
Improving the performance of web-
initiated CICS transaction workloads

Patrick Fournier

Serge Bourlot

John Bachiochi

(SysperTec)

Tuesday, August 13, 2013 (12:15 to 1:15 PM)

Session # 13456

Presenters’ Bio

• Patrick Fournier

• Modernization of IBM mainframe applications

• Last 5 years: web-enablement of 3270 applications

• Initiator of CICS performance improvement R&D project

• Serge Bourlot

• z/OS system product developer (custom TS)

• Strong z/OS internals - especially multi-tasking services

• Lead developer for R&D project

• John Bachiochi

• Develop and support VSE and MVS SW products

• Part of benchmarking team for R&D project

2

Changing Nature of CICS TP Workloads

A growing number of consumers conduct their personal

business and shop in the Cloud every day, which results in

enormous flows of web-initiated transactions hitting the

supporting – oftentimes CICS – applications.

3

How It All Started …

• Two web-enablement prospects with similar exponentially-

growing web-initiated CICS transaction workloads:

• Improve web access (middleware) to CICS apps

• Tens of million of CICS transactions per day

• Web-initiated traffic reaching CICS apps as web services

• Clients + consumers in “self-service” mode via web portals

• Small number of query transactions 85% TP workload

• No direct revenue generation: part of expected “service”

• Cost of doing business today: improved user experience

4

Accessibility

Convenience

Revenues

Labor costs

CPU Usage

Mainframe costs

Capacity

Response times

Changing Nature of CICS TP Workloads

5

TCP/IP

CICS Transactions

3270 Screens

Web Portals

C/S Apps

(WUI/GUI)

Web Services

Web Services

3270 Terminal

Emulation

Trained Employees + Agents Clients + Consumers (Self-Service)

Transaction Processing: Past, Present,
and Future (IBM Redbooks redp4854)

6

“We run several thousand transactions per second now that our

systems are opened up to the Internet and mobile devices.”

“The number of look-to-book transactions for our hotel chain has

changed from 8 – 10 searches for one booking to potentially thousands

of searches for one booking.”

“We expect more growth coming from the mobile channel and we also

foresee a workload increase from new self-service applications.”

“In our enterprise architecture, the mainframe is our transaction

processing box; it is optimized for transaction processing, and we

expect it to be further optimized for this in the future.”

We have moved most of our services to stateless web services, which

expose core transactions directly.”

CICS: Original Design vs. Current Usage

7

ORIGINAL DESIGN CURRENT USAGE

When Early 70s Today + Tomorrow

File Organization ISAM  VSAM VSAM  DBMS/SQL (DB2)

Need for Data Services Yes No (DBMS-Provided)

Connection BTAM  TN3270 HTTP/S over TCP/IP

Client Device 3270 Workstations Web-Enabled Devices

User Interface Green Screens WUI/GUI  Web Services

Application Training Yes No (Self-Service)

Main User Population Staff + Agents/BP Clients + Consumers

Total Users Thousands Millions

Concurrent Users Hundreds Thousands

Transaction Volumes 10s x Thousands Millions

CICS Overhead Considerations

CICS adds significant overhead to web-initiated traffic which

it was not designed for. How much overhead and why?

8

How Much System Overhead?

• Systems (CICS, LE …) = most CPU consumption

• Transaction programs = very little CPU consumption

9

Transaction Program

CICS + Other (LE …)
Overhead

Where Does CICS Overhead Comes From?

• Event-level TCP/IP listener  costly CICS disruptions

• Presentation layer gets activated by web service calls

• VSAM-intended data services get activated for DBMS

• Not designed for z/OS PE multi-tasking services

10

TCP/IP listener

Presentation layer

Data services

Multi-tasking

Multi-Tasking 101

• MVS multi-tasking:

• Event Control Blocks (ECB)

• Pause Elements (PE):

• Introduced with z/OS

• Integrated to z/OS lower system layers (control block redesign)

• IBM  Use PE over ECB for efficiency and performance

• PE = tool of choice for multitasking subsystems

• CICS multi-tasking:

• Double-level multitasking: CICS  MVS

• Relies upon ECB (not IBM-recommended PE)

 11

Transaction Server Prototype

What would a new transaction server specifically designed

to run web-initiated CICS transactions with best possible

response times, throughput and footprint look like?

