

IBM Americas, ATS, Washington Systems Center

Crypto Performance Update Share 13430 Boston, MA August, 2013

Greg Boyd (boydg@us.ibm.com)

Agenda

- Crypto Refresher
 - Crypto Functions
 - Clear Key vs Secure Key vs Protected Key
 - Crypto Hardware
- Crypto Performance Raw numbers
- Operational 'Things'
- Available metrics

 Page 2
 Crypto Performance
 August, 2013
 © 2013 IBM Corporation

Crypto Functions

Data Confidentiality

- Symmetric DES/TDES, AES
- Asymmetric RSA, Diffie-Hellman, ECC

Data Integrity

- Modification Detection
- Message Authentication
- Non-repudiation
- Financial Functions
- Key Security & Integrity

Page 3 Crypto Performance August, 2013 © 2013 IBM Corporation

Clear Key / Secure Key / Protected Key

- Clear Key key <u>may</u> be in the clear, at least briefly, somewhere in the environment
- Secure Key key value does not exist in the clear outside of the HSM (secure, tamperresistant boundary of the card)
- Protected Key key value does not exist outside of physical hardware, although the hardware may not be tamper-resistant

Page 4 Crypto Performance August, 2013 © 2013 IBM Corporation

System z Clear Key Crypto Hardware – zEC12, zBC12, z196/z114

- CP Assist for Crypto Function (CPACF)
 - **–DES (56-, 112-, 168-bit), new chaining options**
 - -AES-128, AES-192, AES-256, new chaining options
 - -SHA-1, SHA-256, SHA-512 (SHA-2)
 - -PRNG
 - Protected Key

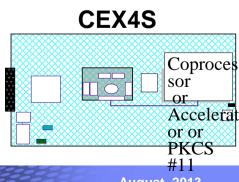
Page 5 Crypto Performance August, 2013 © 2013 IBM Corporation

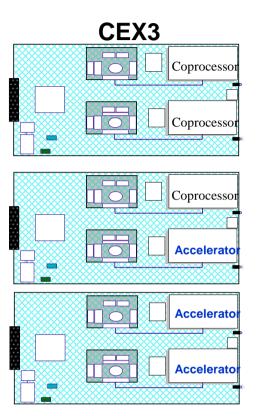
System z Secure Key Crypto Hardware – CEX4S, CEX3/CEX3-1P

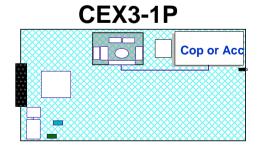
- Secure Key DES/TDES
- Secure Key AES
- Financial (PIN) Functions
- Random Number Generate and Generate Long
- Key Generate/Key Management
- SSL Handshakes, ECDSA support
- Protected Key Support
- PKCS #11 (CEX4S only)

PCI Cards

Secure Coprocessor (default)

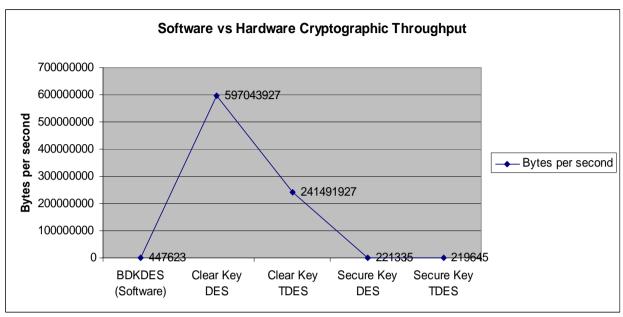

- -Requires master key be loaded
- Data confidentiality
- Data integrity
- -Financial functions
- Key generation/manipulation
- -RSA public key operations

