the number one type of technical debt.

Most companies make a great e�ort to reduce risk and operate in a prudent
fashion. But too many are unaware of the cracks in the foundation of their
application “building.” Technical debt has the potential to cause serious impact to
your revenue and to your customer base if not addressed.

Figure 2 highlights the trap companies can �nd themselves in when they do not
invest in addressing the technical debt issue.

Paying it Down
As with �nancial debt, the �rst step is to acknowledge that there is a problem.
Senior management backing is essential, �rst to set new directions for the
company in this area and next to fund the e�ort. For many companies, the
di�cult part is to �nd the problems in the code; fortunately, this does not have to
be a painful, manual e�ort anymore. You don’t have the time for that nor do you
have the resources. In fact, it is fair to say that it is impossible without strong,
automated, analysis tools. Software is available to help you identify the code that
will need refactoring, automatically and quickly.

Look for a top-quality code comprehension solution that can analyze source code
portfolios across all the hardware and operating systems in your data center.
Make sure to include all production systems and cover not just application code,
but also your JCL and other pseudo-code. The solution should provide the kind of
meta-analytics that makes the next step, refactoring, a lot easier. Code
maintainability and quality metrics are key to helping you determine
ine�ciencies, but you also want to look at data lineage, application and database
connectivity and code complexity information. In addition, if you are exploiting
Big Data or various implementations of cloud, make sure your code analysis
solution supports those as well. Your analysis software should be fast and �exible
enough to return results quickly and a�ordably. Taking only periodic snapshots or
analyzing only a portion of your code base limits the e�ectiveness of the solution.

The best software will take advantage of the processing power you have,
exploiting multi-core and multi-engine processing, parallelizing the e�ort. Near
real-time analysis will give you a true ‘state of your code,’ which is critical in
prioritizing the e�ort. The software should be a�ordable and work across your
entire code base, including legacy applications. Without this, you could risk
serious problems down the road, particularly with older applications. Then, you
will have an enterprise metadata repository of technical debt which will allow you
to prioritize and plan your e�ort. Look for a solution that will provide access to the
data in a clear, understandable fashion so that business people as well as
technology professionals can understand it and use it to make business decisions.

Focus on debt that is either costing you a great deal in ine�ciency or leading to
greater risk because of complexity or outage potential. Another factor is to focus
on obsolescent technology. Moving away from platforms with reduced support
and personnel may prove to be a signi�cant win. The initial list may seem
daunting, but by using business priorities and weighing the importance of
signi�cantly reducing risk and data center costs, the value will rapidly become
apparent. Gartner notes they typically see 10-20% of the overall development
budget allocated to �xing technical debt. And yet, this might not be enough.

A good practice is to �x debt as part of the maintenance/development cycle.
Before touching a program to enhance it, review the debt repository and �x any
problems in the program before adding requested enhancements. This starts to
reduce complexity and improves the success rate of added code. You will never
get rid of all debt (just as your company will probably never be �nancially
debt-free), but managing it and limiting it reduces corporate risk.

Each of these actions should be part of a major project that is managed just like
any other project with dates, deliverables and speci�c task assignments. This
helps ensure that refactoring has the proper weight and importance in
development work. It’s easy to backslide and incur more debt when feeling
pressured to enhance code or write new applications.

Ideally, this is the time to set the groundwork for development standards that
ensure better work in the future. Research and make standard the latest design
practices. Ensure personnel have the right training and experience to do excellent
work. Focus on simple, elegant solutions and ensure that project teams have the
time to make these happen. Engage performance experts with developers to
ensure code is written to perform from the beginning. Match testing to
development to ensure that all code written will be tested before production
implementation.

As part of continuous service and process improvement, it can be helpful to
establish peer review of code as well as implementing a development mentor
program to ensure continued knowledge transfer. Look for ways to document
code whether mandating it is the responsibility of the developer or by using
software tools to accomplish this goal. And �nally, realize that the small increase
in time needed for a quality software project will more than pay for itself in
reduced technical debt, both ‘principle and interest.’

Conclusions
For too many years, development was a ‘write and forget’ practice. But as with any
kind of debt, the longer you go without paying the interest, let alone the principle,
the more expensive the note becomes. In this case, technical debt translates to
greatly increased business risk as companies devolve most of their business
functionality onto IT systems. Ignoring it doesn’t just cost you money – it can cost
you customers and your good name. The good news is that once you
acknowledge that you have the problem, the solution isn’t as daunting as it once
may have been. Software can help you identify, manage and ameliorate your
technical debt. And once you begin to address it, you can also put into place
measures to reduce the debt you incur in the future.

Technical Debt – The Problem

“The savvy developer treats technical debt just as the entrepreneur does �nancial
debt. They use it. It speeds delivery.”

In 1992, Ward Cunningham, inventor of “wikis” and a signatory to the Agile
Manifesto Doctrine, coined the term “technical debt” to describe the application
design trade-o�s organizations make every day. The metaphor is apt; executives
often make conscious decisions to deliver new business functionality as quickly as
possible. As with �nancial debt, they weigh the bene�ts of faster time-to-market
and increased pro�ts against the probability of sub-optimal code. In some cases,
speed is required simply to meet a government mandate. Whatever the cause,
whether it is in service of maintaining a competitive edge or meeting compliance
requirements, technical debt is incurred whenever corners have to be cut in
design, coding and testing. Like �nancial debt, interest accrues. In this case,
‘interest’ means impact on availability as well as higher support and application
maintenance costs. Another term for technical debt is ‘de�cit programming,’ a term
coined by David Panariti.

Some of these choices were made in the early days of computing where it seemed
safe to assume that applications written today would be supplanted with new and
better code tomorrow. Surviving the Y2K challenge involved a substantial interest
payment to remediate applications where shortcuts were applied. These shortcuts
saved substantial money, resources and time when all these elements were in
short supply. No one expected the code containing all these shortcuts to last 20+
years, but it did. Now, we know better. Code lasts a long time.

Another cost-saving technique initiated in the ‘90’s also increased the technical
debt. Assumptions were made that coding languages were now so powerful and
easy to learn that junior programmers could be trusted to create business-critical
applications from detailed speci�cations. But even senior programmers have
been known to have some bad coding habits. Facing time pressure and learning
‘on the job,’ junior programmers were even more likely to make mistakes, take
shortcuts and sometimes copy old code from other applications to get the job
done. Another area of concern was with outsourcing. Outsourcing development
added to the problem. With programmers in other countries, it becomes di�cult
to vet the code or the ability of the coders. Inside a company, technical
management can prescribe standards and institute oversight; with an outsourcer,
both objectives may be di�cult to achieve.

The 21st century debt includes quick turnaround to link applications on disparate
platforms. The value can be substantial, but the interest continues to accumulate.
In addition, technical debt compounds over time. As applications are modi�ed by
a variety of people, each making assumptions about the underlying code, more
problems are inevitably introduced. Unless a piece of code is very short-lived, very
basic or completely documented, technical debt is a concern you have to monitor
and manage.

How big is the technical debt problem? Caper Jones notes, “Poor software quality
has become one of the most expensive topics in human history: $150 billion per
year in U.S.; $500 billion per year worldwide.” He also noted that programmers
were “less than 50% e�cient in �nding bugs in their own software.” Looking at
just a single industry, “Gartner estimates that the global insurance industry has
accumulated more than $8 billion of IT debt during the past 10 years.”

Types of Technical Debt
Technical debt comes in a variety of forms, but without understanding the
sources, remediation is impossible. The most fundamental type comes when an
application is initially designed. Often, the full scope of a business service is
poorly understood at design time, so while the design might be ideal in the initial
implementation, it does not adapt to the many changes required as the
application matures. In other cases, poor design can be the result of a
misunderstanding between the architects, the business and the development
team. Still another cause could be compromises made as an agile project evolves.

Code debt groups a number of problems into one bucket. The most obvious is
badly written code. This happens primarily because of coding inexperience. The
next, paradoxically, arises from very senior programmers. Overly complex code
may work very e�ciently, but when it is complex, updates to it without a clear
understanding of the complexity may result in problems. In the case where
modules were written much earlier, good code is no long optimal because new
language facilities and options may have superseded the original capabilities.
And some languages no longer have enough practitioners who understand them
– the language itself may have become obsolete.

A common problem is that people under time pressure copy what’s working and
move it somewhere else. When an issues arises or the code otherwise needs
modi�cation, how do you �nd all the places it has been copied into? Capers Jones
notes that 21% of COBOL code is unreachable, meaning that it is never executed.
But in many cases, developers are not aware of this and changes made may cause
untested code to become reachable, or unreachable code to be copied.

Two unexpected areas of technical debt come from lack of documentation and
lack of testing protocols. Few developers enjoy writing documentation, so in
many cases and for many applications, documentation is scanty or non-existent.
As new teams come in, they have to start from scratch �guring out the purpose of
various modules and the underlying design. Testing is an issue – code that is not
regularly tested may be a problem just waiting to happen.