12

Transaction Server Prototype - Design Brief

• Design brief for low-overhead TS prototype:

• No screen UI: web service only UI

• Web interface through HTTP/S server with:

• Message-level (rather than event-level) TCP/IP listener

• Web service management facility: scripts and scenarios

• zIIP for parser (XML, SOAP …) and other CPU-intensive tasks

• RACF server-level (rather than user-level) authentication path

• Efficient PE-based multi-tasking

• New API: run existing CICS programs under new TS

• Direct DBMS/SQL calls + reuse existing DBMS data services

• VSAM data services

 13

Transaction Server Prototype - Architecture

14

RACF ACF2

TSS

Database

(DB2, etc.)

V/TS

Web

Service

Call

TCP/IP Listener

Authentication

Scenarios

& Scripts

Data

Formatting

Templates

VIRSV
Multi-Tasking

(PE)

zIIP
XML/SOAP

Parsing

Modified CICS

Application

Program Direct SQL Calls TCB

TCP/IP

SRB

Same internal BL

New TS API

We already had all the components we needed

between VIRTEL and VIRSV (except VSAM data

services): all we needed was to couple them!

HTTP/S Server

No VSAM data

services

Benchmarking

What kind of response times, throughput and footprint is this

new transaction server capable of?

15

Two versions of same program(s):

 One running under CICS/TS

 One running under V/TS

Compare:

 Response-time

 CPU consumption

 Throughput

Benchmarking – Methodology and Process

16

DB2

“Modified”

Transaction

Program

CICS

V/TS

z/OS System SOAP Web

Service Calls

Transaction

Driver

CICS SQL

Calls

Direct SQL

Calls

Original

Transaction

Program

Scenario #1 – Query Only

• Queries = heaviest (costliest) TP workload = best ROI

• Program used for benchmark:

• COBOL + DB2

• Business Logic

• Retrieve user contact data from database

• RACF activation:

• CICS/TS: first incoming call only (cached authentication)

• V/TS: each incoming call (no cached authentication)

• Need to configure Virtel STC to cache RACF control blocks

17

Scenario #1 - CPU Consumption

18

QUERY-ONLY CICS/TS V/TS CPU Reduction

TCP/IP 48.71 7.37 84.87%

TP Monitor 427.08 115.32 72.99%

DB9xxxxxxx 25.18 .69 97.26%

RRS .25 .06 76%

Total 501.22 123.44 75.37%

Scenario #1 - Overall Performance

19

QUERY-ONLY CICS/TS V/TS

AVG Response Time 327 46 7 times shorter

AVG Throughput 30 152 5.4 times larger

MAX Throughput 35 223 6.4 times larger

CPU Consumption 501 123 4 times smaller

Scenario #2 – All I/O Types

• Updates = 10% or less of TP workload = worse ROI

• Program used for benchmark:

• COBOL + DB2

• Business Logic

• Create new user

• Retrieve new user from database

• Update new user’s telephone number

• Update new user’s qualifier

• Retrieve updated user from database

• Delete updated user from database

• Work in progress (Not optimized yet)

20

Scenario #2 - Overall Performance

21

MIXED I/O TYPES CICS/TS V/TS

AVG Response Time 284 142 2 times shorter

AVG Throughput 35 66 1.9 times larger

MSU Consumption 21465 10194 2.1 times lower

Comparing Scenarios #1 vs. #2 Results

22

QUERY-ONLY MIXED I/Os

AVG Response Time 7 x shorter 2 x shorter

AVG Throughput 5.4 x larger 1.9 x larger

MSU Consumption 4 x lower 2.1 x lower

• Updates take longer than queries  TS execution time reduction applies
to smaller % of overall response time  overall response time reduction is
smaller

• CPU-intensive DB2 update locking runs inside TS address space = TS
CPU reduction applies to lower % of overall CPU consumption  overall
CPU reduction is smaller

• Updates typically only about 10% of all I/O but scenario #2 includes as
many updates as queries  worse case scenario

• Scenario #2 not optimized yet (contentions …)  Results might improve

• Current scenario #2 results still = excellent improvement

Program Changes

What kind of changes must be applied to CICS programs to

run under V/TS? Could those changes be automated?