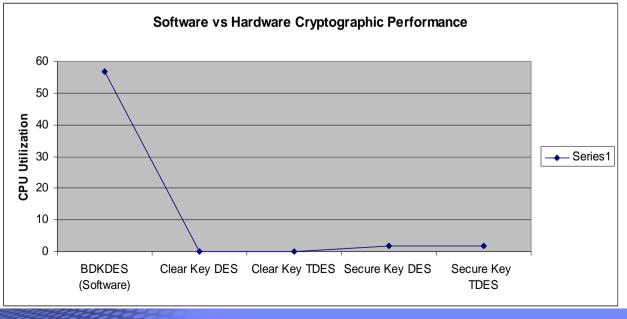

Accelerator


RSA public key operations

Enterprise PKCS #11

–PKCS #11 secure key

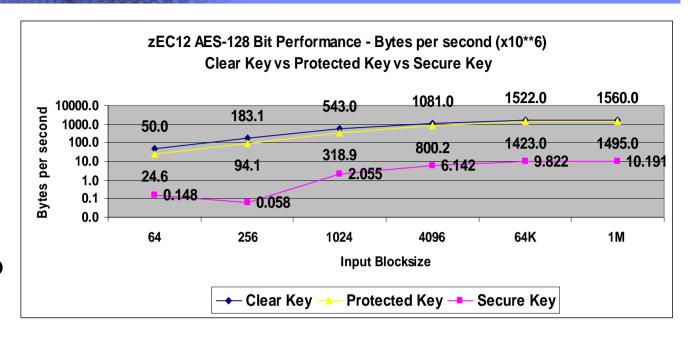


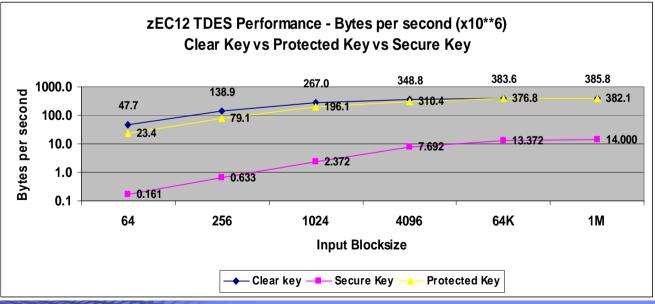


Software vs Hardware Encryption

	Bytes/Sec	CPU Time
BDKDES (Software)	447623	56.82
Clear Key DES	597043927	0.04
Clear Key TDES	241491927	0.09
Secure Key DES	221335	1.66
Secure Key TDES	219645	1.67

 From Ernie Nachtigall's TechDoc, WP101240 'IBM z10 DES Cryptographic Performance' available at http://www.ibm.com/supp ort/techdocs/atsmastr.nsf /WebIndex/WP101240

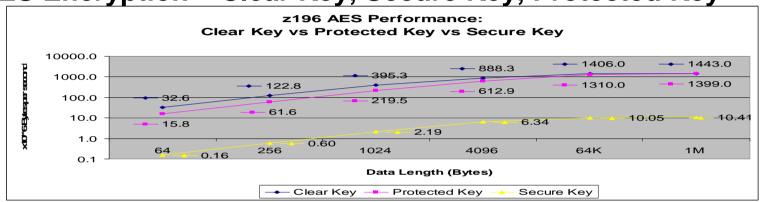

Page 8 Crypto Performance August, 2013 © 2013 IBM Corporation



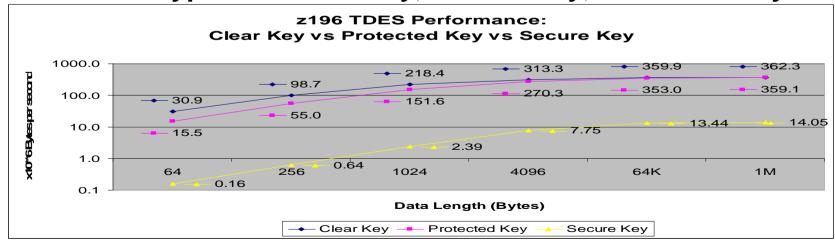
zEC12 Symmetric Key Performance

From the Crypto Performance whitepaper at

http://www.ibm.co m/systems/z/adv antages/security/ zec12cryptograp hy.html

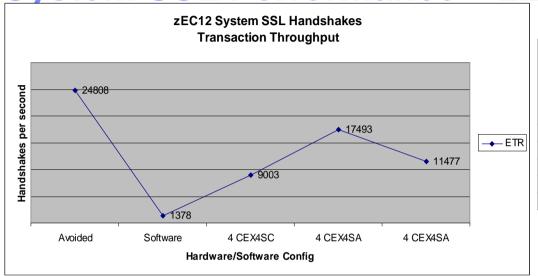


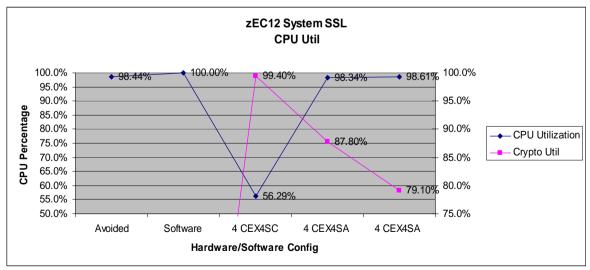
Page 9 Crypto Performance August, 2013 © 2013 IBM Corporation



z196 Crypto Performance

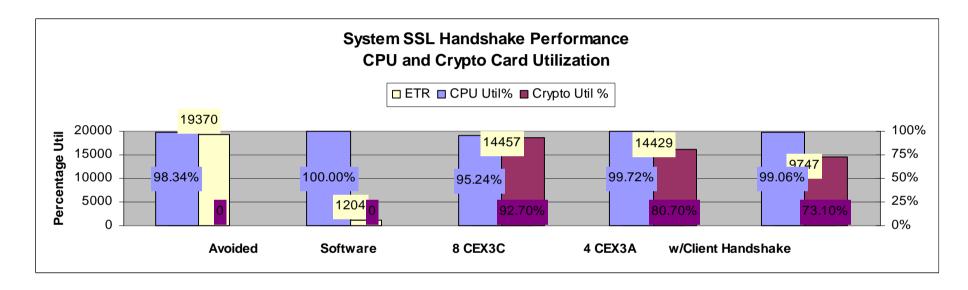
AES Encryption – Clear Key, Secure Key, Protected Key