Code fraught with these kinds of problems becomes brittle. Like ta�y as it hardens,
making changes to older code can be di�cult without the risk that it will break.

Confounding Factors
Organizational structure may tend to help to increase or limit the potential for
accruing technical debt. In many shops, the development team has no interaction
with the lines of business. Deadlines are determined by the business without
development involvement or input. In many cases, the business has no idea of
whether their requirements are feasible or achievable. Development personnel
also may not hear directly from the customer what his needs are. Yet,
development groups will strive to meet those deadlines making their best e�orts
to deliver the business services required. In too many places, groups with a stake
in the overall success of the application (performance analysts, DBAs, storage
support, network technicians) only see the �nished product and thus, cannot o�er
their expertise to ensure an optimal solution. Outsourcing only makes this more
complicated. Particularly when outsourced sta� is on the other side of the globe,
the required communications most likely will not occur practically ensuring a
lower quality result.

The lack of a process improvement program can also lead to increased technical
debt. With fewer sta� members and increased pressure to get code out the door,
little time is left to go back and review code beyond �xing outright bugs and trying
to eliminate outages. Even those companies dedicated to quality may �nd they
don’t know how to identify their code debt, let alone �nd the time to remedy it.

The Cost of Technical Debt
It can be easy to dismiss this problem by saying ‘if it isn’t broken, why �x it?’ The
problem with technical debt is that it is that your suite of business applications is
like a house. A super�cial glance might give the impression of a stable structure,
but if the foundation has developed cracks, the roof is about to leak or the wiring
is brittle and about to fail, it is broken, even if you can’t tell. Even if your code is
only a few years old, you may have started to accrue debt, putting stress on your
business service ‘infrastructure.’

A quick view of the impact can be seen in Figure 1. Not only does quality continue
to degrade, but so does customer satisfaction. Your ability to serve new markets
and new customers depends on the ease of successfully and safely changing
application code.

For companies trying to manage risk, knowing that the foundation of your
business – your code – may have serious weaknesses should cause concern. The
risks and costs are many beginning with the very real possibility that the next
change to a program could cause an outage. Most businesses have a good idea of
how much an hour of downtime costs them in lost revenue, but with the
increasing ‘need for speed’ in an always-on world, lost customers could multiply
the impact of an outage. Allied to this is the fact that �xing a problem in complex,
poorly understood code can be much more time-consuming, lengthening the
duration of the outage. Many companies don’t realize that their code is essentially
undocumented until a major outage occurs. With constant employee turnover,
both through employee choice and layo�s, new people are encountering
applications that have been touched by many people at di�erent skill levels. This
means that even regular maintenance, whether to add new features, to �x issues
or to apply compliance features, will be slower, more di�cult and more
error-prone. When attempting to interconnect applications to build a new
capability, those interconnections can be problematic as well. Again, the more
technical debt, the more of a black box the application has become. And what
you don’t know about your code can hurt you and your business.

6 CM First www.cm�rstgroup.com

TECHNICAL DEBT – WHAT IS IT COSTING YOUR COMPANY?

“Technical debt can negatively impact the long-term viability of a software solution.
It makes it more expensive to support a solution and can eventually make
enhancing a solution cost-prohibitive,” Nathan Wilson, Gartner analyst noted.
Cameron Haight and Ronni J. Colville said, “As IT technical debt increases, the run
cost of IT increases, leaving less funding available to support ‘grow and transform’
activities.”

Other costs include impacts to performance. As code becomes more complex, it
often performs poorly. Often, no one has taken a look at the application
holistically since early in the design phase, so ine�ciencies are inevitable.
Ine�cient applications cost you in more ways than response time and slowdowns
(which also cost you customer loyalty). Ine�ciencies inevitably translate to
increased system resource demand. And while the cost of computer resources
across all platforms has been dramatically reduced, in many cases, upgrades in
hardware lead to increased software costs.

One area not always considered in code quality is security exposure. Poorly
written code can lead to exploitable vulnerabilities that may go unnoticed until a
hacker discovers them. Code written by a disgruntled employee or unscrupulous
outsourcer may contain ‘backdoors,’ inviting exploitation at a later date. Either
incompetence or dishonesty can lead to another type of technical debt with
potential even more serious results. In some studies, security exposures of all
types were the number one type of technical debt.

Most companies make a great e�ort to reduce risk and operate in a prudent
fashion. But too many are unaware of the cracks in the foundation of their
application “building.” Technical debt has the potential to cause serious impact to
your revenue and to your customer base if not addressed.

Figure 2 highlights the trap companies can �nd themselves in when they do not
invest in addressing the technical debt issue.

Paying it Down
As with �nancial debt, the �rst step is to acknowledge that there is a problem.
Senior management backing is essential, �rst to set new directions for the
company in this area and next to fund the e�ort. For many companies, the
di�cult part is to �nd the problems in the code; fortunately, this does not have to
be a painful, manual e�ort anymore. You don’t have the time for that nor do you
have the resources. In fact, it is fair to say that it is impossible without strong,
automated, analysis tools. Software is available to help you identify the code that
will need refactoring, automatically and quickly.

3 Wilson, Nathan, “Best Practices in Agile Development: Managing Technical Debt, Gartner, 18 January, 2012
4 Haight, Cameron, Colville, Ronni J., “DevOps Step One: Assessing Your IT Infrastructure and Operations Technical
 Debt,” Gartner, 22 June 2012

Look for a top-quality code comprehension solution that can analyze source code
portfolios across all the hardware and operating systems in your data center.
Make sure to include all production systems and cover not just application code,
but also your JCL and other pseudo-code. The solution should provide the kind of
meta-analytics that makes the next step, refactoring, a lot easier. Code
maintainability and quality metrics are key to helping you determine
ine�ciencies, but you also want to look at data lineage, application and database
connectivity and code complexity information. In addition, if you are exploiting
Big Data or various implementations of cloud, make sure your code analysis
solution supports those as well. Your analysis software should be fast and �exible
enough to return results quickly and a�ordably. Taking only periodic snapshots or
analyzing only a portion of your code base limits the e�ectiveness of the solution.

The best software will take advantage of the processing power you have,
exploiting multi-core and multi-engine processing, parallelizing the e�ort. Near
real-time analysis will give you a true ‘state of your code,’ which is critical in
prioritizing the e�ort. The software should be a�ordable and work across your
entire code base, including legacy applications. Without this, you could risk
serious problems down the road, particularly with older applications. Then, you
will have an enterprise metadata repository of technical debt which will allow you
to prioritize and plan your e�ort. Look for a solution that will provide access to the
data in a clear, understandable fashion so that business people as well as
technology professionals can understand it and use it to make business decisions.

Focus on debt that is either costing you a great deal in ine�ciency or leading to
greater risk because of complexity or outage potential. Another factor is to focus
on obsolescent technology. Moving away from platforms with reduced support
and personnel may prove to be a signi�cant win. The initial list may seem
daunting, but by using business priorities and weighing the importance of
signi�cantly reducing risk and data center costs, the value will rapidly become
apparent. Gartner notes they typically see 10-20% of the overall development
budget allocated to �xing technical debt. And yet, this might not be enough.

A good practice is to �x debt as part of the maintenance/development cycle.
Before touching a program to enhance it, review the debt repository and �x any
problems in the program before adding requested enhancements. This starts to
reduce complexity and improves the success rate of added code. You will never
get rid of all debt (just as your company will probably never be �nancially
debt-free), but managing it and limiting it reduces corporate risk.

Each of these actions should be part of a major project that is managed just like
any other project with dates, deliverables and speci�c task assignments. This
helps ensure that refactoring has the proper weight and importance in
development work. It’s easy to backslide and incur more debt when feeling
pressured to enhance code or write new applications.

Ideally, this is the time to set the groundwork for development standards that
ensure better work in the future. Research and make standard the latest design
practices. Ensure personnel have the right training and experience to do excellent
work. Focus on simple, elegant solutions and ensure that project teams have the
time to make these happen. Engage performance experts with developers to
ensure code is written to perform from the beginning. Match testing to
development to ensure that all code written will be tested before production
implementation.

As part of continuous service and process improvement, it can be helpful to
establish peer review of code as well as implementing a development mentor
program to ensure continued knowledge transfer. Look for ways to document
code whether mandating it is the responsibility of the developer or by using
software tools to accomplish this goal. And �nally, realize that the small increase
in time needed for a quality software project will more than pay for itself in
reduced technical debt, both ‘principle and interest.’

Conclusions
For too many years, development was a ‘write and forget’ practice. But as with any
kind of debt, the longer you go without paying the interest, let alone the principle,
the more expensive the note becomes. In this case, technical debt translates to
greatly increased business risk as companies devolve most of their business
functionality onto IT systems. Ignoring it doesn’t just cost you money – it can cost
you customers and your good name. The good news is that once you
acknowledge that you have the problem, the solution isn’t as daunting as it once
may have been. Software can help you identify, manage and ameliorate your
technical debt. And once you begin to address it, you can also put into place
measures to reduce the debt you incur in the future.