23

 Interface with transaction

server (V/TS vs. CICS):

 Parameter list

 Processing flow

 Initialization section

 Core section

 Termination section

 File and DBMS accesses:

 Direct DB2/SQL calls

 [VSAM calls]

Program Changes – Overview

24

DB2

“Modified”

Transaction

Program

CICS

V/TS

z/OS System

Original

Transaction

Program
CICS SQL

Direct SQL

Program Changes – Parameter List

25

V/TS Parameter List:
 Address of input data area

 Length of input data area

 Address of output data area

 Length of output data area

 Return code

01 LIST-POINTER.
 03 LIST-ADR-REQU USAGE IS POINTER.
 03 LIST-ADR-REQUL USAGE IS POINTER.
 03 LIST-ADR-RESP USAGE IS POINTER.
 03 LIST-ADR-RESPL USAGE IS POINTER.
 03 LIST-ADR-RC USAGE IS POINTER.

 COPY VSVCLIST.

V/TS

Program Changes – Processing Flow

CICS/TS

26

V/TS

PROCEDURE DIVISION.

 START-OF-PROGRAM.

 1 PERFORM INITIATE-PROCESS
 THRU INITIATE-PROCESS-XIT.

 2 PERFORM MAIN-PROCESS
 THRU MAIN-PROCESS-XIT.

 3 PERFORM TERMINATE-PROCESS
 THRU TERMINATE-PROCESS-XIT.

 EXEC CICS RETURN
 END-EXEC.

PROCEDURE DIVISION.

 PERFORM UNTIL NO-MORE-PROCESS

1 PERFORM INITIATE-PROCESS
 THRU INITIATE-PROCESS-XIT

2 PERFORM MAIN-PROCESS
 THRU MAIN-PROCESS-XIT

3 PERFORM TERMINATE-PROCESS
 THRU TERMINATE-PROCESS-XIT

 END-PERFORM.

 Z000-EXIT.
 GOBACK.

1 1

2 2

3 3

 Initialization Core Processing Termination 1 2 3

Repeat transaction processing:
 Was handled by CICS

 Now handled by program

Program Changes - Initialization Section

27

INITIATE-PROCESS.

 EXEC CICS ADDRESS EIB(DFHEIBLK)
 END-EXEC.
 MOVE SPACES TO WORK-DFHCOMMAREA.
 MOVE EIBCALEN TO EIBCALEN-DECIMAL.
 IF EIBCALEN-DECIMAL > MAX-COMMAREA
 MOVE RC-TOO-LONG-COMMAREA TO WORK-RETURN-CODE
 MOVE MSG-TOO-LONG-COMMAREA TO
 WORK-ERROR-MESSAGE
 GO TO INITIATE-PROCESS-XIT
 ELSE
 MOVE DFHCOMMAREA TO WORK-DFHCOMMAREA.
 MOVE 0 TO WORK-RETURN-CODE.
 MOVE SPACES TO WORK-ERROR-MESSAGE.

INITIATE-PROCESS-XIT.
 EXIT.

 2000-CALL-VSVPSYNC SECTION.

 CALL 'VSVPSYNC' USING REFERENCE POINTER-OF-POINTER
 RETURNING CODE-PSYNC-NUM
 IF CODE-PSYNC-NUM NOT ZERO
 GO TO 2099-FIN
 END-IF.

 2030-SET-VIRSV-POINTERS.