TDES Encryption – Clear Key, Secure Key, Protected Key


Page 10 Crypto Performance August, 2013 © 2013 IBM Corporation

System SSL Performance – zEC12

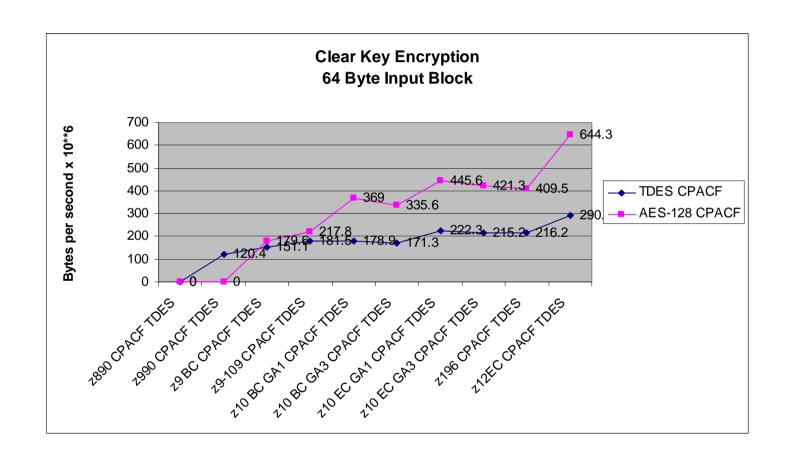
Caching SID/Client				
Authentication	Handshake	ETR	CPU Util%	Crypto Util %
100%/No	Avoided	24808	98.44%	NA
No/No	Software	1378	100.00%	NA
No/No	4 CEX4SC	9003	56.29%	99.40%
No/No	4 CEX4SA	17493	98.34%	87.80%
No/Yes	4 CEX4SA	11477	98.61%	79.10%



zEC12 HA1 - 4 CPs

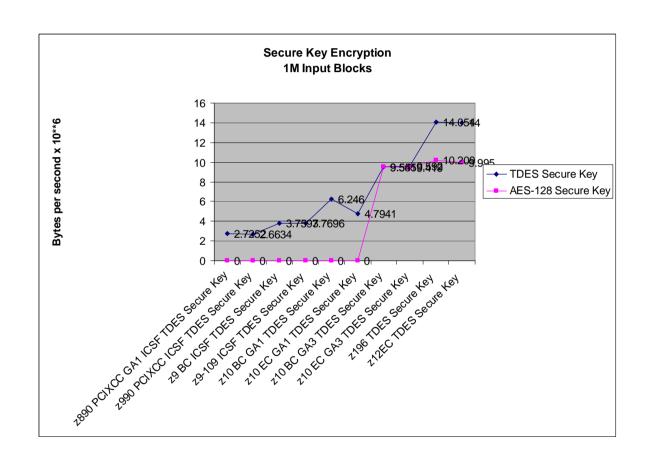
Page 11 Crypto Performance August, 2013 © 2013 IBM Corporation

System SSL Performance – z196

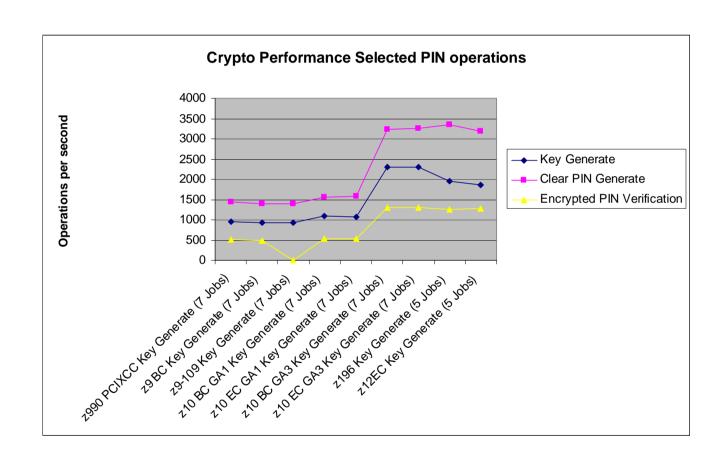


Caching				Crypto Util
SID	Handshake	ETR	CPU Util%	%
100%	Avoided	19370	98.34%	NA
No	Software	1204	100.00%	NA
No	8 CEX3C	14457	95.24%	92.70%
No	4CEX3A	14429	99.72%	80.70%
No	4 CEX3A	9747	99.06%	73.10%