Technical Debt – The Problem

“The savvy developer treats technical debt just as the entrepreneur does �nancial
debt. They use it. It speeds delivery.”

In 1992, Ward Cunningham, inventor of “wikis” and a signatory to the Agile
Manifesto Doctrine, coined the term “technical debt” to describe the application
design trade-o�s organizations make every day. The metaphor is apt; executives
often make conscious decisions to deliver new business functionality as quickly as
possible. As with �nancial debt, they weigh the bene�ts of faster time-to-market
and increased pro�ts against the probability of sub-optimal code. In some cases,
speed is required simply to meet a government mandate. Whatever the cause,
whether it is in service of maintaining a competitive edge or meeting compliance
requirements, technical debt is incurred whenever corners have to be cut in
design, coding and testing. Like �nancial debt, interest accrues. In this case,
‘interest’ means impact on availability as well as higher support and application
maintenance costs. Another term for technical debt is ‘de�cit programming,’ a term
coined by David Panariti.

Some of these choices were made in the early days of computing where it seemed
safe to assume that applications written today would be supplanted with new and
better code tomorrow. Surviving the Y2K challenge involved a substantial interest
payment to remediate applications where shortcuts were applied. These shortcuts
saved substantial money, resources and time when all these elements were in
short supply. No one expected the code containing all these shortcuts to last 20+
years, but it did. Now, we know better. Code lasts a long time.

Another cost-saving technique initiated in the ‘90’s also increased the technical
debt. Assumptions were made that coding languages were now so powerful and
easy to learn that junior programmers could be trusted to create business-critical
applications from detailed speci�cations. But even senior programmers have
been known to have some bad coding habits. Facing time pressure and learning
‘on the job,’ junior programmers were even more likely to make mistakes, take
shortcuts and sometimes copy old code from other applications to get the job
done. Another area of concern was with outsourcing. Outsourcing development
added to the problem. With programmers in other countries, it becomes di�cult
to vet the code or the ability of the coders. Inside a company, technical
management can prescribe standards and institute oversight; with an outsourcer,
both objectives may be di�cult to achieve.

The 21st century debt includes quick turnaround to link applications on disparate
platforms. The value can be substantial, but the interest continues to accumulate.
In addition, technical debt compounds over time. As applications are modi�ed by
a variety of people, each making assumptions about the underlying code, more
problems are inevitably introduced. Unless a piece of code is very short-lived, very
basic or completely documented, technical debt is a concern you have to monitor
and manage.

How big is the technical debt problem? Caper Jones notes, “Poor software quality
has become one of the most expensive topics in human history: $150 billion per
year in U.S.; $500 billion per year worldwide.” He also noted that programmers
were “less than 50% e�cient in �nding bugs in their own software.” Looking at
just a single industry, “Gartner estimates that the global insurance industry has
accumulated more than $8 billion of IT debt during the past 10 years.”

Types of Technical Debt
Technical debt comes in a variety of forms, but without understanding the
sources, remediation is impossible. The most fundamental type comes when an
application is initially designed. Often, the full scope of a business service is
poorly understood at design time, so while the design might be ideal in the initial
implementation, it does not adapt to the many changes required as the
application matures. In other cases, poor design can be the result of a
misunderstanding between the architects, the business and the development
team. Still another cause could be compromises made as an agile project evolves.

Code debt groups a number of problems into one bucket. The most obvious is
badly written code. This happens primarily because of coding inexperience. The
next, paradoxically, arises from very senior programmers. Overly complex code
may work very e�ciently, but when it is complex, updates to it without a clear
understanding of the complexity may result in problems. In the case where
modules were written much earlier, good code is no long optimal because new
language facilities and options may have superseded the original capabilities.
And some languages no longer have enough practitioners who understand them
– the language itself may have become obsolete.

A common problem is that people under time pressure copy what’s working and
move it somewhere else. When an issues arises or the code otherwise needs
modi�cation, how do you �nd all the places it has been copied into? Capers Jones
notes that 21% of COBOL code is unreachable, meaning that it is never executed.
But in many cases, developers are not aware of this and changes made may cause
untested code to become reachable, or unreachable code to be copied.

Two unexpected areas of technical debt come from lack of documentation and
lack of testing protocols. Few developers enjoy writing documentation, so in
many cases and for many applications, documentation is scanty or non-existent.
As new teams come in, they have to start from scratch �guring out the purpose of
various modules and the underlying design. Testing is an issue – code that is not
regularly tested may be a problem just waiting to happen.

Code fraught with these kinds of problems becomes brittle. Like ta�y as it hardens,
making changes to older code can be di�cult without the risk that it will break.

Confounding Factors
Organizational structure may tend to help to increase or limit the potential for
accruing technical debt. In many shops, the development team has no interaction
with the lines of business. Deadlines are determined by the business without
development involvement or input. In many cases, the business has no idea of
whether their requirements are feasible or achievable. Development personnel
also may not hear directly from the customer what his needs are. Yet,
development groups will strive to meet those deadlines making their best e�orts
to deliver the business services required. In too many places, groups with a stake
in the overall success of the application (performance analysts, DBAs, storage
support, network technicians) only see the �nished product and thus, cannot o�er
their expertise to ensure an optimal solution. Outsourcing only makes this more
complicated. Particularly when outsourced sta� is on the other side of the globe,
the required communications most likely will not occur practically ensuring a
lower quality result.

The lack of a process improvement program can also lead to increased technical
debt. With fewer sta� members and increased pressure to get code out the door,
little time is left to go back and review code beyond �xing outright bugs and trying
to eliminate outages. Even those companies dedicated to quality may �nd they
don’t know how to identify their code debt, let alone �nd the time to remedy it.

The Cost of Technical Debt
It can be easy to dismiss this problem by saying ‘if it isn’t broken, why �x it?’ The
problem with technical debt is that it is that your suite of business applications is
like a house. A super�cial glance might give the impression of a stable structure,
but if the foundation has developed cracks, the roof is about to leak or the wiring
is brittle and about to fail, it is broken, even if you can’t tell. Even if your code is
only a few years old, you may have started to accrue debt, putting stress on your
business service ‘infrastructure.’

A quick view of the impact can be seen in Figure 1. Not only does quality continue
to degrade, but so does customer satisfaction. Your ability to serve new markets
and new customers depends on the ease of successfully and safely changing
application code.

For companies trying to manage risk, knowing that the foundation of your
business – your code – may have serious weaknesses should cause concern. The
risks and costs are many beginning with the very real possibility that the next
change to a program could cause an outage. Most businesses have a good idea of
how much an hour of downtime costs them in lost revenue, but with the
increasing ‘need for speed’ in an always-on world, lost customers could multiply
the impact of an outage. Allied to this is the fact that �xing a problem in complex,
poorly understood code can be much more time-consuming, lengthening the
duration of the outage. Many companies don’t realize that their code is essentially
undocumented until a major outage occurs. With constant employee turnover,
both through employee choice and layo�s, new people are encountering
applications that have been touched by many people at di�erent skill levels. This
means that even regular maintenance, whether to add new features, to �x issues
or to apply compliance features, will be slower, more di�cult and more
error-prone. When attempting to interconnect applications to build a new
capability, those interconnections can be problematic as well. Again, the more
technical debt, the more of a black box the application has become. And what
you don’t know about your code can hurt you and your business.

“Technical debt can negatively impact the long-term viability of a software solution.
It makes it more expensive to support a solution and can eventually make
enhancing a solution cost-prohibitive,” Nathan Wilson, Gartner analyst noted.
Cameron Haight and Ronni J. Colville said, “As IT technical debt increases, the run
cost of IT increases, leaving less funding available to support ‘grow and transform’
activities.”

Other costs include impacts to performance. As code becomes more complex, it
often performs poorly. Often, no one has taken a look at the application
holistically since early in the design phase, so ine�ciencies are inevitable.
Ine�cient applications cost you in more ways than response time and slowdowns
(which also cost you customer loyalty). Ine�ciencies inevitably translate to
increased system resource demand. And while the cost of computer resources
across all platforms has been dramatically reduced, in many cases, upgrades in
hardware lead to increased software costs.

One area not always considered in code quality is security exposure. Poorly
written code can lead to exploitable vulnerabilities that may go unnoticed until a
hacker discovers them. Code written by a disgruntled employee or unscrupulous
outsourcer may contain ‘backdoors,’ inviting exploitation at a later date. Either
incompetence or dishonesty can lead to another type of technical debt with
potential even more serious results. In some studies, security exposures of all
types were the number one type of technical debt.

Most companies make a great e�ort to reduce risk and operate in a prudent
fashion. But too many are unaware of the cracks in the foundation of their
application “building.” Technical debt has the potential to cause serious impact to
your revenue and to your customer base if not addressed.