 SET ADDRESS OF LIST-POINTER TO POINTER-OF-POINTER
 SET ADDRESS OF REQU TO LIST-ADR-REQU
 SET ADDRESS OF REQUL TO LIST-ADR-REQUL
 SET ADDRESS OF RC TO LIST-ADR-RC.

 2030-SET-SCENARIO-POINTERS.

 SET ADDRESS OF VTSADD-ACTION TO REQU-ACTION-PTR
 MOVE VTSADD-ACTION TO WORK-ACTION
 SET ADDRESS OF VTSADD-COMMAND TO REQU-COMMAND-PTR
 MOVE VTSADD-COMMAND TO WORK-COMMAND
 SET ADDRESS OF VTSADD-DATA-WORK-AREA
 TO REQU-DATA-WORKAREA-PTR
 SET ADDRESS OF VTSADD-RETURN-CODE TO REQU-RETCODE-PTR
 SET ADDRESS OF VTSADD-ERROR-MESSAGE TO REQU-ERROR-MSG-PTR.

 2099-FIN.
 EXIT.

CICS/TS V/TS

Copy input data:
 From COMMAREA

 To local working storage area

Program Changes – Core Section

28

 B110-RECEIVE-MAP.

 PERFORM B111-DO-THE-DB2-WORK
 THRU B111-DO-THE-DB2-WORK-EXIT.
 MOVE WORK-DFHCOMMAREA TO VTSCOMM.
 IF VIRSV-PROCESS
 MOVE DATA-WORK-AREA TO VTSDWA
 GO TO B110-RECEIVE-MAP-EXIT.
 MOVE DATA-WORK-AREA TO PRESET-DWA.

 B110-RECEIVE-MAP-EXIT.
 EXIT.

B110-RECEIVE-MAP.

 PERFORM B111-DO-THE-DB2-WORK
 THRU B111-DO-THE-DB2-WORK-EXIT.
 MOVE WORK-DFHCOMMAREA TO VTSCOMM.
 MOVE DATA-WORK-AREA TO PRESET-DWA.
 EXEC CICS WRITEQ TS
 QUEUE (PRESET-OPTIONS-QNAME)
 FROM (PRESET-OPTIONS-QUEUE)
 LENGTH (PRESET-OPTIONS-LENGTH)
 ITEM (PRESET-OPTIONS-ITEM)
 MAIN
 END-EXEC.

B110-RECEIVE-MAP-EXIT.
 EXIT.

CICS/TS V/TS

Simple EXEC CICS replacement:
 Replace Temporary Storage Queue logic with equivalent V/TS logic

 LINK to V/TS through dynamic calls

Program Changes – Termination Section

29

TERMINATE-PROCESS.

 MOVE DATA-WORK-AREA TO VTSDWA.
 MOVE WORK-RETURN-CODE TO VTSRC.
 MOVE WORK-ERROR-MESSAGE TO VTSMSG.

TERMINATE-PROCESS-XIT.
 EXIT.

TERMINATE-PROCESS.

 MOVE WORK-COMMAREA TO DFHCOMMAREA.

TERMINATE-PROCESS-XIT.
 EXIT.

Copy output data:
 From local working storage area

 To COMMAREA

CICS/TS V/TS

Program Changes – DBMS Accesses

30

EXECUTE-DB2-FILE.

 EXEC SQL PREPARE DYNAMSELECT
 FROM :COMMAND-STATEMENT
 END-EXEC.
 PERFORM PROCESS-ERROR-CODE
 THRU PROCESS-ERROR-CODE-XIT.
 IF HBWORK-RC-SUCCESS
 NEXT SENTENCE
 ELSE
 GO TO EXECUTE-DB2-FILE-XIT.
 EXEC SQL EXECUTE DYNAMSELECT
 USING :HOLD-WORK-AREA-ACTUAL
 END-EXEC.

EXECUTE-DB2-FILE-XIT.
 EXIT.

EXECUTE-DB2-FILE.