Page 12 Crypto Performance August, 2013 © 2013 IBM Corporation


Crypto performance across CECs – Native Clear Key

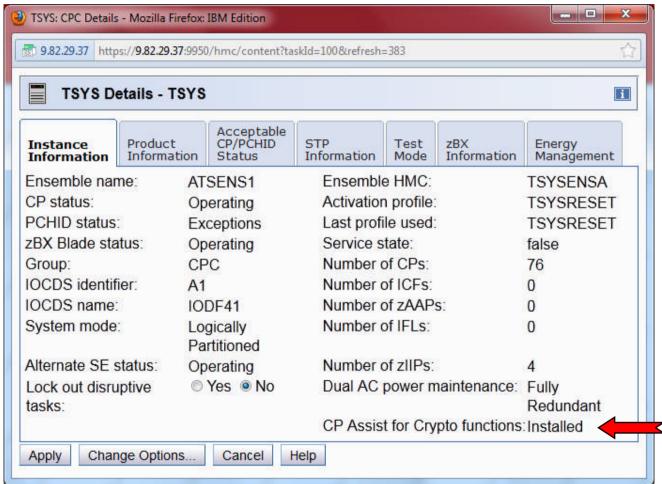
Page 13 Crypto Performance August, 2013 © 2013 IBM Corporation


Crypto performance across CECs – Secure Key

Page 14 Crypto Performance August, 2013 © 2013 IBM Corporation

Crypto Performance across KEKs - PIN

Page 15 Crypto Performance August, 2013 © 2013 IBM Corporation


ICSF Options - Performance Considerations

- KEYAUTH(YES/NO) check key integrity in memory
- CKTAUTH(YES/NO) check key integrity on DASD
- CHECKAUTH(YES/NO) skip SAF checks for Supervisor State or System Key callers
- SYSPLEXCKDS / SYSPLEXPKDS / SYSPLEXTKDS enqueues and contention between systems

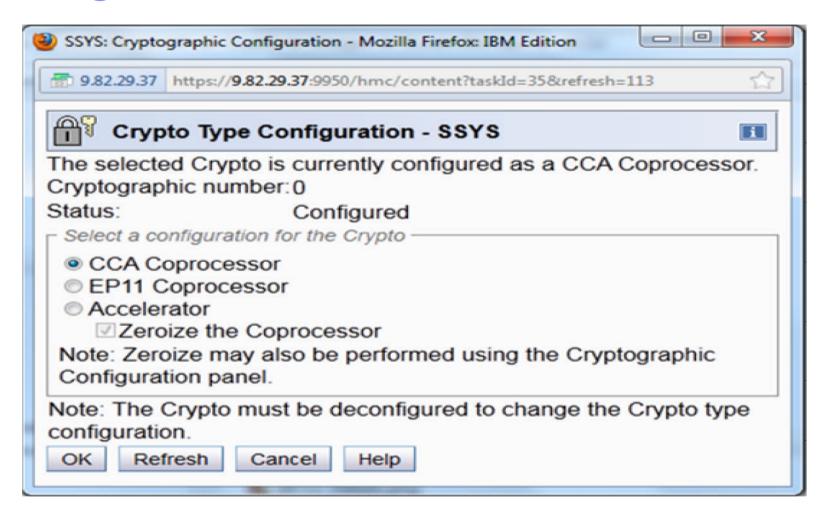
Page 16 Crypto Performance August, 2013 © 2013 IBM Corporation

Crypto Microcode Installed?

 From the HMC, you must be in Single Object Mode, then look at the CPC Details

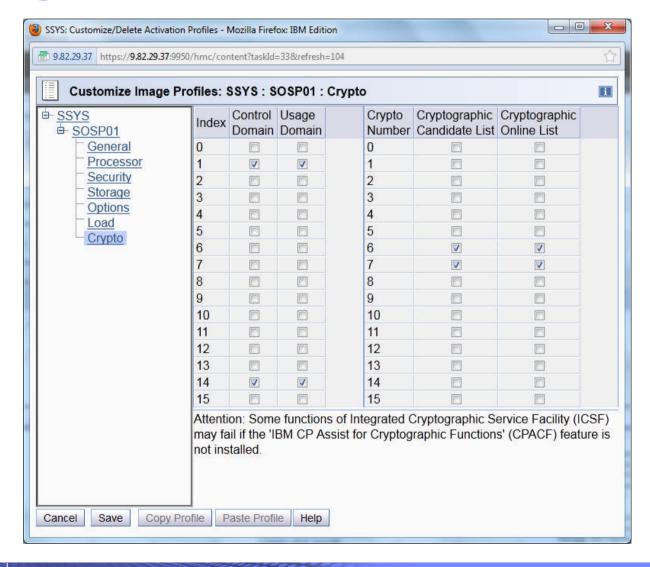
Page 17 Crypto Performance August, 2013 © 2013 IBM Corporation

PCI Configuration



From CPC
Operational
Customization,
click on View
LPAR
Cryptographic
Controls

Page 18 Crypto Performance August, 2013 © 2013 IBM Corporation


Reconfig

 Page 19
 Crypto Performance
 August, 2013
 © 2013 IBM Corporation

PCI Assignments

Page 20 Crypto Performance August, 2013 © 2013 IBM Corporation

Are your Master Keys loaded and correct?