7 CM First www.cm�rstgroup.com

Figure 2 highlights the trap companies can �nd themselves in when they do not
invest in addressing the technical debt issue.

Paying it Down
As with �nancial debt, the �rst step is to acknowledge that there is a problem.
Senior management backing is essential, �rst to set new directions for the
company in this area and next to fund the e�ort. For many companies, the
di�cult part is to �nd the problems in the code; fortunately, this does not have to
be a painful, manual e�ort anymore. You don’t have the time for that nor do you
have the resources. In fact, it is fair to say that it is impossible without strong,
automated, analysis tools. Software is available to help you identify the code that
will need refactoring, automatically and quickly.

Look for a top-quality code comprehension solution that can analyze source code
portfolios across all the hardware and operating systems in your data center.
Make sure to include all production systems and cover not just application code,
but also your JCL and other pseudo-code. The solution should provide the kind of
meta-analytics that makes the next step, refactoring, a lot easier. Code
maintainability and quality metrics are key to helping you determine
ine�ciencies, but you also want to look at data lineage, application and database
connectivity and code complexity information. In addition, if you are exploiting
Big Data or various implementations of cloud, make sure your code analysis
solution supports those as well. Your analysis software should be fast and �exible
enough to return results quickly and a�ordably. Taking only periodic snapshots or
analyzing only a portion of your code base limits the e�ectiveness of the solution.

The best software will take advantage of the processing power you have,
exploiting multi-core and multi-engine processing, parallelizing the e�ort. Near
real-time analysis will give you a true ‘state of your code,’ which is critical in
prioritizing the e�ort. The software should be a�ordable and work across your
entire code base, including legacy applications. Without this, you could risk
serious problems down the road, particularly with older applications. Then, you
will have an enterprise metadata repository of technical debt which will allow you
to prioritize and plan your e�ort. Look for a solution that will provide access to the
data in a clear, understandable fashion so that business people as well as
technology professionals can understand it and use it to make business decisions.

Focus on debt that is either costing you a great deal in ine�ciency or leading to
greater risk because of complexity or outage potential. Another factor is to focus
on obsolescent technology. Moving away from platforms with reduced support
and personnel may prove to be a signi�cant win. The initial list may seem
daunting, but by using business priorities and weighing the importance of
signi�cantly reducing risk and data center costs, the value will rapidly become
apparent. Gartner notes they typically see 10-20% of the overall development
budget allocated to �xing technical debt. And yet, this might not be enough.

A good practice is to �x debt as part of the maintenance/development cycle.
Before touching a program to enhance it, review the debt repository and �x any
problems in the program before adding requested enhancements. This starts to
reduce complexity and improves the success rate of added code. You will never
get rid of all debt (just as your company will probably never be �nancially
debt-free), but managing it and limiting it reduces corporate risk.

Each of these actions should be part of a major project that is managed just like
any other project with dates, deliverables and speci�c task assignments. This
helps ensure that refactoring has the proper weight and importance in
development work. It’s easy to backslide and incur more debt when feeling
pressured to enhance code or write new applications.

Ideally, this is the time to set the groundwork for development standards that
ensure better work in the future. Research and make standard the latest design
practices. Ensure personnel have the right training and experience to do excellent
work. Focus on simple, elegant solutions and ensure that project teams have the
time to make these happen. Engage performance experts with developers to
ensure code is written to perform from the beginning. Match testing to
development to ensure that all code written will be tested before production
implementation.

As part of continuous service and process improvement, it can be helpful to
establish peer review of code as well as implementing a development mentor
program to ensure continued knowledge transfer. Look for ways to document
code whether mandating it is the responsibility of the developer or by using
software tools to accomplish this goal. And �nally, realize that the small increase
in time needed for a quality software project will more than pay for itself in
reduced technical debt, both ‘principle and interest.’

Conclusions
For too many years, development was a ‘write and forget’ practice. But as with any
kind of debt, the longer you go without paying the interest, let alone the principle,
the more expensive the note becomes. In this case, technical debt translates to
greatly increased business risk as companies devolve most of their business
functionality onto IT systems. Ignoring it doesn’t just cost you money – it can cost
you customers and your good name. The good news is that once you
acknowledge that you have the problem, the solution isn’t as daunting as it once
may have been. Software can help you identify, manage and ameliorate your
technical debt. And once you begin to address it, you can also put into place
measures to reduce the debt you incur in the future.

Technical Debt – The Problem

“The savvy developer treats technical debt just as the entrepreneur does �nancial
debt. They use it. It speeds delivery.”

In 1992, Ward Cunningham, inventor of “wikis” and a signatory to the Agile
Manifesto Doctrine, coined the term “technical debt” to describe the application
design trade-o�s organizations make every day. The metaphor is apt; executives
often make conscious decisions to deliver new business functionality as quickly as
possible. As with �nancial debt, they weigh the bene�ts of faster time-to-market
and increased pro�ts against the probability of sub-optimal code. In some cases,
speed is required simply to meet a government mandate. Whatever the cause,
whether it is in service of maintaining a competitive edge or meeting compliance
requirements, technical debt is incurred whenever corners have to be cut in
design, coding and testing. Like �nancial debt, interest accrues. In this case,
‘interest’ means impact on availability as well as higher support and application
maintenance costs. Another term for technical debt is ‘de�cit programming,’ a term
coined by David Panariti.

Some of these choices were made in the early days of computing where it seemed
safe to assume that applications written today would be supplanted with new and
better code tomorrow. Surviving the Y2K challenge involved a substantial interest
payment to remediate applications where shortcuts were applied. These shortcuts
saved substantial money, resources and time when all these elements were in
short supply. No one expected the code containing all these shortcuts to last 20+
years, but it did. Now, we know better. Code lasts a long time.

Another cost-saving technique initiated in the ‘90’s also increased the technical
debt. Assumptions were made that coding languages were now so powerful and
easy to learn that junior programmers could be trusted to create business-critical
applications from detailed speci�cations. But even senior programmers have
been known to have some bad coding habits. Facing time pressure and learning
‘on the job,’ junior programmers were even more likely to make mistakes, take
shortcuts and sometimes copy old code from other applications to get the job
done. Another area of concern was with outsourcing. Outsourcing development
added to the problem. With programmers in other countries, it becomes di�cult
to vet the code or the ability of the coders. Inside a company, technical
management can prescribe standards and institute oversight; with an outsourcer,
both objectives may be di�cult to achieve.

The 21st century debt includes quick turnaround to link applications on disparate
platforms. The value can be substantial, but the interest continues to accumulate.
In addition, technical debt compounds over time. As applications are modi�ed by
a variety of people, each making assumptions about the underlying code, more
problems are inevitably introduced. Unless a piece of code is very short-lived, very
basic or completely documented, technical debt is a concern you have to monitor
and manage.

How big is the technical debt problem? Caper Jones notes, “Poor software quality
has become one of the most expensive topics in human history: $150 billion per
year in U.S.; $500 billion per year worldwide.” He also noted that programmers
were “less than 50% e�cient in �nding bugs in their own software.” Looking at
just a single industry, “Gartner estimates that the global insurance industry has
accumulated more than $8 billion of IT debt during the past 10 years.”

Types of Technical Debt
Technical debt comes in a variety of forms, but without understanding the
sources, remediation is impossible. The most fundamental type comes when an
application is initially designed. Often, the full scope of a business service is
poorly understood at design time, so while the design might be ideal in the initial
implementation, it does not adapt to the many changes required as the
application matures. In other cases, poor design can be the result of a
misunderstanding between the architects, the business and the development
team. Still another cause could be compromises made as an agile project evolves.

Code debt groups a number of problems into one bucket. The most obvious is
badly written code. This happens primarily because of coding inexperience. The
next, paradoxically, arises from very senior programmers. Overly complex code
may work very e�ciently, but when it is complex, updates to it without a clear
understanding of the complexity may result in problems. In the case where
modules were written much earlier, good code is no long optimal because new
language facilities and options may have superseded the original capabilities.
And some languages no longer have enough practitioners who understand them
– the language itself may have become obsolete.

A common problem is that people under time pressure copy what’s working and
move it somewhere else. When an issues arises or the code otherwise needs
modi�cation, how do you �nd all the places it has been copied into? Capers Jones
notes that 21% of COBOL code is unreachable, meaning that it is never executed.
But in many cases, developers are not aware of this and changes made may cause
untested code to become reachable, or unreachable code to be copied.

Two unexpected areas of technical debt come from lack of documentation and
lack of testing protocols. Few developers enjoy writing documentation, so in
many cases and for many applications, documentation is scanty or non-existent.
As new teams come in, they have to start from scratch �guring out the purpose of
various modules and the underlying design. Testing is an issue – code that is not
regularly tested may be a problem just waiting to happen.

Code fraught with these kinds of problems becomes brittle. Like ta�y as it hardens,
making changes to older code can be di�cult without the risk that it will break.