 EXEC SQL PREPARE DYAMSELECT
 FROM :COMMAND-STATEMENT
 END-EXEC.
 PERFORM PROCESS-ERROR-CODE
 THRU PROCESS-ERROR-CODE-XIT.
 IF HBWORK-RC-SUCCESS
 NEXT SENTENCE
 ELSE
 GO TO EXECUTE-DB2-FILE-XIT.
 EXEC SQL EXECUTE DYNAMSELECT
 USING :HOLD-WORK-AREA-ACTUAL
 END-EXEC.

EXECUTE-DB2-FILE-XIT.
 EXIT.

CICS/TS V/TS

Direct access to DB2/SQL:
 No change to application code

 Use IBM standard DB2/SQL protocol and data services

 Avoid redundant CICS data services

Program Changes – Automation Potential

• Initial onetime code modification:

• Manual at start  develop some experience

• Partly automated later on?

• Techniques to avoid dual maintenance:

• Automated conversion tools  pre-compilation

• Hide code differences behind copybooks/includes

• Insert dual logic for execution-time

• Most maintenance changes will fall outside TS interface

31

Implementation Strategy

Suggested Implementation

Key Implementation Considerations

32

Suggested Implementation

33

CICS/TS Transactions

Web Portals

C/S Apps

WUI/GUI

Equivalent V/TS Transactions

3-6 high-volume

transactions

generate 80% of

overall footprint

Key Implementation Considerations

• Limited scope

• 3-6 transactions generate 80% of web-initiated transaction volume

• Don’t replace or eliminate CICS: create alternate path

• Risk management

• Retain CICS transaction path for fallback and (debug) reference

• Avoid dual maintenance

• Automate code changes with pre-compiler

• Hide changes that cannot be automated behind copy/includes

• Most maintenance changes will fall outside TS interface

• Real world = need VSAM support

• Currently: DBMS/SQL only (DB2, etc)

• Short term: use EXCI or VXCI to submit VSAM I/Os through CICS

• Long term: develop “minimum” VSAM support?

34

VSAM Support – “Hybrid” Solution

35

RACF ACF2

TSS

Database

(DB2, etc.)

V/TS

Web

Service

Call

TCP/IP Listener

Authentication

Scenarios

& Scripts

Data

Formatting

Templates

VIRSV
Multi-Tasking

(PE)

zIIP
XML/SOAP

Parsing

Modified CICS

Application

Program TCB

TCP/IP

SRB

HTTP/S Server

VXCI

EXCI VSAM

Access

CICS/TS

VSAM

calls

Mono-command

No session mgmt.

Multi-command

session mgmt.

Direct SQL Calls

Direct SQL calls to DB2 and other DBMS.

Route VSAM calls to CICS via EXCI or VXCI.

Cost/Benefit Analysis

36

APPLICATIONS / SYSTEMS:

 Unfamiliar technology &

skillset

 Untested and untrusted

 Code changes

 Duplicate maintenance

 Debugging

CFO / CIO / OPS MGR:

 Smaller footprint 

reduced MF costs

 Shorter response times

 customer satisfaction

 Increased throughput 

delayed HW upgrade +

growth support

Mainframe organizations are in cost containment mode!

Conclusions and Next Steps

What have we proven and where do we go from here?

37

Conclusions

• Verified initial overhead assumption:

• 90-99% of transaction footprint is system (CICS, LE, etc) overhead

• Identified alternative to greatly improve:

 Query-Only Updates

• Response times: 7 times faster Twice faster

• Throughput: 6 times larger Twice larger

• Footprint: 4 times smaller Twice smaller

• Expected annual cost savings = $100Ks to $millions

• Main issues:

• Risk: unfamiliar + untested + untrusted

• Code modifications + long-term support

• No VSAM support to date  Limited “real life” applicability

• Cost/benefits analysis

38

Next Steps

• Confirm DB2/SQL benchmark results with real customer

transaction in real production environment

• Add VSAM support

• Then …

39

Questions

SHARE expo booth # 521 (VIRTEL)

patrick.fournier@syspertec.us

+1 (925) 954-9649

40

mailto:patrick.fournier@syspertec.us