	Serial					
CoProcessor	Number	Status	AES	DES	ECC	RSA
G01	0000001	ONLINE	υ	U	С	U
G02	00000002	ACTIVE	A	U	A	E
G03	0000003	ACTIVE	A	υ	A	C
E05	00000004	ACTIVE	A	υ	_	C
но7		ACTIVE				

 Page 21
 Crypto Performance
 August, 2013
 © 2013 IBM Corporation

How do I tell, which ciphersuites – F GSKSRVR, CRYPTO

GSK01009I Cryptographic status

Algorithm	Hardware	Software
DES	56	56
3DES	168	168
AES	256	256
RC2		128
RC4		128
RSA Encrypt	4096	4096
RSA Sign	4096	4096
DSS		1024
SHA-1	160	160
SHA-2	512	512
ECC		521

Page 22 Crypto Performance August, 2013 © 2013 IBM Corporation

CPU MF COUNTERS – What and Why

What is CPU MF?

- A new z10 and later facility that provides cache and memory hierarchy COUNTERS
- Also capable of time-in-Csect type SAMPLES
- Data gathering controlled through z/OS HIS (HW Instrumentation Services)
 - Collected on an LPAR basis
 - Written to SMF 113 records
 - Minimal overhead

How can the COUNTERS be used today?

- To supplement current performance data from SMF, RMF, DB2, CICS, etc.
- To help understand why performance may have changed

How can the COUNTERS be used for future processor planning?

- They provide the basis for the new LSPR workload categories
- zPCR automatically processes CPU MF data to provide a workload "hint" based on RNI
 - zPCR still defaults to old IO-based methodology for workload selection
 - RNI "hint" is a "work in progress"

Page 23 Crypto Performance August, 2013 © 2013 IBM Corporation

IBM ATS, Washington Systems Center Measurement Facility Counters

Counter Number	Counter
64	PRNG function count
65	PRNG cycle count
66	PRNG blocked function count
67	PRNG blocked cycle count
68	SHA function count
69	SHA cycle count
70	SHA blocked function count
71	SHA blocked cycle count
72	DEA function count
73	DEA cycle count
74	DEA blocked function count
75	DEA blocked cycle count
76	AES function count
77	AES cycle count
78	AES blocked function count
79	AES blocked cycle count

Page 24 Crypto Performance August, 2013 © 2013 IBM Corporation

Sample Report – Crypto COUNTERS provide measurement of CPACF Crypto Co-Processor Usage

*** z10 Summary - CRYPTO Counters Information *** TOTAL for all CPUs PRNG Function Count 0/Sec PRNG Cycle Count PRNG Blocked Function Count 0/Sec PRNG Blocked Cycle Count 0/Sec SHA Function Count 0.73/Sec 592.47/Sec SHA Cycle Count SHA Blocked Function Count 0/sec SHA Blocked Cycle Count 0/sec DEA Function Count 6277.39/Sec DEA Cycle Count 332273396.24/Sec DEA Blocked Function Count 0/Sec DEA Blocked Cycle Count 0/5ec AES Function Count 0/Sec AES Cycle Count 0/Sec AES Blocked Function Count 0/sec AES Blocked Cycle Count 0/sec CRYPTO BUSY SUMMARY PRNG Crypto Busy: 0.00% - for the 3 CPUs SHA Crypto Busy: 0.00% - for the 3 CPUs Crypto Busy: 2.55% - for the 3 CPUs AES Crypto Busy: 0.00% - for the 3 CPUs Total Crypto Busy: 2.55% - for the 3 CPUs

This information may be useful in determining:

- A count of <u>How Many CPACF encryption</u> <u>functions were executed</u>
- How much CPU Time (cycles) were used

The encryption facility executed both SHA functions and TDES functions for this specific test.