Confounding Factors
Organizational structure may tend to help to increase or limit the potential for
accruing technical debt. In many shops, the development team has no interaction
with the lines of business. Deadlines are determined by the business without
development involvement or input. In many cases, the business has no idea of
whether their requirements are feasible or achievable. Development personnel
also may not hear directly from the customer what his needs are. Yet,
development groups will strive to meet those deadlines making their best e�orts
to deliver the business services required. In too many places, groups with a stake
in the overall success of the application (performance analysts, DBAs, storage
support, network technicians) only see the �nished product and thus, cannot o�er
their expertise to ensure an optimal solution. Outsourcing only makes this more
complicated. Particularly when outsourced sta� is on the other side of the globe,
the required communications most likely will not occur practically ensuring a
lower quality result.

The lack of a process improvement program can also lead to increased technical
debt. With fewer sta� members and increased pressure to get code out the door,
little time is left to go back and review code beyond �xing outright bugs and trying
to eliminate outages. Even those companies dedicated to quality may �nd they
don’t know how to identify their code debt, let alone �nd the time to remedy it.

The Cost of Technical Debt
It can be easy to dismiss this problem by saying ‘if it isn’t broken, why �x it?’ The
problem with technical debt is that it is that your suite of business applications is
like a house. A super�cial glance might give the impression of a stable structure,
but if the foundation has developed cracks, the roof is about to leak or the wiring
is brittle and about to fail, it is broken, even if you can’t tell. Even if your code is
only a few years old, you may have started to accrue debt, putting stress on your
business service ‘infrastructure.’

A quick view of the impact can be seen in Figure 1. Not only does quality continue
to degrade, but so does customer satisfaction. Your ability to serve new markets
and new customers depends on the ease of successfully and safely changing
application code.

For companies trying to manage risk, knowing that the foundation of your
business – your code – may have serious weaknesses should cause concern. The
risks and costs are many beginning with the very real possibility that the next
change to a program could cause an outage. Most businesses have a good idea of
how much an hour of downtime costs them in lost revenue, but with the
increasing ‘need for speed’ in an always-on world, lost customers could multiply
the impact of an outage. Allied to this is the fact that �xing a problem in complex,
poorly understood code can be much more time-consuming, lengthening the
duration of the outage. Many companies don’t realize that their code is essentially
undocumented until a major outage occurs. With constant employee turnover,
both through employee choice and layo�s, new people are encountering
applications that have been touched by many people at di�erent skill levels. This
means that even regular maintenance, whether to add new features, to �x issues
or to apply compliance features, will be slower, more di�cult and more
error-prone. When attempting to interconnect applications to build a new
capability, those interconnections can be problematic as well. Again, the more
technical debt, the more of a black box the application has become. And what
you don’t know about your code can hurt you and your business.

“Technical debt can negatively impact the long-term viability of a software solution.
It makes it more expensive to support a solution and can eventually make
enhancing a solution cost-prohibitive,” Nathan Wilson, Gartner analyst noted.
Cameron Haight and Ronni J. Colville said, “As IT technical debt increases, the run
cost of IT increases, leaving less funding available to support ‘grow and transform’
activities.”

Other costs include impacts to performance. As code becomes more complex, it
often performs poorly. Often, no one has taken a look at the application
holistically since early in the design phase, so ine�ciencies are inevitable.
Ine�cient applications cost you in more ways than response time and slowdowns
(which also cost you customer loyalty). Ine�ciencies inevitably translate to
increased system resource demand. And while the cost of computer resources
across all platforms has been dramatically reduced, in many cases, upgrades in
hardware lead to increased software costs.

One area not always considered in code quality is security exposure. Poorly
written code can lead to exploitable vulnerabilities that may go unnoticed until a
hacker discovers them. Code written by a disgruntled employee or unscrupulous
outsourcer may contain ‘backdoors,’ inviting exploitation at a later date. Either
incompetence or dishonesty can lead to another type of technical debt with
potential even more serious results. In some studies, security exposures of all
types were the number one type of technical debt.

Most companies make a great e�ort to reduce risk and operate in a prudent
fashion. But too many are unaware of the cracks in the foundation of their
application “building.” Technical debt has the potential to cause serious impact to
your revenue and to your customer base if not addressed.

8 CM First www.cm�rstgroup.com

Figure 2 highlights the trap companies can �nd themselves in when they do not
invest in addressing the technical debt issue.

Paying it Down
As with �nancial debt, the �rst step is to acknowledge that there is a problem.
Senior management backing is essential, �rst to set new directions for the
company in this area and next to fund the e�ort. For many companies, the
di�cult part is to �nd the problems in the code; fortunately, this does not have to
be a painful, manual e�ort anymore. You don’t have the time for that nor do you
have the resources. In fact, it is fair to say that it is impossible without strong,
automated, analysis tools. Software is available to help you identify the code that
will need refactoring, automatically and quickly.

Look for a top-quality code comprehension solution that can analyze source code
portfolios across all the hardware and operating systems in your data center.
Make sure to include all production systems and cover not just application code,
but also your JCL and other pseudo-code. The solution should provide the kind of
meta-analytics that makes the next step, refactoring, a lot easier. Code
maintainability and quality metrics are key to helping you determine
ine�ciencies, but you also want to look at data lineage, application and database
connectivity and code complexity information. In addition, if you are exploiting
Big Data or various implementations of cloud, make sure your code analysis
solution supports those as well. Your analysis software should be fast and �exible
enough to return results quickly and a�ordably. Taking only periodic snapshots or
analyzing only a portion of your code base limits the e�ectiveness of the solution.

The best software will take advantage of the processing power you have,
exploiting multi-core and multi-engine processing, parallelizing the e�ort. Near
real-time analysis will give you a true ‘state of your code,’ which is critical in
prioritizing the e�ort. The software should be a�ordable and work across your
entire code base, including legacy applications. Without this, you could risk
serious problems down the road, particularly with older applications. Then, you
will have an enterprise metadata repository of technical debt which will allow you
to prioritize and plan your e�ort. Look for a solution that will provide access to the
data in a clear, understandable fashion so that business people as well as
technology professionals can understand it and use it to make business decisions.

Focus on debt that is either costing you a great deal in ine�ciency or leading to
greater risk because of complexity or outage potential. Another factor is to focus
on obsolescent technology. Moving away from platforms with reduced support
and personnel may prove to be a signi�cant win. The initial list may seem
daunting, but by using business priorities and weighing the importance of
signi�cantly reducing risk and data center costs, the value will rapidly become
apparent. Gartner notes they typically see 10-20% of the overall development
budget allocated to �xing technical debt. And yet, this might not be enough.

A good practice is to �x debt as part of the maintenance/development cycle.
Before touching a program to enhance it, review the debt repository and �x any
problems in the program before adding requested enhancements. This starts to
reduce complexity and improves the success rate of added code. You will never
get rid of all debt (just as your company will probably never be �nancially
debt-free), but managing it and limiting it reduces corporate risk.

Each of these actions should be part of a major project that is managed just like
any other project with dates, deliverables and speci�c task assignments. This
helps ensure that refactoring has the proper weight and importance in
development work. It’s easy to backslide and incur more debt when feeling
pressured to enhance code or write new applications.

Ideally, this is the time to set the groundwork for development standards that
ensure better work in the future. Research and make standard the latest design
practices. Ensure personnel have the right training and experience to do excellent
work. Focus on simple, elegant solutions and ensure that project teams have the
time to make these happen. Engage performance experts with developers to
ensure code is written to perform from the beginning. Match testing to
development to ensure that all code written will be tested before production
implementation.

As part of continuous service and process improvement, it can be helpful to
establish peer review of code as well as implementing a development mentor
program to ensure continued knowledge transfer. Look for ways to document
code whether mandating it is the responsibility of the developer or by using
software tools to accomplish this goal. And �nally, realize that the small increase
in time needed for a quality software project will more than pay for itself in
reduced technical debt, both ‘principle and interest.’

Conclusions
For too many years, development was a ‘write and forget’ practice. But as with any
kind of debt, the longer you go without paying the interest, let alone the principle,
the more expensive the note becomes. In this case, technical debt translates to
greatly increased business risk as companies devolve most of their business
functionality onto IT systems. Ignoring it doesn’t just cost you money – it can cost
you customers and your good name. The good news is that once you
acknowledge that you have the problem, the solution isn’t as daunting as it once
may have been. Software can help you identify, manage and ameliorate your
technical debt. And once you begin to address it, you can also put into place
measures to reduce the debt you incur in the future.

Technical Debt – The Problem

“The savvy developer treats technical debt just as the entrepreneur does �nancial
debt. They use it. It speeds delivery.”

In 1992, Ward Cunningham, inventor of “wikis” and a signatory to the Agile
Manifesto Doctrine, coined the term “technical debt” to describe the application
design trade-o�s organizations make every day. The metaphor is apt; executives
often make conscious decisions to deliver new business functionality as quickly as
possible. As with �nancial debt, they weigh the bene�ts of faster time-to-market
and increased pro�ts against the probability of sub-optimal code. In some cases,
speed is required simply to meet a government mandate. Whatever the cause,
whether it is in service of maintaining a competitive edge or meeting compliance
requirements, technical debt is incurred whenever corners have to be cut in
design, coding and testing. Like �nancial debt, interest accrues. In this case,
‘interest’ means impact on availability as well as higher support and application
maintenance costs. Another term for technical debt is ‘de�cit programming,’ a term
coined by David Panariti.

Some of these choices were made in the early days of computing where it seemed
safe to assume that applications written today would be supplanted with new and
better code tomorrow. Surviving the Y2K challenge involved a substantial interest
payment to remediate applications where shortcuts were applied. These shortcuts
saved substantial money, resources and time when all these elements were in
short supply. No one expected the code containing all these shortcuts to last 20+
years, but it did. Now, we know better. Code lasts a long time.

Another cost-saving technique initiated in the ‘90’s also increased the technical
debt. Assumptions were made that coding languages were now so powerful and
easy to learn that junior programmers could be trusted to create business-critical
applications from detailed speci�cations. But even senior programmers have
been known to have some bad coding habits. Facing time pressure and learning
‘on the job,’ junior programmers were even more likely to make mistakes, take
shortcuts and sometimes copy old code from other applications to get the job
done. Another area of concern was with outsourcing. Outsourcing development
added to the problem. With programmers in other countries, it becomes di�cult
to vet the code or the ability of the coders. Inside a company, technical
management can prescribe standards and institute oversight; with an outsourcer,
both objectives may be di�cult to achieve.

The 21st century debt includes quick turnaround to link applications on disparate
platforms. The value can be substantial, but the interest continues to accumulate.
In addition, technical debt compounds over time. As applications are modi�ed by
a variety of people, each making assumptions about the underlying code, more
problems are inevitably introduced. Unless a piece of code is very short-lived, very
basic or completely documented, technical debt is a concern you have to monitor
and manage.

How big is the technical debt problem? Caper Jones notes, “Poor software quality
has become one of the most expensive topics in human history: $150 billion per
year in U.S.; $500 billion per year worldwide.” He also noted that programmers
were “less than 50% e�cient in �nding bugs in their own software.” Looking at
just a single industry, “Gartner estimates that the global insurance industry has
accumulated more than $8 billion of IT debt during the past 10 years.”

Types of Technical Debt
Technical debt comes in a variety of forms, but without understanding the
sources, remediation is impossible. The most fundamental type comes when an
application is initially designed. Often, the full scope of a business service is
poorly understood at design time, so while the design might be ideal in the initial
implementation, it does not adapt to the many changes required as the
application matures. In other cases, poor design can be the result of a
misunderstanding between the architects, the business and the development
team. Still another cause could be compromises made as an agile project evolves.

Code debt groups a number of problems into one bucket. The most obvious is
badly written code. This happens primarily because of coding inexperience. The
next, paradoxically, arises from very senior programmers. Overly complex code
may work very e�ciently, but when it is complex, updates to it without a clear
understanding of the complexity may result in problems. In the case where
modules were written much earlier, good code is no long optimal because new
language facilities and options may have superseded the original capabilities.
And some languages no longer have enough practitioners who understand them
– the language itself may have become obsolete.

A common problem is that people under time pressure copy what’s working and
move it somewhere else. When an issues arises or the code otherwise needs
modi�cation, how do you �nd all the places it has been copied into? Capers Jones
notes that 21% of COBOL code is unreachable, meaning that it is never executed.
But in many cases, developers are not aware of this and changes made may cause
untested code to become reachable, or unreachable code to be copied.

Two unexpected areas of technical debt come from lack of documentation and
lack of testing protocols. Few developers enjoy writing documentation, so in
many cases and for many applications, documentation is scanty or non-existent.
As new teams come in, they have to start from scratch �guring out the purpose of
various modules and the underlying design. Testing is an issue – code that is not
regularly tested may be a problem just waiting to happen.

Code fraught with these kinds of problems becomes brittle. Like ta�y as it hardens,
making changes to older code can be di�cult without the risk that it will break.

Confounding Factors
Organizational structure may tend to help to increase or limit the potential for
accruing technical debt. In many shops, the development team has no interaction
with the lines of business. Deadlines are determined by the business without
development involvement or input. In many cases, the business has no idea of
whether their requirements are feasible or achievable. Development personnel
also may not hear directly from the customer what his needs are. Yet,
development groups will strive to meet those deadlines making their best e�orts
to deliver the business services required. In too many places, groups with a stake
in the overall success of the application (performance analysts, DBAs, storage
support, network technicians) only see the �nished product and thus, cannot o�er
their expertise to ensure an optimal solution. Outsourcing only makes this more
complicated. Particularly when outsourced sta� is on the other side of the globe,
the required communications most likely will not occur practically ensuring a
lower quality result.

The lack of a process improvement program can also lead to increased technical
debt. With fewer sta� members and increased pressure to get code out the door,
little time is left to go back and review code beyond �xing outright bugs and trying
to eliminate outages. Even those companies dedicated to quality may �nd they
don’t know how to identify their code debt, let alone �nd the time to remedy it.

The Cost of Technical Debt
It can be easy to dismiss this problem by saying ‘if it isn’t broken, why �x it?’ The
problem with technical debt is that it is that your suite of business applications is
like a house. A super�cial glance might give the impression of a stable structure,
but if the foundation has developed cracks, the roof is about to leak or the wiring
is brittle and about to fail, it is broken, even if you can’t tell. Even if your code is
only a few years old, you may have started to accrue debt, putting stress on your
business service ‘infrastructure.’

A quick view of the impact can be seen in Figure 1. Not only does quality continue
to degrade, but so does customer satisfaction. Your ability to serve new markets
and new customers depends on the ease of successfully and safely changing
application code.

For companies trying to manage risk, knowing that the foundation of your
business – your code – may have serious weaknesses should cause concern. The
risks and costs are many beginning with the very real possibility that the next
change to a program could cause an outage. Most businesses have a good idea of
how much an hour of downtime costs them in lost revenue, but with the
increasing ‘need for speed’ in an always-on world, lost customers could multiply
the impact of an outage. Allied to this is the fact that �xing a problem in complex,
poorly understood code can be much more time-consuming, lengthening the
duration of the outage. Many companies don’t realize that their code is essentially
undocumented until a major outage occurs. With constant employee turnover,
both through employee choice and layo�s, new people are encountering
applications that have been touched by many people at di�erent skill levels. This
means that even regular maintenance, whether to add new features, to �x issues
or to apply compliance features, will be slower, more di�cult and more
error-prone. When attempting to interconnect applications to build a new
capability, those interconnections can be problematic as well. Again, the more
technical debt, the more of a black box the application has become. And what
you don’t know about your code can hurt you and your business.

“Technical debt can negatively impact the long-term viability of a software solution.
It makes it more expensive to support a solution and can eventually make
enhancing a solution cost-prohibitive,” Nathan Wilson, Gartner analyst noted.
Cameron Haight and Ronni J. Colville said, “As IT technical debt increases, the run
cost of IT increases, leaving less funding available to support ‘grow and transform’
activities.”

Other costs include impacts to performance. As code becomes more complex, it
often performs poorly. Often, no one has taken a look at the application
holistically since early in the design phase, so ine�ciencies are inevitable.
Ine�cient applications cost you in more ways than response time and slowdowns
(which also cost you customer loyalty). Ine�ciencies inevitably translate to
increased system resource demand. And while the cost of computer resources
across all platforms has been dramatically reduced, in many cases, upgrades in
hardware lead to increased software costs.

One area not always considered in code quality is security exposure. Poorly
written code can lead to exploitable vulnerabilities that may go unnoticed until a
hacker discovers them. Code written by a disgruntled employee or unscrupulous
outsourcer may contain ‘backdoors,’ inviting exploitation at a later date. Either
incompetence or dishonesty can lead to another type of technical debt with
potential even more serious results. In some studies, security exposures of all
types were the number one type of technical debt.

Most companies make a great e�ort to reduce risk and operate in a prudent
fashion. But too many are unaware of the cracks in the foundation of their
application “building.” Technical debt has the potential to cause serious impact to
your revenue and to your customer base if not addressed.

Figure 2 highlights the trap companies can �nd themselves in when they do not
invest in addressing the technical debt issue.

Paying it Down
As with �nancial debt, the �rst step is to acknowledge that there is a problem.
Senior management backing is essential, �rst to set new directions for the
company in this area and next to fund the e�ort. For many companies, the
di�cult part is to �nd the problems in the code; fortunately, this does not have to
be a painful, manual e�ort anymore. You don’t have the time for that nor do you
have the resources. In fact, it is fair to say that it is impossible without strong,
automated, analysis tools. Software is available to help you identify the code that
will need refactoring, automatically and quickly.