Ran DASD dumps sequentially over 20 minute duration

With option: ENCRYPT(CLRTDES) -

These numbers come from a synthetic Benchmark and do not represent a production workload

- •It is important to remember that <u>other Crypto functions may be executing in software and/or on Crypto Express Cards</u> (if installed & implemented). This is not measured by the CPU MF Crypto COUNTERS
- •CPU MF Crypto COUNTERS can help assess how many of the Crypto Functions are occurring on the CPACF Co-Processors

See "A Synopsis of System z Crypto Hardware" by Greg Boyd **WP100810** http://www.ibm.com/support/techdocs

Page 25 Crypto Performance August, 2013 © 2013 IBM Corporation

SMF Type 82 – ICSF Record

- Subtype 1 ICSF Initialization
- Subtype 3 change in number of available processors
- Subtype 4 when ICSF handles error conditions for crypto feature failure or tampering
- Subtype 5 change in SSM
- Subtype 6 & 7 when a key part is entered via Key Entry Unit (KEU)
- Subtype 8 when in-storage CKDS is refreshed
- Subtype 9 when CKDS is updated by dynamic CKDS update servcie

Page 26 Crypto Performance August, 2013 © 2013 IBM Corporation

SMF Type 82 – ICSF Record (cont.)

- Subtype 10 when clear key part entered for PKA-MK
- Subtype 11 when clear key part entered for DES-MK
- Subtype 12 for each request and reply from calls to CSFSPKSC service by TKE
- Subtype 13 when the KDS is updated by dynamic PKDS update
- Subtype 14 when clear key part is entered for any PCICC master key
- Subtype 15 when a PCICC retained key is created/deleted
- Subtype 16 for each request and reply from calls to CSFPCI service by TKE

Page 27 Crypto Performance August, 2013 © 2013 IBM Corporation

SMF Type 82 – ICSF Record (cont.)

- Subtype 17 periodically to provide some indication of PCI Cryptographic Coprocessor usage
- Subtype 18 when a PCICC, PCICA, PCIXCC, CEX2 or CEX3 comes online or offline
- Subtype 19 when a PCIXCC operation begins or ends
- Subtype 20 record processing times for PCIXCCs and CEX2Cs
- Subtype 21 when IXCJOIN or IXCLEAVE the sysplex group
- Subtype 22 when Trusted Block Create API invoked
- Subtype 23 when the TKDS is updated

Page 28 Crypto Performance August, 2013 © 2013 IBM Corporation

SMF Type 82 – ICSF Record (cont.)

- Subtype 24 when duplicate tokens are found
- Subtype 25 when key store policy is activated
- Subtype 26 when PKDS is refreshed
- Subtype 27 information about PKA Key Management Extensions
- Subtype 28 information about High Performance Encrypted Key (Protected Key)
- Subtype 29 for each TKE Workstation audit record received from a TKE workstation

Page 29 Crypto Performance August, 2013 © 2013 IBM Corporation

REXX EXEC CSFSMFR

Formats the SMF Type 82 records into a readable report

- Sample Job, CSFSMFJ to
 - Capture the Type 82 records (with IFASMFDP)
 - Sort the records
 - Execute CSFMFR, via Batch TSO
- Output may be large multiple lines per Type 82 record
- It's more readable than the raw SMF record, but ...

Subtype=0014 Cryptographic Coprocessor Timing

Written periodically to provide some indication of coprocessor and accelerator Nov 2011 0:00:19.26

TME... 00000786 DTE... 0111305F SID... SYSC SSI... 00000000 STY... 0014

TFL... 10000000

TFL 10 Coprocessor is a CEX3C

TNQ... C89B5841F5841AB1 TDQ... C89B5841F59D39B1 TWT... C89B5841F59D5AB1

TQU... 00000000 TSF... áä TIX... 00

TSN... 91008705 TDM... 02 TRN... 40

Forensics, more than performance

Page 30 Crypto Performance August, 2013 © 2013 IBM Corporation

SMF Type 70, Subtype 2 - RMF Processor Activity . . .

Cryptographic Coprocessor Data Section

- Processor Index, Processor Type
- Scaling Factor
- Execution Time of all operations
- Number of all operations on the coprocessor
- Number of all RSA-key-generation operations

Cryptographic Accelerator Data Section

- Processor Index, Processor Type
- Validity bit mask, Number of engines on the accelerator
- Scaling factor
- Execution time & number of operations by

- 1024-bit-ME 2048-bit-ME

- 1024-bit-CRT 2048-bit-CRT

- 4096-bit-ME 4096-bit CRT

Page 31 Crypto Performance August, 2013 © 2013 IBM Corporation

SMF Type 70, Subtype 2 - RMF Processor Activity (cont.)