9 CM First www.cm�rstgroup.com

Look for a top-quality code comprehension solution that can analyze source code
portfolios across all the hardware and operating systems in your data center.
Make sure to include all production systems and cover not just application code,
but also your JCL and other pseudo-code. The solution should provide the kind of
meta-analytics that makes the next step, refactoring, a lot easier. Code
maintainability and quality metrics are key to helping you determine
ine�ciencies, but you also want to look at data lineage, application and database
connectivity and code complexity information. In addition, if you are exploiting
Big Data or various implementations of cloud, make sure your code analysis
solution supports those as well. Your analysis software should be fast and �exible
enough to return results quickly and a�ordably. Taking only periodic snapshots or
analyzing only a portion of your code base limits the e�ectiveness of the solution.

The best software will take advantage of the processing power you have,
exploiting multi-core and multi-engine processing, parallelizing the e�ort. Near
real-time analysis will give you a true ‘state of your code,’ which is critical in
prioritizing the e�ort. The software should be a�ordable and work across your
entire code base, including legacy applications. Without this, you could risk
serious problems down the road, particularly with older applications. Then, you
will have an enterprise metadata repository of technical debt which will allow you
to prioritize and plan your e�ort. Look for a solution that will provide access to the
data in a clear, understandable fashion so that business people as well as
technology professionals can understand it and use it to make business decisions.

Focus on debt that is either costing you a great deal in ine�ciency or leading to
greater risk because of complexity or outage potential. Another factor is to focus
on obsolescent technology. Moving away from platforms with reduced support
and personnel may prove to be a signi�cant win. The initial list may seem
daunting, but by using business priorities and weighing the importance of
signi�cantly reducing risk and data center costs, the value will rapidly become
apparent. Gartner notes they typically see 10-20% of the overall development
budget allocated to �xing technical debt. And yet, this might not be enough.

A good practice is to �x debt as part of the maintenance/development cycle.
Before touching a program to enhance it, review the debt repository and �x any
problems in the program before adding requested enhancements. This starts to
reduce complexity and improves the success rate of added code. You will never
get rid of all debt (just as your company will probably never be �nancially
debt-free), but managing it and limiting it reduces corporate risk.

Each of these actions should be part of a major project that is managed just like
any other project with dates, deliverables and speci�c task assignments. This
helps ensure that refactoring has the proper weight and importance in
development work. It’s easy to backslide and incur more debt when feeling
pressured to enhance code or write new applications.

Ideally, this is the time to set the groundwork for development standards that
ensure better work in the future. Research and make standard the latest design
practices. Ensure personnel have the right training and experience to do excellent
work. Focus on simple, elegant solutions and ensure that project teams have the
time to make these happen. Engage performance experts with developers to
ensure code is written to perform from the beginning. Match testing to
development to ensure that all code written will be tested before production
implementation.

As part of continuous service and process improvement, it can be helpful to
establish peer review of code as well as implementing a development mentor
program to ensure continued knowledge transfer. Look for ways to document
code whether mandating it is the responsibility of the developer or by using
software tools to accomplish this goal. And �nally, realize that the small increase
in time needed for a quality software project will more than pay for itself in
reduced technical debt, both ‘principle and interest.’

Conclusions
For too many years, development was a ‘write and forget’ practice. But as with any
kind of debt, the longer you go without paying the interest, let alone the principle,
the more expensive the note becomes. In this case, technical debt translates to
greatly increased business risk as companies devolve most of their business
functionality onto IT systems. Ignoring it doesn’t just cost you money – it can cost
you customers and your good name. The good news is that once you
acknowledge that you have the problem, the solution isn’t as daunting as it once
may have been. Software can help you identify, manage and ameliorate your
technical debt. And once you begin to address it, you can also put into place
measures to reduce the debt you incur in the future.

Technical Debt – The Problem

“The savvy developer treats technical debt just as the entrepreneur does �nancial
debt. They use it. It speeds delivery.”

In 1992, Ward Cunningham, inventor of “wikis” and a signatory to the Agile
Manifesto Doctrine, coined the term “technical debt” to describe the application
design trade-o�s organizations make every day. The metaphor is apt; executives
often make conscious decisions to deliver new business functionality as quickly as
possible. As with �nancial debt, they weigh the bene�ts of faster time-to-market
and increased pro�ts against the probability of sub-optimal code. In some cases,
speed is required simply to meet a government mandate. Whatever the cause,
whether it is in service of maintaining a competitive edge or meeting compliance
requirements, technical debt is incurred whenever corners have to be cut in
design, coding and testing. Like �nancial debt, interest accrues. In this case,
‘interest’ means impact on availability as well as higher support and application
maintenance costs. Another term for technical debt is ‘de�cit programming,’ a term
coined by David Panariti.

Some of these choices were made in the early days of computing where it seemed
safe to assume that applications written today would be supplanted with new and
better code tomorrow. Surviving the Y2K challenge involved a substantial interest
payment to remediate applications where shortcuts were applied. These shortcuts
saved substantial money, resources and time when all these elements were in
short supply. No one expected the code containing all these shortcuts to last 20+
years, but it did. Now, we know better. Code lasts a long time.

Another cost-saving technique initiated in the ‘90’s also increased the technical
debt. Assumptions were made that coding languages were now so powerful and
easy to learn that junior programmers could be trusted to create business-critical
applications from detailed speci�cations. But even senior programmers have
been known to have some bad coding habits. Facing time pressure and learning
‘on the job,’ junior programmers were even more likely to make mistakes, take
shortcuts and sometimes copy old code from other applications to get the job
done. Another area of concern was with outsourcing. Outsourcing development
added to the problem. With programmers in other countries, it becomes di�cult
to vet the code or the ability of the coders. Inside a company, technical
management can prescribe standards and institute oversight; with an outsourcer,
both objectives may be di�cult to achieve.

The 21st century debt includes quick turnaround to link applications on disparate
platforms. The value can be substantial, but the interest continues to accumulate.
In addition, technical debt compounds over time. As applications are modi�ed by
a variety of people, each making assumptions about the underlying code, more
problems are inevitably introduced. Unless a piece of code is very short-lived, very
basic or completely documented, technical debt is a concern you have to monitor
and manage.

How big is the technical debt problem? Caper Jones notes, “Poor software quality
has become one of the most expensive topics in human history: $150 billion per
year in U.S.; $500 billion per year worldwide.” He also noted that programmers
were “less than 50% e�cient in �nding bugs in their own software.” Looking at
just a single industry, “Gartner estimates that the global insurance industry has
accumulated more than $8 billion of IT debt during the past 10 years.”

Types of Technical Debt
Technical debt comes in a variety of forms, but without understanding the
sources, remediation is impossible. The most fundamental type comes when an
application is initially designed. Often, the full scope of a business service is
poorly understood at design time, so while the design might be ideal in the initial
implementation, it does not adapt to the many changes required as the
application matures. In other cases, poor design can be the result of a
misunderstanding between the architects, the business and the development
team. Still another cause could be compromises made as an agile project evolves.

Code debt groups a number of problems into one bucket. The most obvious is
badly written code. This happens primarily because of coding inexperience. The
next, paradoxically, arises from very senior programmers. Overly complex code
may work very e�ciently, but when it is complex, updates to it without a clear
understanding of the complexity may result in problems. In the case where
modules were written much earlier, good code is no long optimal because new
language facilities and options may have superseded the original capabilities.
And some languages no longer have enough practitioners who understand them
– the language itself may have become obsolete.

A common problem is that people under time pressure copy what’s working and
move it somewhere else. When an issues arises or the code otherwise needs
modi�cation, how do you �nd all the places it has been copied into? Capers Jones
notes that 21% of COBOL code is unreachable, meaning that it is never executed.
But in many cases, developers are not aware of this and changes made may cause
untested code to become reachable, or unreachable code to be copied.

Two unexpected areas of technical debt come from lack of documentation and
lack of testing protocols. Few developers enjoy writing documentation, so in
many cases and for many applications, documentation is scanty or non-existent.
As new teams come in, they have to start from scratch �guring out the purpose of
various modules and the underlying design. Testing is an issue – code that is not
regularly tested may be a problem just waiting to happen.

Code fraught with these kinds of problems becomes brittle. Like ta�y as it hardens,
making changes to older code can be di�cult without the risk that it will break.

Confounding Factors
Organizational structure may tend to help to increase or limit the potential for
accruing technical debt. In many shops, the development team has no interaction
with the lines of business. Deadlines are determined by the business without
development involvement or input. In many cases, the business has no idea of
whether their requirements are feasible or achievable. Development personnel
also may not hear directly from the customer what his needs are. Yet,
development groups will strive to meet those deadlines making their best e�orts
to deliver the business services required. In too many places, groups with a stake
in the overall success of the application (performance analysts, DBAs, storage
support, network technicians) only see the �nished product and thus, cannot o�er
their expertise to ensure an optimal solution. Outsourcing only makes this more
complicated. Particularly when outsourced sta� is on the other side of the globe,
the required communications most likely will not occur practically ensuring a
lower quality result.

The lack of a process improvement program can also lead to increased technical
debt. With fewer sta� members and increased pressure to get code out the door,
little time is left to go back and review code beyond �xing outright bugs and trying
to eliminate outages. Even those companies dedicated to quality may �nd they
don’t know how to identify their code debt, let alone �nd the time to remedy it.

The Cost of Technical Debt
It can be easy to dismiss this problem by saying ‘if it isn’t broken, why �x it?’ The
problem with technical debt is that it is that your suite of business applications is
like a house. A super�cial glance might give the impression of a stable structure,
but if the foundation has developed cracks, the roof is about to leak or the wiring
is brittle and about to fail, it is broken, even if you can’t tell. Even if your code is
only a few years old, you may have started to accrue debt, putting stress on your
business service ‘infrastructure.’

A quick view of the impact can be seen in Figure 1. Not only does quality continue
to degrade, but so does customer satisfaction. Your ability to serve new markets
and new customers depends on the ease of successfully and safely changing
application code.

For companies trying to manage risk, knowing that the foundation of your
business – your code – may have serious weaknesses should cause concern. The
risks and costs are many beginning with the very real possibility that the next
change to a program could cause an outage. Most businesses have a good idea of
how much an hour of downtime costs them in lost revenue, but with the
increasing ‘need for speed’ in an always-on world, lost customers could multiply
the impact of an outage. Allied to this is the fact that �xing a problem in complex,
poorly understood code can be much more time-consuming, lengthening the
duration of the outage. Many companies don’t realize that their code is essentially
undocumented until a major outage occurs. With constant employee turnover,
both through employee choice and layo�s, new people are encountering
applications that have been touched by many people at di�erent skill levels. This
means that even regular maintenance, whether to add new features, to �x issues
or to apply compliance features, will be slower, more di�cult and more
error-prone. When attempting to interconnect applications to build a new
capability, those interconnections can be problematic as well. Again, the more
technical debt, the more of a black box the application has become. And what
you don’t know about your code can hurt you and your business.

“Technical debt can negatively impact the long-term viability of a software solution.
It makes it more expensive to support a solution and can eventually make
enhancing a solution cost-prohibitive,” Nathan Wilson, Gartner analyst noted.
Cameron Haight and Ronni J. Colville said, “As IT technical debt increases, the run
cost of IT increases, leaving less funding available to support ‘grow and transform’
activities.”

Other costs include impacts to performance. As code becomes more complex, it
often performs poorly. Often, no one has taken a look at the application
holistically since early in the design phase, so ine�ciencies are inevitable.
Ine�cient applications cost you in more ways than response time and slowdowns
(which also cost you customer loyalty). Ine�ciencies inevitably translate to
increased system resource demand. And while the cost of computer resources
across all platforms has been dramatically reduced, in many cases, upgrades in
hardware lead to increased software costs.

One area not always considered in code quality is security exposure. Poorly
written code can lead to exploitable vulnerabilities that may go unnoticed until a
hacker discovers them. Code written by a disgruntled employee or unscrupulous
outsourcer may contain ‘backdoors,’ inviting exploitation at a later date. Either
incompetence or dishonesty can lead to another type of technical debt with
potential even more serious results. In some studies, security exposures of all
types were the number one type of technical debt.

Most companies make a great e�ort to reduce risk and operate in a prudent
fashion. But too many are unaware of the cracks in the foundation of their
application “building.” Technical debt has the potential to cause serious impact to
your revenue and to your customer base if not addressed.

Figure 2 highlights the trap companies can �nd themselves in when they do not
invest in addressing the technical debt issue.

Paying it Down
As with �nancial debt, the �rst step is to acknowledge that there is a problem.
Senior management backing is essential, �rst to set new directions for the
company in this area and next to fund the e�ort. For many companies, the
di�cult part is to �nd the problems in the code; fortunately, this does not have to
be a painful, manual e�ort anymore. You don’t have the time for that nor do you
have the resources. In fact, it is fair to say that it is impossible without strong,
automated, analysis tools. Software is available to help you identify the code that
will need refactoring, automatically and quickly.

10 CM First www.cm�rstgroup.com

Look for a top-quality code comprehension solution that can analyze source code
portfolios across all the hardware and operating systems in your data center.
Make sure to include all production systems and cover not just application code,
but also your JCL and other pseudo-code. The solution should provide the kind of
meta-analytics that makes the next step, refactoring, a lot easier. Code
maintainability and quality metrics are key to helping you determine
ine�ciencies, but you also want to look at data lineage, application and database
connectivity and code complexity information. In addition, if you are exploiting
Big Data or various implementations of cloud, make sure your code analysis
solution supports those as well. Your analysis software should be fast and �exible
enough to return results quickly and a�ordably. Taking only periodic snapshots or
analyzing only a portion of your code base limits the e�ectiveness of the solution.

The best software will take advantage of the processing power you have,
exploiting multi-core and multi-engine processing, parallelizing the e�ort. Near
real-time analysis will give you a true ‘state of your code,’ which is critical in
prioritizing the e�ort. The software should be a�ordable and work across your
entire code base, including legacy applications. Without this, you could risk
serious problems down the road, particularly with older applications. Then, you
will have an enterprise metadata repository of technical debt which will allow you
to prioritize and plan your e�ort. Look for a solution that will provide access to the
data in a clear, understandable fashion so that business people as well as
technology professionals can understand it and use it to make business decisions.

Focus on debt that is either costing you a great deal in ine�ciency or leading to
greater risk because of complexity or outage potential. Another factor is to focus
on obsolescent technology. Moving away from platforms with reduced support
and personnel may prove to be a signi�cant win. The initial list may seem
daunting, but by using business priorities and weighing the importance of
signi�cantly reducing risk and data center costs, the value will rapidly become
apparent. Gartner notes they typically see 10-20% of the overall development
budget allocated to �xing technical debt. And yet, this might not be enough.

A good practice is to �x debt as part of the maintenance/development cycle.
Before touching a program to enhance it, review the debt repository and �x any
problems in the program before adding requested enhancements. This starts to
reduce complexity and improves the success rate of added code. You will never
get rid of all debt (just as your company will probably never be �nancially
debt-free), but managing it and limiting it reduces corporate risk.

Each of these actions should be part of a major project that is managed just like
any other project with dates, deliverables and speci�c task assignments. This
helps ensure that refactoring has the proper weight and importance in
development work. It’s easy to backslide and incur more debt when feeling
pressured to enhance code or write new applications.

Ideally, this is the time to set the groundwork for development standards that
ensure better work in the future. Research and make standard the latest design
practices. Ensure personnel have the right training and experience to do excellent
work. Focus on simple, elegant solutions and ensure that project teams have the
time to make these happen. Engage performance experts with developers to
ensure code is written to perform from the beginning. Match testing to
development to ensure that all code written will be tested before production
implementation.

As part of continuous service and process improvement, it can be helpful to
establish peer review of code as well as implementing a development mentor
program to ensure continued knowledge transfer. Look for ways to document
code whether mandating it is the responsibility of the developer or by using
software tools to accomplish this goal. And �nally, realize that the small increase
in time needed for a quality software project will more than pay for itself in
reduced technical debt, both ‘principle and interest.’

Conclusions
For too many years, development was a ‘write and forget’ practice. But as with any
kind of debt, the longer you go without paying the interest, let alone the principle,
the more expensive the note becomes. In this case, technical debt translates to
greatly increased business risk as companies devolve most of their business
functionality onto IT systems. Ignoring it doesn’t just cost you money – it can cost
you customers and your good name. The good news is that once you
acknowledge that you have the problem, the solution isn’t as daunting as it once
may have been. Software can help you identify, manage and ameliorate your
technical debt. And once you begin to address it, you can also put into place
measures to reduce the debt you incur in the future.

5 Gartner, “Best Practices in Agile Development: Managing Technical Debt,” January 18, 2012, G00229397

Copyright © CM First. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Europe Headquarters
+41 41 508 01 05
info@cm�rstgroup.com

North America Headquarters
+1-512-418-9802
infotech@cm�rstgroup.com

Italy
+39 02 00681061
infoitaly@cm�rstgroup.com

France
+33 608 504 285
infofrance@cm�rstgroup.com

CM First focuses on powering business agility by providing
software and services that help customers manage and
modernize their enterprise applications. Founded on a mission
to manage the complexity of multi-platform application
projects, CM First creates innovative application development
solutions. A global company, CM First is headquartered in
Steinhausen, Switzerland with o�ces in Austin, Texas and
Milan, Italy. With the support of strong global IT partners such
as IBM and CA, CM First provides software and services
powering development for more than 400 clients in both the
private and public sectors, including banking, IT, tourism, and
manufacturing. CM First is an IBM Advanced Business Partner
and a CA Technologies technology partner and global reseller
o�ering complementary tolling and services to CA customers.

www.cm�rstgroup.com