ICSF Services Data Section

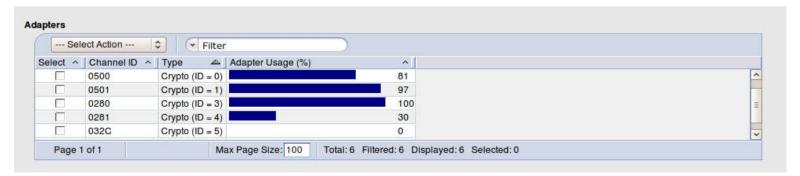
- Single DES (Encipher & Decipher): Number of calls, bytes, and instructions
- Triple DES (Encipher & Decipher): Number of calls, bytes, and instructions
- MAC Generate/Verify: Number of calls to generate/verify, number of bytes for which MAC was generated/verified, number of PCMF instructions used to generate/verify the MAC
- SHA-1: Number of calls to hash, number of bytes that were hashed, number of PCMF instructions used to hash the data
- PIN: number of translate calls, number of verify calls
- SHA-224, SHA-256, SHA-384, SHA-512: Number of calls to hash, number of bytes that was hashed, number of PCMF instructions used to hash the data
- ICSF Data Level
- AES Encipher & Decipher: number of calls sent to cop, number of bytes processed, number of operations

Page 32 Crypto Performance August, 2013 © 2013 IBM Corporation

RMF Crypto Hardware Activity Report

	CRYPTOHARDWAREACTIVITY				PAGE 1			
z/OS	V1F	R13 SYSTEM	ID TRX2		START 0	9/28/2011-08.15.0	0 INTERVA	AL 007.14.59
	RP	T VERSION V	1R13 RMF	Ī	END 09/2	8/2011-15.30.00 C	YCLE 1.00	00 SECONDS
CRYPT	OGRAPHIC COPRO	CESSOR						
	TOTAL	F	KEY-GEN					
TYPE ID	RATE EXEC TIME	E UTIL% F	RATE					
CEX2C 0	0.00 0.000	0.0	0.00					
1	2.16 295.9	63.9	2.14					
2	0.00 0.000	0.0	0.00					
CEX3C 4	2.15 227.8	48.9	2.15					
CRYPT	OGRAPHIC ACCELE	ERATOR						
	TOTAL		ME-FOR	MAT RSA OPE	RATIONS	CRT-FOR	RMAT RSA	OPERATIONS
TYPE ID	RATE EXEC TIME	UTIL% KEY	RATE	EXEC TIME	UTIL%	RATE	EXEC TIM	IE UTIL%
CEX2A 3	766.9 0.434	33.3 1024	362.4	0.521	18.9	369.5	0.183	6.8
		2048	0.00	0.000	0.0	34.99	2.175	7.6
CEX3A 5	998.9 0.365	36.5 1024	246.4	0.534	13.2	554.3	0.205	11.3
		2048	0.00	0.000	0.0	83.16	0.689	5.7
		4096	0.00	0.000	0.0	115.1	0.547	6.3
ICSF SE	ERVICES							
	ENCRYPTION -	DE	CRYPTION	V	MAC	HASH -		PIN
	SDES TDES A	AES SDES	TDES /	AES GENER	ATE VERIFY	SHA-1 SHA-256	SHA-512	TRANSLATE VERIFY
RATE	15.41 10.27 0	0.02 5.14	10.27	0.02 34.23	35.87	15352 <0.01	<0.01	8.97 5.14
SIZE	3200 4400 18	89.0 800.0	4400 18	39.5 4573	4400	105.0 48.00	48.00	

Page 33 Crypto Performance August, 2013 © 2013 IBM Corporation



Crypto Function Integration (Monitors Dashboard Support)

- The Monitors Dashboard on the HMC and SE was enhanced with a new Adapters table for zHelix.
- The Crypto Utilization percentage is displayed on the Monitors Dashboard according to the pchid number. The associated crypto number (AP Number) for this pchid is also shown in the table.
- The Utilization on the card is calculated using the formula: U = (Ta2 - Ta1) * S / (T2 - T1)

Ta: time used for execution

S: scaling factor T: Time of measurement interval

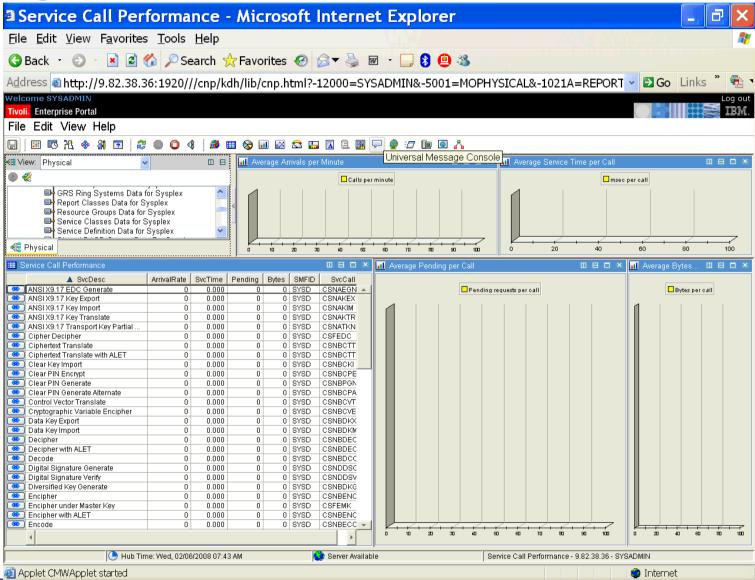
Page 34 **Crypto Performance** August, 2013 © 2013 IBM Corporation

Workload Activity SMF Type 72, Subtype 3

-Crypto Using and Delay Samples

- CAM crypto using samples: a TCB was found executing on a cryptographic asynchronous message processor
- CAM crypto delay samples: a TCB was found waiting on a cryptographic asynchronous message processor
- AP crypto using samples: a TCB was found executing on a cryptographic assist processor
- AP crypto delay samples: a TCB was found waiting on a cryptographic assist processor

Page 35 Crypto Performance August, 2013 © 2013 IBM Corporation



SMF Type 30 - Common Address Space Work

- SMF30CSC ICSF Service Count
 - CSNBENC (Single-DES) # of service calls, # of bytes, # of CMD instructions
 - CSNBENC (Double & Triple-DES) # of service calls, # of bytes, # of CMD instructions
 - CSNBDEC (Single-DES) # of service calls, # of bytes, # of CMD instructions
 - CSNBDEC (Double & Triple-DES) # of service calls, # of bytes, # of CMD instructions
 - CSNBMGN (MAC Generate) single and various double key MAC; # of service calls, # of bytes, # of CMD instructions
 - CSNBMVR (MAC Verify) single and various double key MAC; # of service calls, # of bytes, # of CMD instructions
 - CSNBOWH (SHA-1) # of Service calls, # of bytes, # of PCMF instructions
 - CSNBOWH (SHA-256 which includes SHA-224) # of Service calls , # of bytes, # of PCMF instructions
 - CSNBOWH (SHA-512 which includes SHA-384) # of Service calls , # of bytes, # of PCMF instructions
 - CSNBPTR # of Service calls
 - CSNBPVR # of Service calls

Omegamon

Page 37 Crypto Performance August, 2013 © 2013 IBM Corporation

IBM Redbooks & Manuals

- SG24-6645 Effective zSeries Performance Monitoring Using Resource Measurement Facility
- REDP-4358 Monitoring System z Cryptographic Services
- SA22-7630 z/OS System Measurement Facilities (SMF)

z/OS Web Download Site

http://www.ibm.com/systems/z/os/zos/downloads/

Page 38 Crypto Performance August, 2013 © 2013 IBM Corporation

Crypto Performance Whitepapers

zEC12

-http://www.ibm.com/systems/z/advantages/security/z ec12cryptography.html

z196 and z10

-http://www.ibm.com/systems/z/advantages/security/z 10cryptography.html

Page 39 Crypto Performance August, 2013 © 2013 IBM Corporation

CPU Measurement Facility Doc

- IBM Research article
 - "IBM System z10 performance improvements with software & hardware synergy"
 - -http://www.research.ibm.com/journal/rd/531/jackson.pdf
 - Contact IBM team for copy of the article
- Feb 2011 Hot Topics A z/OS Newsletter GA22-7501
 - "A whole lot of benefits from HIS data" article page 24
 - COUNTERS and an update on SAMPLING HIS report tool and STG Lab Services
- Redpaper Setting Up and Using System z CPU Measurement Facility with z/OS
 - -http://www.redbooks.ibm.com/redpieces/pdfs/redp4727.pdf

Questions ...

Page 41 Crypto Performance August, 2013 © 2013 IBM Corporation

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

AlphaBlox*	GDPS*	RACF*	Tivoli*
APPN*	HiperSockets	Redbooks*	Tivoli Storage Manager
CICS*	HyperSwap	Resource Link	TotalStorage*
CICS/VSE*	IBM*	RETAIN*	VSE/ESA
Cool Blue	IBM eServer	REXX	VTAM*
DB2*	IBM logo*	RMF	WebSphere*
DFSMS	IMS	S/390*	zEnterprise
DFSMShsm	Language Environment*	Scalable Architecture for Financial Reporting	xSeries*
DFSMSrmm	Lotus*	Sysplex Timer*	z9*
DirMaint	Large System Performance Reference™ (LSPR™)	Systems Director Active Energy Manager	z10
DRDA*	Multiprise*	System/370	z10 BC
DS6000	MVS	System p*	z10 EC
DS8000	OMEGAMON*	System Storage	z/Architecture*
ECKD	Parallel Sysplex*	System x*	z/OS*
ESCON*	Performance Toolkit for VM	System z	z/VM*
FICON*	PowerPC*	System z9*	z/VSE
FlashCopy*	PR/SM	System z10	zSeries*
* Registered trademarks of IBM Corporation	Processor Resource/Systems Manager		

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both,

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Page 42 Crypto Performance August, 2013 © 2013 IBM Corporation